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Περίληψη

Η διατριβή αυτή παρουσιάζει μια σειρά από διαταρακτικούς υπολογισμούς σε δυο μελέτες

που αφορούν θεμελιώδης μεγέθη στη Κβαντική Χρωμοδυναμική (QCD). Οι

περισσότεροι από τους υπολογισμούς πραγματοποιούνται μέσα στο πλαίσιο του

φορμαλισμού του πλέγματος, χρησιμοποιώντας μια σειρά από βελτιωμένες δράσεις

πλέγματος που χρησιμοποιούνται συχνά σε αριθμητικές προσομοιώσεις.

Αρχικά, υπολογίζονται τα σφάλματα διακριτοποίησης στη θεωρία διαταραχών, οι οποίες

είναι ανάλογες της μάζας των φερμιονίων (O(am)), που εμφανίζονται στην σταθεράς

σύζευξης της QCD, χρησιμοποιώντας τον φορμαλισμό του πλέγματος. Η ανάλυση

περιλαμβάνει τον υπολογισμό του παράγοντα επανακανονικοποίησης Zg σε τάξη

διόρθωσης δυο βρόγχων, χρησιμοποιώντας γκλουόνια Symanzik και φερμιόνια clover σε

μια αυθαίρετη αναπαράσταση της ομάδας βαθμίδας SU(Nc) και Nf γεύσεις φερμιόνων με

πεπερασμένη μάζα, λαμβάνοντας υπόψη τη βελτίωση πρώτης τάξης της πλεγματικής

σταθεράς (O(a)). Για τον υπολογισμό του Zg χρησιμοποιείται η μέθοδος του πεδίου

υποβάθρου (background) υπολογίζοντας τις κβαντικές διορθώσεις τόσο στο διαδότη

υποβάθρου όσο και στο κβαντικό διαδότη του γκλουονίου. Αυτό επιτρέπει τον

διαταρακτικό υπολογισμό των σφαλμάτων διακριτοποίησης λόγω του πλέγματος O(am)

που προκύπτουν από την πεπερασμένη μάζα του φερμιονίου. Η εξάλειψη των όρων

O(am) αποτελεί κρίσιμη στις μελέτες των μη-διαταρακτικών υπολογισμών για τη

βελτίωση των προσδιορισμών ακριβείας της σταθεράς σύζευξης χρησιμοποιώντας τη

θεωρία πεδίου στο πλέγμα.

Επιπρόσθετα, εξετάζεται η επανακανονικοποίηση ενός πλήρους σετ από μη τοπικούς

τελεστές γκλουονίων αναλλοίωτους κάτω από μετασχηματισμούς βαθμίδας, σε τάξη

διόρθωσης ενός βρόγχου στο φορμαλισμό του πλέγματος. Το μοτίβο ανάμειξης των

τελεστών αυτών κατά την επανακανονικοποίηση τους προσδιορίζεται χρησιμοποιώντας

επιχειρήματα συμμετρίας, τα οποία επεκτείνονται πέρα από τη θεωρία της διαταραχών.

Επιπλέον, υπολογίζονται οι παράγοντες επανακανονικοποίησης των τελεστών μέσα στο

σχήμα (MS) μέχρι τάξη διόρθωσης ενός βρόγχου, Μαζί με τους παράγοντες μετατροπής

από το σχήμα κανονικοποίησης RI′ στο σχήμα MS. Οι υπολογισμοί πραγματοποιούνται

με τη χρήση του διαστατικού ομαλοποιητή αλλά και του πλεγματικού ομαλοποιητή,

χρησιμοποιώντας την δράση γκλουονίων Wilson. Οι υπολογισμοί αυτοί αποτελούν

σημαντικοί στη μελέτη μη διαταρακτικές μελέτες των συναρτήσεων κατανομής των

γκλουονίων (PDFs) στο πλέγμα.
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Abstract

This dissertation presents a series of perturbative calculations in two main projects

concerning fundamental quantities in Quantum Chromodynamics (QCD). The majority

of the calculations are conducted within the framework of lattice field theory, using a

range of improved lattice actions commonly used in numerical simulations.

Initially, the perturbative results of the discretization errors, which are proportional to

the quark mass (O(am)), are calculated on the QCD running coupling within lattice

perturbation theory. The analysis involves the calculation of the 2-loop renormalization

factor Zg using improved lattice actions for an arbitrary representation of the SU(Nc)

gauge group and Nf multiplets of fermions with a finite quark mass respecting the O(a)

improvement. The background field method is employed to compute Zg by evaluating

quantum corrections on both the background and quantum gluon propagator. This

allows the perturbative evaluation of the O(am) lattice errors arising from the finite

quark mass. The elimination of these O(am) effects is crucial for the nonperturbative

studies of precision determinations of the strong coupling constant using lattice field

theory.

Furthermore, the renormalization of a complete set of gauge-invariant gluon nonlocal

operators in lattice perturbation theory is investigated. The mixing pattern under

renormalization of these operators is determined using symmetry arguments, which

extend beyond perturbation theory. Additionally, the renormalization factors of the

operators within the modified Minimal Subtraction (MS) scheme are derived up to

one-loop, along with the conversion factors from the modified regularization invariant

RI′ scheme to MS. The computations are performed by employing both dimensional

and lattice regularizations, using the Wilson gluon action. This work is relevant to

nonperturbative studies of the gluon parton distribution functions (PDFs) on the

lattice.
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Chapter 1

Introduction

The Standard Model of particle physics stands as the cornerstone of our current

understanding regarding elementary particles and their interactions, representing the

most comprehensive theory to date in physics. Developed over the latter half of the

20th century, the Standard Model elegantly describes, through the framework of

quantum fields, three of the four fundamental forces of nature: electromagnetism,

weak interactions, and strong interactions. Notably, it omits gravity, which is

considered negligible at the atomic and subatomic scales.

At the Standard Model core, there are two main categories of particles: fermions

and bosons. Fermions, the building blocks of matter, are divided into two groups,

known as quarks and leptons. Quarks come in six flavors: up, down, charm, strange,

top, and bottom, each with its corresponding antiquark. Quarks with different flavors

have different masses. These particles have fractional electric charges and interact via

the strong force mediated by gluons. Quarks combine to form composite particles

called hadrons, such as protons and neutrons. Leptons, on the other hand, include the

particles electron, muon, tau, and their associated neutrinos. Unlike quarks, leptons do

not participate in the strong force and have integer electric charges. They interact via

the weak force and electromagnetism. Bosons are force-carrying particles responsible

for mediating the fundamental forces of nature. Gauge bosons, including the photon,

W and Z bosons, and gluons, transmit the electromagnetic, weak, and strong forces,

respectively. The Higgs boson, another crucial boson, is responsible for giving mass to

other particles through the Higgs mechanism.

1
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Chapter 1 Introduction 2

Quantum Chromodynamics (QCD) is a fundamental component of the Standard

Model, describing the strong force that binds quarks together within hadrons.

Formulated in the 1970s, Quantum Chromodynamics (QCD) introduced the concept

of color charge. This is an additional quantum property analogous to electric charge

in Quantum Electrodynamics (QED). In QCD, quarks carry three types of color (red,

green, and blue), while antiquarks carry their corresponding anticolors. Gluons, the

mediators of the strong force, also carry color charge, enabling them to interact with

quarks and with each other. There are eight types of gluons corresponding to the

eight generators of the non-abelian group SU(3), upon which QCD is based. Its

development emerged in response to the need for a consistent theory of strong

interactions. This need arose due to the observation of a vast number of new particles

in high-energy experiments conducted in the 1950s and 1960s. The theory not only

explained the discovered particles but also successfully predicted the existence of new

particles.

Two key properties of QCD are confinement and asymptotic freedom. Confinement

refers to the phenomenon whereby isolated quarks cannot exist freely but are always

bound together within color-neutral combinations, such as mesons and baryons. Mesons

are composed of one quark and one antiquark, resulting in integer spin particles, while

baryons consist of three quarks or three antiquarks, forming half-integer spin particles.

Asymptotic freedom, on the other hand, describes the weakening of the strong force

at very short distances, allowing for the use of perturbative techniques in high-energy

interactions. Quarks and gluons tend to behave as nearly free particles in high energies.

David Gross, Frank Wilczek, and David Politzer, recipients of the 2004 Nobel Prize in

Physics, were the first to identify the property of asymptotic freedom.

The formulation of QCD not only provided a coherent explanation for the strong

interaction but also led to a deeper understanding of the structure and dynamics of

hadrons. Through theoretical calculations and experimental verifications, QCD has

successfully provided insights into phenomena such as deep inelastic scattering and

hadron spectroscopy. Additionally, it has shed light on the behavior of quark-gluon

plasma at extreme temperatures and densities. Furthermore, QCD plays a crucial

role in our understanding of the early universe, particularly during the quark-gluon

epoch moments after the Big Bang, when the fundamental interactions were governed

by high-energy QCD dynamics. As such, the study of QCD continues to be a vibrant

field, where theoretical investigations are interconnected with cutting-edge
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Chapter 1 Introduction 3

experimental efforts, pushing the boundaries of our knowledge of the fundamental

components of matter and the forces that govern them.

1.1 Lattice QCD

Lattice QCD, pioneered by Kenneth Wilson in 1974 [2], represents a groundbreaking

nonperturbative regularization method within theoretical physics. Departing from the

limitations of conventional perturbative techniques, lattice QCD offers a robust

computational framework for investigating numerous aspects of strong interaction

dynamics and the structure of hadrons. In the study of quark and lepton flavor

physics, precision lattice QCD input remains indispensable for interpreting

experimental findings. Notably, it aids in determining hadronic contributions to the

muon’s anomalous magnetic moment, form factors in light- and heavy-flavor sectors

essential for testing the unitarity of the Cabibbo–Kobayashi–Maskawa (CKM)

matrix, and validating potential lepton-universality anomalies. Additionally, lattice

QCD provides precision determinations of quark masses, the strong coupling

constant, and nucleon parton distribution functions, all crucial for precision Higgs

physics and beyond-the-Standard-Model (BSM) searches at the Large Hadron

Collider (LHC). Furthermore, lattice QCD makes possible computations related to

nucleon/nuclear form factors, associated charges, and various nucleon matrix

elements, which are important to investigations into violations of fundamental

symmetries and the exploration of new physics. These calculations, alongside

numerous others, provide essential inputs for both theoretical phenomenological

models and experimental studies in particle physics [3].

Lattice regularization involves discretizing Euclidean spacetime into a four-dimensional

hypercubic lattice, where each point is separated by a lattice spacing denoted as a.

This approach allows the numerical approximation of the continuum QCD functional

integral within a finite lattice framework. Quark fields are positioned at lattice sites,

while gauge fields reside on the links connecting these sites. The lattice spacing acts

as the ultraviolet regulator, filtering out high frequencies and ensuring the finiteness

of the quantum field theory in high-energy regions. More precisely, it sets a cutoff

on momentum integration, restricting it to the finite range of the first Brillouin zone

(−π/a < pµ < π/a) during lattice computations in momentum space. In regions of low

energy, the finite lattice size L acts as the infrared regulator. The continuum theory is
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Chapter 1 Introduction 4

attained by extrapolating lattice results to an infinitely large lattice size (L→ ∞) and

approaching the limit of an infinitesimal lattice spacing (a→ 0). This convergence can

be achieved by adjusting the bare coupling constant (which characterizes the strength

of interactions in the theory) to zero according to the renormalization group.

An essential benefit of lattice QCD is that it harnesses the power of Monte Carlo

simulations. These simulations use inputs like bare coupling and quark masses to

approximate the path integral inherent to the theory. By employing random sampling

techniques, Monte Carlo simulations are essential for two purposes: predicting how

hadronic quantities depend on bare parameters and verifying the accuracy of QCD

as the theory of strong interactions through experimental comparisons. However, the

simulations remain computationally demanding due to the large number of degrees

of freedom, requiring the use of approximations. A critical constraint in numerical

calculations lies in the range of the lattice spacing. Common algorithms slow down

proportionally to a5 and thus a common approach is to perform simulations with several

different lattice spacings, typically spanning a range from around 0.1 fm to 0.01 fm or

smaller to extrapolate.

Despite the effectiveness of lattice QCD, it faces challenges when simulating certain

physical quantities. Statistical errors, stemming from Monte Carlo importance

sampling, are relatively easy to estimate. However, systematic uncertainties present a

significant obstacle in lattice QCD calculations. These errors mainly originate from

discretization effects. Simulations are performed using finite lattice spacing and sizes,

resulting in undesired contributions to nonperturbative estimates, even as the

continuum limit is approached. Alongside discretization effects, finite volume effects

also contribute to uncertainties. These are related to the spontaneous chiral flavor

symmetry breaking, leading to the appearance of pions as light Goldstone bosons. To

address these challenges, innovative methodologies and careful error consideration are

necessary.

In recent years, significant progress has been made in numerical simulations, driven

by advancements in algorithms, the introduction of novel techniques, and the

enhancement of computational capabilities. These enhancements have enabled

simulations to closely resemble physical values in various parameters. Additionally,

the integration of machine-learning applications and the development of quantum

computation will further expand these capabilities. With ongoing support and
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development, lattice QCD will continue to provide vital inputs to numerous fields

within particle physics.

1.2 Perturbative lattice QCD using improved

actions

In principle, there is no unique formulation for a continuum action on the lattice. The

only restriction when discretizing the QCD Lagrangian of the continuum theory is

ensuring its recovery in the continuum limit. Lattice actions typically fail to preserve

all symmetries present in continuum actions due to the discretization of spacetime on

the lattice. However, constructing gauge-invariant lattice actions is essential because

the renormalizability of QCD relies on gauge symmetry. Additionally, there is no

universally optimal lattice action applicable to all physical systems. Each variation

has its own set of advantages and disadvantages depending on the specific symmetries

of the case study. Although every lattice action introduces discretization effects that

disappear only in the continuum limit (a → 0), numerical simulations require careful

controlling of these errors before extrapolating to this limit. Constructing improved

actions, which minimize discretization errors, ensures better behavior across all lattice

spacings, consequently improving simulation outcomes. These approaches are widely

adopted by leading international research groups in numerical simulations. It is

advantageous to control these errors at nonzero lattice spacing for two main reasons:

Firstly, for large errors, it is unclear how to reliably extrapolate to a → 0, and

secondly, unimproved actions necessitate working with very small lattice spacings,

imposing significant computational demands, particularly in full QCD simulations.

Consequently, employing improved actions at larger values of a while maintaining

quality results proves beneficial. Furthermore, these improved actions are anticipated

to preserve more symmetries of the continuum theory.

The naive fermion action, a straightforward discretization of the continuum action,

replaces the continuum derivative with a symmetric difference on the lattice.

However, this results in the appearance of unwanted fermionic degrees of freedom

known as doublers in the continuum limit. This occurs because the naive

discretization describes 24 = 16 fermions instead of one, thereby violating the desired

one-to-one correspondence with continuum fermions. The fermion propagator
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illustrates this fermion doubling problem by having sixteen poles for zero fermion

mass within the first Brillouin zone. In particular, the appearance of doublers is

related to the challenge of formulating lattice fermions with continuum chiral

symmetry, as stated by the Nielsen-Ninomiya theorem [4]. According to the theorem,

lattice fermions preserving locality and having an explicit, continuum-like chiral

symmetry while avoiding doublers are impossible. The first attempt to address this

issue was Wilson’s fermion formulation by introducing an extra term in the action,

effectively giving mass to the doublers and causing them to decouple in the

continuum limit. Despite this improvement, it introduces discretization errors linear

in the lattice spacing.

The most common fermion actions with discretization errors of order O(a2) include

the clover (improved Wilson) [5], staggered [6] , and Ginsparg-Wilson (overlap [7–9]

and domain wall [10, 11] ) formulations. While these improved actions have addressed

the doubling problem, they have sacrificed some features or symmetries of the

continuum theory. For instance, the clover action removes doublers but explicitly

breaks chiral symmetry. Twisted-mass fermions [12], a variant of clover fermions,

offer an alternative strategy by automatically removing errors linear in the lattice

spacing (without parameter tuning) under ‘maximal twist’ [13–15]. However, they

introduce isospin-breaking effects, which diminish in the continuum limit. Staggered

fermions offer another approach. While this formulation preserves one nonsinglet

axial symmetry and reduces discretization errors to O(a2), it retains four doublers,

referred to as ‘tastes’, complicating result interpretation. To eliminate this issue,

contributions from undesired tastes are eliminated by taking the fourth root of the

fermion determinant within the path integral. However, taste-mixing effects arise for

nonzero lattice spacing values. Ginsparg-Wilson fermions represent a significant

advancement, providing a lattice formulation that maintains a continuum-like chiral

symmetry without doublers [16]. This class includes domain-wall and overlap

fermions, each with its own advantages and computational costs. Domain-wall

fermions use a fictitious fifth dimension, with chiral modes localized on opposite

four-dimensional surfaces, while overlap fermions explicitly satisfy the

Ginsparg-Wilson relation. Despite their theoretical appeal, these formulations come

with increased computational complexity, at least an order of magnitude greater than

for other actions.

To enhance computational efficiency and stability, lattice fermion formulations are

often combined with link smearing techniques, involving the use of smeared gauge
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fields in the covariant derivatives of the fermion action, such as stout [17] (e.g., SLiNC

fermions [18]), HYP [19], and HEX links [20]. Smearing techniques can also reduce taste

symmetry-breaking errors inherent in staggered fermions (e.g., Asqtad fermions [21],

HISQ [22]). However, overly aggressive smearing may distort short-distance physics

and exacerbate discretization errors. Ultimately, the choice of fermion formulation

in lattice QCD simulations depends on the balance between computational efficiency

and the necessity for exact chiral symmetry. While formulations like Ginsparg-Wilson

fermions are favored for applications where chiral symmetry plays a critical role, others

may be preferred for their computational simplicity and efficiency in less demanding

scenarios.

The Symanzik-improvement program [23] has been employed in the gauge part of

improved actions, using the concept of ‘on-shell improvement’ [24] to minimize

discretization errors at order O(a2). In this context, the Symanzik-improved action is

structured into different contributions, each corresponding to a possible independent

closed loop (Wilson loop) formed by a combination of links. Each Wilson loop is

associated with a single parameter upon which the action depends. Various versions

of the Symanzik-improved gauge action are available, differing based on the particular

selection of coefficients. Among these, the tree-level Symanzik and Iwasaki [25]

actions are two of the most widely used choices.

While the lattice framework is primarily introduced for nonperturbative computations,

perturbative calculations on the lattice provide valuable insights and practical benefits.

Although incapable of fully describing lattice field theory, perturbation theory offers

essential information for various applications, including determining renormalization

factors, understanding scaling violations, and studying anomalies.

To ensure meaningful comparisons of lattice results to experimental data, appropriate

renormalization of the bare quantities is necessary. This process involves the

renormalization of operators, fields, and parameters used in calculations before

reaching the continuum limit. However, obtaining nonperturbative estimates of

renormalization factors via numerical simulations poses challenges, such as potential

mixing with other operators under renormalization, which can make signals difficult

to disentangle. In such instances, the use of perturbation theory becomes invaluable,

as it provides a more transparent pathway for revealing mixing patterns compared to

nonperturbative methods.
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One of the key advantages of lattice perturbation theory lies in its role in establishing

the connection between lattice schemes and the physical continuum theory. This

involves determining a conversion factor that transforms renormalized quantities

defined in a nonperturbative lattice scheme, such as the modified

regularization-independent (RI′) scheme [26, 27], into a continuum scheme, like the

modified minimal subtraction scheme (MS) scheme. Such calculations rely on

perturbation theory since continuum schemes are typically defined in a perturbative

framework.

Additionally, lattice perturbation theory contributes to understanding phenomena like

anomalies, continuum limit recovery, and scaling violations, which are essential for

obtaining precise predictions from lattice simulations. Perturbative calculations provide

analytical control over the continuum limit, facilitating the transition from discrete

lattice models to continuous physical theory. Practically, lattice perturbation theory

complements numerical simulations by providing accurate perturbative coefficients that

can be compared with nonperturbative results. This comparison helps validate both

perturbative and nonperturbative methods and offers insights into systematic errors

arising from numerical simulations.

Performing perturbative calculations on the lattice presents significant challenges due

to their high complexity. Algebraic expressions for typical two-loop Feynman

diagrams involve hundreds of thousands of terms, making computations

overwhelming. Consequently, despite their significant physical importance, many

observables have only been partially explored using unimproved lattice actions, often

limited to one loop or the lowest order in lattice spacing. This partial exploration

constitutes a major source of systematic error, particularly as simulations aim for

increased precision. Despite these challenges, recent decades have seen a few

higher-loop calculations performed on the lattice, using various improved actions.

These advancements contribute to the refinement and validation of lattice QFT

simulations.

1.3 Dissertation overview

The dissertation presents a series of results in two main calculations using lattice

perturbation theory; the discretization errors on the QCD running coupling
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proportional to the quark mass, and the renormalization of gluon nonlocal operators.

The structure of this dissertation is outlined as follows.

In Chapter 2, we examine the determination of the strong coupling constant. This

chapter discusses methodologies for calculating the world average of the strong coupling

constant, focusing on its derivation from lattice QCD, which is considered the most

precise method. We also review recent advances in calculating the strong coupling

from lattice QCD, such as step-scaling and decoupling methods. These methods show

promise in better controlling systematic uncertainties and improving precision.

Chapter 3 reviews the theoretical foundations of the renormalization group, a

fundamental concept in quantum field theory. It explores the Callan-Symanzik

equation and beta function in detail, with a particular emphasis on their definition

and derivation on the lattice.

Moving on to Chapter 4, the dissertation revisits the background field formalism and

gauge fixing in both classical continuum and lattice actions. This chapter offers insights

into the implementation of background fields in perturbative lattice QCD.

Chapter 5 includes the first main calculation of the dissertation, building upon the

theoretical framework established in Chapters 2-4. It presents lattice QCD respecting

the O(a) improvement, outlining the necessary formulation needed for the calculations.

This includes improved lattice actions and the process of deriving the discretization

errors O(am) on the running coupling from Green’s functions using the background

field method. The chapter also presents the calculation results of these discretization

errors for both one and two loops.

In Chapter 6, the focus shifts to hadron structure, revisiting various aspects related

to Parton Distribution Functions (PDFs). It reviews the experimental derivation of

PDFs through global QCD analyses and then explores their computation from lattice

QCD, examining their Mellin moments and discussing methods to determine their

x-dependence. Moreover, it explores the three-dimensional structure of hadrons,

introducing the Generalized Parton Distributions (GPDs) and the Transverse

Momentum Dependent (TMD) PDFs. The chapter concludes with a detailed

discussion of gluon PDFs and their derivation process.

Chapter 7 defines gluon nonlocal operators and explores their symmetry properties.

This includes examining their transformation under charge conjugation, parity, and
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time reversal, along with their symmetry properties within the rotational/octahedral

point group. Understanding these symmetries is essential for establishing the mixing

pattern of the operators under renormalization.

Chapter 8, building on the framework laid in Chapters 6 and 7, presents the second

main calculation, which includes the perturbative renormalization of gluon nonlocal

operators. This chapter displays the one-loop perturbative results, using both

dimensional and lattice regularizations, of the renormalization factors of the operators

in the MS scheme. Additionally, it presents the conversion factors between RI’ and

MS renormalization schemes.

Finally, Chapter 9 concludes the dissertation by summarizing the findings and

contributions. It reflects on the implications of the research and suggests potential

paths for future study. Additionally, Appendices A and B provide supplementary

information, that was omitted from the main body of the dissertation to improve

readability.

The results presented here will be published in the following papers:

• Gavriel D., Panagopoulos H., Spanoudes G., ”Renormalization of non-local

gluon operators in lattice perturbation theory”, PoS(LATTICE2023) 301,

arXiv:2311.17468 [hep-lat]

• Costa M., Gavriel D., Panagopoulos H., Spanoudes G., ”Mass effects on the QCD

β-function”, PoS(LATTICE2023) 147, arXiv:2311.15796 [hep-lat]

• Gavriel D., Panagopoulos H., Spanoudes G., ”Perturbative renormalization of

non-local gluon operators”

• Costa M., Gavriel D., Panagopoulos H., Spanoudes G., ”Perturbative

determination of O(am) improvement on the QCD running coupling”
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Chapter 2

Strong coupling constant

Quantum Chromodynamics, as already discussed in 1, is the quantum field theory of

the strong interaction between quarks and gluons. The strength of the interaction is

characterized by a parameter of the theory, namely the strong coupling constant αs.

As we will discuss, this parameter is not a constant, but it depends on the energy scale

µ of the interaction process. QCD is a non-abelian gauge theory, with symmetry group

SU(3), and exhibits few specific properties. At low energy scales of µ ∼ 1GeV, αs

becomes strong, leading to the confinement of quarks and gluons, with the formation

of hadrons. On the other hand, quarks interact weakly with increasing energy, and αs

vanishes at asymptotically high energies. This process is known as asymptotic freedom.

At these high energy ranges of µ ∼ 100GeV, perturbative expansion can be applied

where the theory can be formulated as an expansion in powers of the coupling constant

[28].

2.1 World average of αs(m
2
Z)

As a reference, αs is evaluated at the energy scale of the Z-boson pole mass, αs(m
2
Z).

The world average value is obtained by the Particle Data Group (PDG) and amounts

to αs(m
2
Z) = 0.01180± 0.0009 [29], with relative uncertainty of ≈ 0.8%. The order of

relative uncertainty is substantial compared to the other interaction couplings.

For the determination of the strong coupling constant, PDG first group measurements

into different categories and calculates their average. These averages are then used to

11
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Chapter 2 Strong coupling constant 12

obtain the value and uncertainty of the world average of αs(m
2
Z). The observables are

classified into the following categories (for details look at Table 2.1 and Figure 2.1):

• Hadronic τ decays and low Q2 continuum (τ decays and low Q2): Calculations for

τ decays are available at Next to Next to Next to Leading Order (N3LO). Data

are obtained from ALEPH and OPAL collaborations, mainly from the 2-pion and

the 4-pion modes (in the V channel).

• Decays and masses of heavy quarkonia (QQ̄ bound states): Results are obtained

by studies of the charmonium and they are available at NNLO and N3LO.

• PDF fits: Taken both from global PDF fits and analyses of singlet and non-singlet

structure functions.

• Hadronic final states of e−e+ annihilations (e−e+ jets and shapes): Measurements

were taken at PETRA and LEP. Non-perturbative corrections are important and

can be estimated either via Monte Carlo simulation or analytic modeling.

• Observables from hadron-induced collisions (hadron colliders): Calculations of

NNLO for tt̄ or jet production at both the LHC and HERA, and Z+jet

production at the LHC.

• Electroweak precision fit (electroweak): Measurements of W boson decays and Z

boson decays, from the Tevatron, LHC, LEP, and the SLC experiments.

• Lattice: An average of different methods is determined by the ’Flavour Lattice

Averaging Group’ (FLAG).

PDG implies some restrictions at which an individual observable is suitable for use in

the determination of the strong coupling constant. They take account of the

observable’s sensitivity to αs as compared to the experimental precision. Also, the

accuracy of the perturbative prediction has to be at least Next to Next to Leading

Order (NNLO). Moreover, they consider the size of non-perturbative effects and the

scale at which the measurement is performed.

Decreasing the uncertainty of αs is extremely important. It will minimize the

theoretical “parametric” uncertainties in the calculation of processes that are

dependent on the strong coupling constant, as is the case of those measured at the

LHC. In particular, αs uncertainty propagates in total uncertainty of cross sections in
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Category αs(m
2
Z) relative uncertainty

τ decays and low Q2 0.1173± 0.0017 1.4%
QQ̄ bound states 0.1181± 0.0037 3.1%
PDF fits 0.1161± 0.0022 1.9%
e+e− jets & shapes 0.1189± 0.0037 3.1%
electroweak 0.1203± 0.0028 2.3%
hadron colliders 0.1168± 0.0027 2.3%
lattice 0.1184± 0.0008 0.7%
world average(without lattice) 0.1175± 0.0010 0.9%
world average(with lattice) 0.1180± 0.0009 0.8%

Table 2.1: PDG average of the categories of observables [1]. These are the final
input to the world average of αs(m

2
Z).

key processes of the Higgs production at ∼ 2 − 4% [30],[31]. In addition,

computations of total and partial hadronic Z boson widths are heavily affected by the

input of αs(m
2
Z) value. Furthermore, the strong coupling constant is crucial in

top-quark physics, such as the top mass, width, and its Yukawa coupling [32]. Finally,

the energy evolution of the QCD coupling has implications in physics beyond the

Standard Model (e.g. physics in Planck scales).

Looking at determinations of αs(m
2
Z) in Figure 2.1, one can notice the overall

consistency of each category and their high precision. This undoubtedly leads to a

validation of the asymptotic freedom as a prediction of QCD. In the next 10 years,

the relative uncertainty of the αs(m
2
Z) world average is expected to be reduced to

one-half (from 0.8% to ≈ 0.4%), through experimental and theoretical advances.

2.2 Strong coupling constant from Lattice QCD

The lattice contribution to the world average of αs(m
2
Z) is the most precise among those

seven PDG groups as can be seen from Table 2.1. Its value, αs(m
2
Z) = 0.01184±0.0008,

is given by the ’Flavour Lattice Averaging Group’ (FLAG) [33]. FLAG is a lattice

QCD community and they are responsible for collecting and bringing information on

lattice results for specific physical quantities, including αs, to the whole particle physics

community.

Aside from perturbative calculations at high energies, low energy scale computations

are crucial for the determination of αs. In recent years, exponential development in

DEMETRIANOS G
AVRIEL



Chapter 2 Strong coupling constant 14

Figure 2.1: Summary of determinations of αs(m
2
Z) from seven categories. The

yellow shaded area and dotted lines indicate the pre-average values of each group.
The dashed line and blue shaded area represent the final αs(m

2
Z) world average.

This figure has been taken from [1]

numerical techniques allowed the formulation of QCD on a discrete lattice of space-

time points and thus the study of the non-perturbative regime. However, employing

lattice QCD introduces systematic uncertainties in the precise determination of αs.

These uncertainties are associated with perturbative truncation, discretization errors

in continuum limit extrapolations, and finite volume effects.
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Overcoming the limitations of simulations is challenging without employing a specific

strategy to control systematic uncertainties. One proposed approach for addressing

these challenges in lattice QCD simulations is the step-scaling method which utilizes a

finite-volume renormalization scheme [34]. This strategy enables the nonperturbative

scale evolution up to very high energies within the regime of QCD, where perturbation

theory can be safely applied. Thus, it effectively eliminates systematic errors in a

controlled way, as opposed to most “large volume” approaches, enabling the precise

determination of αs across various energy scales. The subsequent section offers an

in-depth review of this strategy.

Various methods have also been studied by lattice QCD groups to determine the strong

coupling constant. This includes using the static quark-antiquark energy [35], the

moments of quarkonium correlators [36], the small Wilson loops [37], hadronic vacuum

polarization [38], QCD vertices [39], and eigenvalues of the Dirac operator [40]. Each

approach presents distinct challenges and benefits; for a comprehensive overview, see

Ref. [41].

Within the next ∼ 10 years, the current relative uncertainty of the lattice contribution

to αs(m
2
Z) (±0.7%), is expected to be reduced in half. For example, this can be achieved

by improving the step-scaling method or using it in combination with the decoupling

strategy (e.g. decoupling of heavy quarks [34]). Also, perturbative calculations of

N3LO and N4LO contributions can further improve the determination of αs(m
2
Z).

2.3 Step-scaling and decoupling method

The precision determination of the strong coupling through lattice QCD involves a

nonperturbative definition of the quantity O(µ), which relies on a short distance scale

of 1/µ. This quantity can be expressed as a perturbative series:

O(µ)
q→∞∼ αs(µ) +

N∑
n=2

cnα
n
s (µ) +O

(
αN+1
s (µ)

)
+O

(
Λ

q

)p

+ . . . (2.1)

where N is the number of known coefficients of the perturbative series. Using Eq.2.1

it becomes possible to approximate the value of αs(µ). On the lattice, in addition to

determining the value of O(µ), it is necessary to establish the scale µ in terms of units
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of a well-measured hadronic quantity, such as the ratio µ/mp, where mp denotes the

proton mass.

Equation (2.1) encompasses two types of corrections; the nonperturbative (”power”)

corrections, appearing as (Λ/q)p, and perturbative corrections arising from the

truncation of the perturbative series to a finite order N , represented as α
(N+1)
s (µ).

Generally, both types of uncertainties decrease as µ approaches infinity.

As discussed in previous sections, lattice QCD simulations use an infrared cutoff,

denoted by ΛIR = L−1 (where L denotes the size of the finite space-time volume of

the simulation), and an ultraviolet cutoff, denoted by ΛUV = a−1 (where a represents

the lattice spacing). To avoid finite volume effects, the spatial volume of the lattice

(denoted as L3) must be large enough. On the other hand, to match the lattice

results to perturbative QCD calculations reliably, one needs to reach a high energy

scale µ while still staying significantly below the cutoff scale of the lattice (1/a). This

ensures that perturbative expansions remain valid and keep lattice discretization

effects due to the finite lattice spacing sufficiently small. These requirements can be

summarized by the conditions:

1

L
≪ mπ ≪ µ≪ 1

a
(2.2)

where mπ is the pion mass. The above relation indicates that a single lattice simulation

is confined to a limited range of energy scales and this is referred to as the ”window

problem”. This constraint implies that the ratio of lattice size to lattice spacing (L/a)

needs to be on the order of thousands. Furthermore, reaching the continuum limit (a→
0) requires using a range of lattice sizes that satisfy the above constraint. Additionally,

it’s desirable to have a range of energy scales µ to verify that the perturbative regime

has been reached.

These conflicting requirements force compromises in lattice determinations. Typically,

the energy scales reached for perturbative matching tend to be low. Even under

optimal circumstances, systematic errors stemming from truncation of the

perturbative series and/or contributions from nonperturbative effects often

overshadow the analysis. Hence, if the objective is to determine both the hadronic

scale (e.g., mp) and the value of the observable O(µ) within a single lattice

simulation, a large lattice volume is necessary, with L approximately greater than or

equal to 1/mπ. This approach is termed ’large volume’. As a result, the attainable
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energy scales µ are typically confined to a few GeV at most. Although power

corrections decrease rapidly with the energy scale µ, the logarithmic dependence of

the strong coupling on the energy scale results in perturbative uncertainties

diminishing very gradually:

αs(µ)
q→∞∼ 1

log (µ/ΛQCD)
(2.3)

As a consequence, in many cases, lattice QCD determinations of the strong coupling are

primarily influenced by the truncation uncertainties of the perturbative series. Most

”large volume” approaches, exhibit perturbative uncertainties between approximately

1% and 3% in αs(m
2
Z). Therefore, a significant reduction in the uncertainty of the strong

coupling can only come from other approaches that address the multiscale problem

discussed above.

The most effective approach for nonperturbatively determining the coupling αO(µ) at

high energy involves employing a finite-volume renormalization scheme [42]. These

schemes are constructed based on observables O defined within a finite space-time

volume. The renormalization scale of the coupling µ is then equated with the inverse

spatial size of the finite volume (µ = L−1). In essence, a running coupling is established

through the variation of certain correlation function(s) as the system’s volume changes.

Consequently, finite volume effects are integrated into the definition of the coupling,

rather than being viewed as a systematic uncertainty in its determination. This presents

a clear advantage, as lattice systematics are managed once a single condition is fulfilled:

L−1 = µ ≈ a−1, resulting in L/a ≫ 1. This scenario is considerably simpler than

needing to satisfy Eq. 2.2. In theory, there is considerable flexibility in selecting

a finite-volume scheme. However, practical applications entail careful consideration

of various technical aspects [43]. Typically, Schrödinger functional (SF) boundary

conditions are used to define finite volume couplings. This involves imposing Dirichlet

boundary conditions in Euclidean time at x0 ∈ {0, T}, along with periodic boundary

conditions having a period L in the spatial directions.

A specific implementation of the finite-volume renormalization scheme can be achieved

through the step-scaling approach. In the step-scaling method, the energy scale is

stepped up recursively by a fixed scale factor, typically 2. By utilizing multiple lattices

with different sizes, a wide range of physical scales can be covered without representing

all hadronic scales simultaneously. This bypasses the window problem, as the method
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allows for the representation of physical scales in a step-wise manner. At each step, the

lattice size effectively decreases, allowing for higher energy scales to be probed while

avoiding significant finite volume effects.

The application of the step-scaling method has shown promising results, notably in

determining the strong coupling constant. By matching the scale µhad to a hadronic

quantity at the lowest scale reached and recursively stepping up the energy scale,

perturbation theory can be safely applied at high energy scales, enabling accurate

determinations of αs.

In the short to medium term, progress may still be achievable by employing the

step-scaling method with smaller scale factors in larger volumes. This would require

dedicated efforts to control and eliminate finite volume effects at each step, possibly

focusing on observables less affected by such effects.

However, the computational resources required for the full step-scaling method are

substantial. Alternative strategies, such as the decoupling strategy that has been

recently proposed [44], offer a more efficient approach to scale evolution with

comparable precision. This strategy involves tracing scale evolution in a pure gauge

theory and combining it with nonperturbative computations for dynamical quarks.

The decoupling strategy relies, to some extent, on QCD computations with Nf ≥ 3

degenerate heavy quarks at a low energy scale requiring the introduction of massive

finite volume couplings. When linking observables at different quark masses, it is

important to keep a constant lattice spacing up to order O(a2), and hence there is a

need to study a lattice theory that respects O(a) improvements.
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Chapter 3

Renormalization group and beta

function

The fundamental property of a quantum field theory is locality. Fields are

independent degrees of freedom with independent quantum fluctuations defined at

different spacetime points. Quantum fluctuations at very short distances emerge as

loop Feynman diagrams of virtual particles with high momentum. Loop integrals over

the virtual particles yield ultraviolet divergences that appear only in the values of a

few parameters such as the bare masses and coupling constants. Thus, quantum

fluctuations at short distances barely affect a theory, only through the values of a few

of its parameters.

3.1 Renormalization group

A physical picture by K. Wilson[45] suggests that any quantum field theory is defined

fundamentally with a cutoff Λ̃ that has some physical significance.

In Wilson’s treatment, parameters of a renormalizable field theory are determined by

a set of renormalization conditions applied at a certain momentum scale, called the

renormalization scale (µ). These conditions define the values of the Green’s functions

at a certain point and remove all ultraviolet divergences.

Rescaling the theory and integrating out high-momentum degrees of freedom over a

shell of momentum space can be thought of as a transformation of the Lagrangian [46].

19
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Continuous iterations of this method over infinitesimally thin shells of momentum

space will result in a continuous transformation of the Lagrangian. Integrating over

high momentum degrees of freedom can be illustrated by a trajectory in the space of all

possible Lagrangians. These transformations are often referred to as renormalization

group 1.

To better understand the concept of renormalization group let us see the following

example. Consider a correlation function of fields at momentum pi, where pi << Λ̃. A

way of calculating this correlation function perturbatively is to use the original

Lagrangian L, so the effects of quantum fluctuations at small distances are exposed in

loop diagrams. Alternatively, one can first integrate over all momentum shells down

to the scale of momenta pi constructing an effective Lagrangian Leff, and then

compute the correlation function. In this way, the high momentum effects have

already been absorbed in new coupling constants (g′, m′) and their effects show up

directly in the Lagrangian. Therefore, divergences can be described as contributions

from all momentum scales in a Feynman diagram.

Nevertheless, the parameters of the Lagrangian may vary drastically under

renormalization group transformations, since we have to iterate the transformations

repeatedly. So, we can define a fixed point where scale transformations leave the

theory invariant and the coupling does not vary under them. Typically the free field

Lagrangian, where all perturbations vanish (m2 = g = 0), is considered a fixed point.

In conclusion, all parameters of a renormalizable field theory can be thought of as scale-

dependent quantities. This scale dependence is described by the renormalization group

equations. The solution of these equations will lead to finite correlation functions with

certain scaling laws.

3.2 Callan-Symanzik equation

Assume we have a renormalized massless quantum field theory with specific

renormalization conditions at a renormalization scale µ. We can also define the

theory at a different scale µ
′
, as the renormalization scale is arbitrary. The two

1They do not form a group set of group theory, because their inverse operation cannot be defined.
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theories coincide if their bare Green’s functions,

⟨Ω|T ϕ0(x1)ϕ0(x2) . . . ϕ0(xn)|Ω⟩ (3.1)

are described by the same functions of the bare parameters (bare coupling constant g0,

the cut-off Λ̃, etc.). Note that these functions do not have any dependency on µ.

The renormalized Green’s function is given in terms of the bare one and the field

strength renormalization Z:

⟨Ω|T ϕ(x1)ϕ(x2) . . . ϕ(xn)|Ω⟩ = Z−n/2 ⟨Ω|T ϕ0(x1)ϕ0(x2) . . . ϕ0(xn)|Ω⟩ (3.2)

Now, let us look at an infinitesimal change of µ to µ + δµ in the connected n-point

renormalized function G(n)(x1, x2 . . . xn). To keep the bare Green’s functions fixed, we

have to make appropriate shifts in the field strength and the coupling constant as well:

µ→ µ+ δµ (3.3)

g → g + δg

ϕ→ (1 + δη)ϕ

However, the shift in any renormalized Green’s function is only caused by the field

rescaling,

G(n) → (1 + n δη)G(n) (3.4)

Considering that G(n) is a function of µ and g, we can express the transformation by:

dG(n) =
∂G(n)

∂µ
δµ+

∂G(n)

∂g
δg = n δη G(n) (3.5)

It is a standard to define the following dimensionless parameters:

β ≡ µ

δµ
δg (3.6)

γ ≡ − µ

δµ
δη (3.7)
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and substituting back in Equation 3.5. Thus, multiplying through by µ/δµ, we derive

the Callan-Symanzik equation [47], [48]:[
µ
∂

∂µ
+ β(g)

∂

∂g
+ n γ(g)

]
G(n)({xi};µ, g) = 0 (3.8)

The parameters β and γ do not depend on xi and must be the same for every n. In

addition, β and γ are independent of the cut-off Λ̃, because the Green’s function G(n)

is renormalized, and as a consequence, by dimensional analysis, they cannot depend on

µ as well. Thus, they are only dependent on the dimensionless variable g.

Trivially, the same arguments can be generalized to other massless theories with

multiple fields and coupling constants, provided that there is a γ function for each

field and a β function for each coupling.

The computation of the β and γ functions can be established easily by first

calculating explicit perturbative expressions of smartly chosen Green’s functions. The

resulting counterterms that cancel divergences of these expressions, will be dependent

on scale µ. Now, because Green’s functions expressions satisfy the Callan-Symanzik

equation, we can solve for β and γ functions. In fact, β and γ functions will be

related to counterterms and their exact formulas will depend on the specific

renormalization procedure.

In conclusion, the Callan–Symanzik equation is a differential equation that describes

the evolution of the n-point correlation functions under variation of the energy scale at

which the theory is defined.

3.3 Beta and gamma functions

Callan–Symanzik equation introduces two functions, β(g) and γ(g). These functions

are related to the shifts in the renormalized coupling and the renormalized field

strength, needed to preserve the values of the bare Green’s functions for an

infinitesimal shift in the renormalization scale µ.

In this section, we express β and γ functions in terms of the parameters of bare

perturbation theory (Z, g0 and Λ̃) to get a deep understanding of these functions.

Again, for simplicity, we consider a massless theory with a cut-off regulator.
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The renormalized coupling g is related to the bare coupling constant g0 by a

renormalization function Zg(µ),

g = Zg(µ)g0 (3.9)

where Zg(µ) explicitly manifest the dependence of coupling on µ. A shift of µ→ µ+δµ,

increases the renormalized coupling constant by:

δg = [Zg(µ+ δµ)− Zg(µ)] g0 =

(
∂Zg

∂µ
δµ

)
g0 (3.10)

Therefore, we can express the original definition of β ( 3.6) as:

β(g) = µ
∂

∂µ
g|g0,Λ̃ (3.11)

Furthermore, we can rewrite the original expression for γ with regard to the parameters

of bare perturbation theory. Using the fact that the bare and renormalized fields are

related by:

ϕ = [Z(µ)]−1/2 ϕ0 (3.12)

, γ function is given as:

γ(g) =
1

2

µ

Z

∂

∂µ
Z (3.13)

The relation in 3.11 is exact, but the fact that β does not depend on the cutoff Λ̃ is

not obvious. Nevertheless, one needs to remember the original definition of β in which

the cut-off independence comes after the renormalized Green’s functions.

According to the definition of β(g) in 3.11, the beta function is the rate of change of

the renormalized coupling at the scale µ corresponding to a fixed bare coupling. Or

otherwise stated as the rate of the renormalization group flow of the coupling constant

g.

If β(g) > 0, the renormalized coupling increases with increasing energy scale. In the

case of zero β function, the coupling is independent of the scale and the theory is

scale-invariant (or conformally invariant). On the contrary, a negative sign for the β

function, as it happens in QCD, indicates a renormalized coupling that decreases at

high energies leading to an asymptotically free theory.
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Studying the asymptotic high energy limit for QCD (g → 0), one can write the

expansion of the β function in powers of g (see [49]):

β(g) = −b0g3 − b1g
5 − b2g

7 +O(g0
9) (3.14)

So far, we have adopted a massless gauge theory with a general renormalization scheme.

Different schemes will vary as the definition of g,m, and the scale of fields, and therefore

produce different β and γ functions. The parameters of one renormalization scheme

can be determined in terms of another scheme.

Explicitly, two renormalization couplings gA and gB of two different renormalization

schemes, are related to each other as a function of odd polynomial [49]:

gB = G(gA) = gA +G(1) g3A +O(g5B) (3.15)

The function G(gA) is equal to gA up to order g3A since both gA and gB are equal to g0

at leading order. Furthermore, we assume that G(gA) is invertible.

The two β functions can be related using the definition in 3.11:

βA(gA) = µ
dgA
dµ

= µ
∂gB
∂µ

∂gA
∂gB

= βB(gB)
∂gA
∂gB

(3.16)

where
∂gA
∂gB

= 1− 3G(1) g2A +O(g4B) (3.17)

On the other hand, an analogous equation can be written for βB(gB) in terms of gA

using the perturbative expansion in 3.14:

βB(gB) = −bB0 gB3 − bB1 gB
5 +O(gB

7) (3.18)

= −bB0 gA3 − (bB0 3G(1) + bB1 ) gA
5 +O(gA

7)

Substituting the above equation back to 3.16, one finds

βA(gA) =
[
−bB0 gA3 − (bB0 3G(1) + bB1 ) gA

5
] (

1− 3G(1) g2A
)
+O(gA

7) (3.19)

= −bB0 gA3 − bB1 gA
5 +O(gA

7)
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proving that bA0 = bB0 and bA1 = bB1 . Therefore, the first two coefficients b0, b1 are

universal for massless gauge theories, in the sense that they do not depend on the

regularization nor the renormalization scheme. However, coefficients bi(i ≥ 2) depend

on the renormalization scheme and must be determined perturbatively.

By integrating the definition of β function in 3.11, we obtain an integration constant

Λ. Λ is a renormalization group invariant parameter and is given as:

Λ = µ exp

[∫ g(Λ)

g(µ)

dg̃

β(g̃)

]
(3.20)

where the asymptotic behavior of 1/β(g̃) in a gauge theory, using the power series

expansion of β 3.14 can be written as:

1

β(g̃)
= − 1

b0g̃3

(
1− b1

b0
g̃2 +

b21 − b0b2
b20

g̃4 +O(g̃6)

)
(3.21)

So, the integral takes the form of:∫ g(Λ)

g(µ)

dg̃

β(g̃)
=

[
1

2b0g2
+

b1
2b0

ln(g2)

]
+

∫ g(Λ)

g(µ)

dg̃

[
1

β(g̃)
+

1

b0g̃3
− b1
b20g̃

]
(3.22)

Thus, substituting back in 3.20 we obtain the Λ parameter of a gauge theory:

Λ = µ[b0g
2(µ)]

−b1/(2b20)e

(
− 1

2b0g
2(µ)

)
exp

{
−
∫ g(µ)

0

dg̃

[
1

β(g̃)
+

1

b0g̃3
− b1
b20g̃

]}
(3.23)

This expression is exact and hence is valid beyond perturbation theory. Dimensionful

quantities and parameters of a gauge theory can be expressed in units of Λ. Moreover,

the Λ parameter can be used for perturbative predictions of jet cross sections and hence

provide a way to compare high energy theory with experiments. We can think of the Λ

parameter as an intrinsic scale of the theory. Therefore, renormalization conditions of

the theory can be specified by the value of the renormalized coupling at a given scale,

or equivalently by the value of the Λ parameter.

At high energy regime, i.e. Λ/µ << 1, the running of the coupling is given by,

α(µ2) ≃ 1

b0t

(
1− b1

b20

l

t
+
b21(l

2 − l − 1) + b0b2
b40t

2

)
(3.24)
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where t ≡ ln(µ2/Λ2), l = ln t and α = g2/4π.

The running coupling α of one renormalization scheme can be expressed in terms of

another scheme, according to 3.15:

αA(µ
2) = αB(µ

2) + dA1 (µ
2)α2

B(µ
2) + dA2 (µ

2)α3
B(µ

2) + . . . (3.25)

where dA1 and dA2 are 1- and 2-loop coefficients relating to the running coupling in these

schemes. By taking only the leading term of 3.24, we can derive an expression that

relates the Λ parameters of two schemes at the same energy scale:

ΛA

ΛB

= exp

(
dA1
2b0

)
(3.26)

3.4 Beta function on lattice regularization

Employing lattice as a regulator in quantum field theory, introduces a new parameter,

namely as the lattice spacing, which determines the distance between neighboring

lattice points. Henceforth, we will assume a theory on a 4-dimensional lattice with

lattice spacing a.

In general, measurable quantities in lattice theories depend on lattice spacing. In

particular, they are defined in such a way that they redeem their continuum value at

the limit of a → 0. Therefore, a variation of a should not affect physical observables.

Such a fluctuation must be compensated only by a change of a on the bare parameters

involved in the Lagrangian.

We now assume a measurable quantity O with dimensions of mass (or inverse length)

dO. We also define its lattice form Ô. On lattice, Ô is dimensionless and it depends

on the bare parameters of the theory. Its continuum limit suggests that:

O(g0, a) =
Ô

adO
(3.27)

implying simultaneously that:

O(g0(a), a) = Ophysical (3.28)
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Equations 3.27 and 3.28 are equal in the limit of small a, so Ô = adOOphysical. Therefore

we can determine g0 in terms of a and Ophysical, assuming Ô is known. Thus, the

coupling constant is always related to a measurable quantity.

For sufficiently small lattice spacing, there is a universal g0(a) applicable to all

quantities. In this manner, we can use any convenient observable to define the bare

coupling g0(a). For example, let us choose the quark-antiquark static potential [50].

Suppose that R is the distance between the quark-antiquark pair measured in

physical units, and its lattice version is given by,

V (R, g0(a), a) =
1

a
V̂ (
R

a
, g0(a)) (3.29)

where R/a is their separation distance in lattice units. However, the observable

V (R, g0(a), a) must be invariant under variations of the lattice spacing. This is

ensured by

a
d

da
V (R, g0(a), a) =

[
a
∂

∂a
−
(
−a∂g0

∂a

)
∂

∂g0

]
V (R, g0(a), a) = 0 (3.30)

This is the equivalent of the Callan-Symanzik equation (3.8) for lattice gauge theories,

while the lattice form of β function is defined as:

βL(g0) = −adg0
da

|
g,µ

(3.31)

where µ is the renormalization scale and g the renormalized coupling constant. The

lattice β function expresses the rate of change of coupling constant under a variation

of the lattice spacing.

Similar to 3.14, the asymptotic limit (g0 → 0) of the lattice β function is:

βL(g0) = −b0g03 − b1g0
5 − bL2 g0

7 +O(g0
9) (3.32)

as discussed before, the coefficients b0, b1 are universal, hence we suppress the

superscript L.

Furthermore, the ΛL parameter of the theory is a particular solution of the lattice

version of Callan-Symanzik equation 3.30. Thus, repeating the procedure followed in
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3.20 to 3.23, one can obtain the ΛL parameter of a lattice gauge theory for the 2-loop

corrections:

aΛL = exp
[
−
∫ g0 dg

βL(g)

]
= exp

(
− 1

2b0g20

)
(b0g

2
0)

−b1/(2b20)[1 + qg20 +O(g40)] (3.33)

where q is the correction factor

q =
b21 − b0b

L
2

2b30
(3.34)
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Background field formalism

The background field formalism was first adopted in quantum gravity [51] and it has

been a helpful method to study the renormalization of gauge theories since. The

use of a background field leads to a gauge-invariant effective action with respect to

the background field and as a consequence, numerical computations are technically

simplified.

The functional integral considering a background gauge field, contains all required

symmetry properties to establish renormalizability to all orders in perturbation theory

in both dimensional (DR) and lattice regularization (LR) [52], [53]. Moreover, the

introduction of the background field does not require any further counterterms besides

those already needed in its absence.

In lattice gauge theories, the background field method is primarily used for the

computation of the matching between different couplings. It has been the most

systematic and economical way.

4.1 Classical action and gauge fixing

In this section, we consider a pure SU(N) gauge theory in D dimensions, characterised

by a gauge potential Aµ(x) = Aα
µ(x)T

α, where Tα are the generators of the algebra

with the convention of Tr(T aT b) = δab/2. The Yang-Mills action may be written as:

S[A] = − 1

2g20

∫
dD(x)Tr

{
Fµν(x)Fµν(x)

}
(4.1)

29
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where g0 is the bare gauge coupling constant and Fµν(x) the field strength tensor

(Fµν(x) = ∂µAν(x) − ∂νAµ(x) + [Aµ(x), Aν(x)]). According to the background field

technique, we separate the gauge field into two parts, the quantum field Qµ(x) =

Qa
µ(x)T

a and the background field, Bµ(x) = Ba
µ(x)T

a:

Aµ(x) = Bµ(x) + g0Qµ(x) (4.2)

The background field is considered an arbitrary external source field, which is not

required to satisfy the Yang-Mills equations, while the quantum field is the integration

variable of the functional integral.

By substituting equation 4.2 back to the Yang-Mills action, we have to add a gauge

fixing term which breaks the quantum gauge invariance, but in such a way that the

background field is invariant under gauge transformations:

Sgf [B,Q] = −λ0
∫
dDxTr

{
DµQµ(x)DνQν(x)

}
(4.3)

where λ0 is the bare gauge parameter and Dµ = ∂µ + iBµ is the covariant derivative.

The gauge-fixing term gives rise to the following Fadeev-Popov action:

SFP [B,Q, c, c̄] = −2

∫
dDxTr

{
Dµc̄(x)

(
Dµ + ig0Qµ(x)

)
c(x)

}
(4.4)

where c(x)(c̄(x) is the ghost (antighost) field.

As one can see from equations 4.4 and 4.3, external quantities are coupled only to

Qµ(x) and thus gauge invariance of Bµ(x) is always preserved.

The total action is given by,

Stotal[B,Q, c, c̄] = S[B + g0Q] + Sgf [B,Q] + SFP [B,Q, c, c̄] (4.5)

and coincides with its standard form in the vanishing limit of the background field.

The partition function Z[J, η, η̄] (Jµ(x), η, η̄ are classical source fields) in the presence

of the background field and is given by:

Z[B, J, η, η̄] =
1

N

∫
D[Q]D[c̄]D[c] e−Stotal[B,Q,c,c̄]+(J,Q)+(η̄,c)+(η,c̄) (4.6)

with the normalization factor N ensuring that Z[0, 0, 0, 0] = 1.
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The gauge invariance property of the background field appears in the partition function

as well, since Bµ(x) is not coupled to the source J , whereas all sources and ghost fields

transform in the same way as Q does. In addition, Z can be expanded in powers

of B, J, η, η̄, with the coefficients being expectation values of products constructed by

local operators, at vanishing sources. In the following, Z[B, J, η, η̄] will be considered

as a well-defined formal power series of B, J, η, η̄.

We can also write the expansion of the generating functional for the connected diagrams

W :

W [B, J, η, η̄] = ln (Z[B, J, η, η̄]) (4.7)

The background field effective action, Γ[B,Q∗, c∗, c̄∗], can be derived by a Legendre

transformation, and its expression is written as:

Γ[B,Q∗, c∗, c̄∗] = W [B, J, η, η̄]− (J,Q∗)− (η̄, c∗)− (η, c̄∗) (4.8)

where

Q∗ =
δW

δJ
, c∗ =

δW

δη̄
, c̄∗ = −δW

δη
(4.9)

The functional Γ[B,Q∗, c∗, c̄∗] corresponds to the background field effective action

considered as a functional of B and evaluated at Q = 0. It can be obtained from the

calculation of the 1-particle-irreducible, Green’s functions of the background field.

Similar to the partition function Z, equation 4.8 can be considered as a power series

expansion of its arguments and obtain the vertex functions Γ(j,k,l) with j, k, l correspond

to the number of background, quantum and ghost fields respectively, appearing in the

vertex.

4.2 Background field and gauge fixing on lattice

We consider a four-dimensional hypercubic lattice characterized by its lattice spacing

a. In the lattice action of a pure SU(N) theory, gauge fields are introduced via the

variables Uµ(x). The variables are defined on the links connecting two neighboring

lattice sites and they are constructed in such a way that the Yang-Mills action is

recovered in the continuum limit (a→ 0) of the lattice gluon action.
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The implementation of the background field method on lattice theories is not sole.

Each different selection leads to the same action in the continuum limit if the lattice

theory is renormalized, and thus the exact way of introducing the background field is

not important. So we proceed as follows; link variables are separated into a background

field Bµ(x) and a quantum field Qµ(x), similar to 4.2:

Uµ(x) = UQ
µ (x)U

B
µ (x),

UQ
µ (x) ≡ eig0Qµ(x),

UB
µ (x) ≡ eiag0Bµ(x)

(4.10)

Since the gauge link is now a product of two different field links, there is freedom in

interpreting the gauge transformation:

[Uµ(x)]
Λ = Λ(x)Uµ(x)Λ

−1(x+ aµ̂); (4.11)

This transformation can be viewed in two ways. The first one considers the quantum

field as a matter field which transforms purely locally, while the background field

transforms as a true gauge field:

[UQ
µ (x)]

Λ
= Λ(x)UQ

µ (x)Λ
−1(x)

[UB
µ (x)]

Λ
= Λ(x)UB

µ (x)Λ−1(x+ aµ̂)
(4.12)

The second one considers the background field as invariant, while the quantum field is

now the true gauge field:

[UQ
µ (x)]

Λ
= Λ(x)UQ

µ (x)Λ
−1(x+ aµ̂)

[UB
µ (x)]

Λ
= UB

µ (x)
(4.13)

Let us call the first interpretation of gauge transformations “background gauge

transformations” and the second one “quantum gauge transformations”. As the

background is an external field, which is not involved in the path integration, the

gauge-fixing term, which ensures the finiteness of path integrals, can be chosen to

preserve the gauge invariance under background transformations. A proper choice
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(see [54]) is the following gauge fixing term:

Sgf = λ0a
4
∑
x,µ,ν

Tr
{
D−

µQµ(x)D
−
ν Qν(x)

}
(4.14)

where the lattice covariant derivative D−
µ is written as:

D−
µQν(x) =

1

a

[
UB
µ

−1
(x− aµ̂) Qν(x− aµ̂) UB

µ (x− aµ̂)−Qν(x)
]

(4.15)

This term preserves the gauge invariance of the background field in the action, even

though it breaks the gauge invariance of the quantum field.

By examining how the gauge-fixing term changes when a gauge transformation of the

form specified in Eq. 4.13 is applied, i.e., δ (DµQµ(x)) /δΛ(x), we can derive the

Faddeev-Popov action. Here, we only present the relevant terms of the action for our

calculations, up to O(g20):

SFP = 2a4
∑
x,µ

Tr
{
(D+

µ ω(x))
†
(
D+

µ ω(x) + ig0 [Qµ(x), ω(x)] +
1

2
ig0a

[
Qµ(x), D

+
µ ω(x)

]
− 1

12
g20a

2
[
Qµ(x),

[
Qµ(x), D

+
µ ω(x)

]]
+ · · ·

)}
(4.16)

where ω(ω†) is the ghost (antighost) field and

D+
µ ω(x) =

1

a

[
UB
µ (x)ω(x+ aµ̂)UB

µ

−1
(x)− ω(x)

]
(4.17)

Finally, the change of integration variables from links to vector fields yields a Jacobian

that can be rewritten as a measure term Smeas. in the action:

Smeas =
1

12
Ncg

2
0a

2
∑
x,µ

Tr
{
Qµ(x)Qµ(x) + · · ·

}
(4.18)

Note that the measure term is not affected by the presence of a background field.

Therefore the full action is given by:

S = SF + SG + Sgf + SFP + Smeas. (4.19)

The background field and coupling constant renormalization are determined by the

2-point function of the background field; no renormalization for the quantum and
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ghost fields is needed. The reason for this is that these fields appear only within the

loops of a diagram (external lines correspond to background fields) and their

renormalization factor would be canceled with those of the propagators. The gauge

fixing parameter also needs to be redefined, since the longitudinal part of the

propagator must be renormalized. The renormalized quantities can be written with

respect to the bare ones:

Bµ
0 =

[
Z

(X,Y )
B

]1/2
Bµ (4.20)

g0 = Z(X,Y )
g g (4.21)

λ = Z
(X,Y )
λ λ0 (4.22)

where Bµ, g, and λ denote the renormalized values of the background field, coupling

constant, and gauge parameter, respectively. Note that all renormalization factors

depend on the regularization X (where X = DR, LR, etc.) and on the renormalization

scheme Y (where Y = MS, RI′, etc.), and should thus be properly represented as ZX,Y

unless it is clear from the context.
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QCD running coupling

Let us first recall some concepts discussed in Chapter 3, related to the beta function

in the massless case and to the background field method; these will be useful as we

extend them to the case of nonzero fermion mass. The dependence of the renormalized

coupling constant on the intrinsic scale of the renormalization scheme is given by the

renormalized β-function:

β(g) ≡ µ̄
dg

dµ̄

∣∣∣
a,g0

(5.1)

where a is the lattice spacing, µ̄ = µ (4π/eγE)1/2 is the renormalization scale and g (g0)

is the renormalized (bare) coupling constant. We will employ the MS renormalization

scheme in this work. In the asymptotic limit for QCD (g → 0), one can write the

expansion of β-function in powers of g0:

β(g) = −b0 g3 − b1 g
5 − b2 g

7 +O(g0
9) (5.2)

The bare β-function for the lattice regularization is defined as:

βL(g0) ≡ −adg0
da

∣∣∣
µ̄,g

(5.3)

Similar to Eq.5.2, the asymptotic high energy limit (g0 → 0) of the lattice bare β-

function is:

βL(g0) = −b0g03 − b1g0
5 − bL2 g0

7 +O(g0
9) (5.4)

The first two coefficients b0, b1 are universal for massless gauge theories (see Chapter 3),

in the sense that they do not depend on the regularization nor the renormalization

35
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scheme. However, coefficients bLi (i ≥ 2) depend on the renormalization scheme and

must be determined perturbatively.

Expressions of the coefficients b0, b1, and b2 can be found in Ref. [55]:

b0 =
1

(4π)2

(11
3
Nc −

2

3
Nf

)
(5.5)

b1 =
1

(4π)4

[34
3
N2

c −Nf

(13
3
Nc −

1

Nc

)]
(5.6)

b2 =
1

(4π)6

[2857
54

N3
c +Nf

(
− 1709

54
N2

c +
187

36
+

1

4N2
c

)
+N2

f

(56
27
Nc −

11

18Nc

)]
(5.7)

where Nc is number of color and Nf is number of flavor.

The bare coupling constant g0 is related to the renormalized coupling constant g

through the renormalization factor Zg
1:

g0 = Zg(g
2
0, aµ̄)g (5.8)

The renormalization factor Zg is related to the MS-renormalized β(g) through:

β(g) = −gµ d

dµ
lnZg(g0, aµ)

∣∣∣∣
a,g0

(5.9)

while the lattice β-function βL(g0) can be expressed as:

βL(g0) = −g0a
d

da
lnZg(g0, aµ)

∣∣∣∣
µ,g

(5.10)

Due to the renormalizability of the theory ([56]) combined with dimensional arguments,

the lattice β-function, as defined above, is independent of the renormalized fermionic

masses. Thus, the arguments of the massless case for the beta function remain valid

even in the case of non-zero fermion mass.

Using Eqs. 5.9 and 5.10, one can derive an exact relation, valid to all orders of

perturbation theory [57]:

βL(g0) =
(
1− g20

∂

∂g20
lnZ2

g

)−1

Zg β(g0Z
−1
g ) (5.11)

1Hereafter, we omit the superscript (L,MS) from Z
(L,MS)
g .
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Writing Z2
g in the form of one- and two-loop coefficients:

Z2
g (g0, aµ̄) = 1 + g0

2L0(a
2µ̄2) + g0

4L1(a
2µ̄2) +O(g0

6) (5.12)

follows that L0(a
2µ̄2) = b0 ln(a

2µ̄2) + l0 and L1(a
2µ̄2) = b1 ln(a

2µ̄2) + l1. Substituting

back to 5.11, we extract a relation for the lattice coefficient bL2 :

bL2 = b2 − b1l0 + b0l1. (5.13)

Thus, the evaluation of bL2 requires the determination of the 2-loop quantity l1 and the

1-loop quantity l0. Specifically, the following references can be found in the literature

on the calculation of bL2 ; using Wilson gluons [58, 59], Symnazik improved gluons [60],

Wilson fermions [57], clover fermions [61], and overlap fermions [62].

Moreover, coefficient constant l0 is further related to the ratio of the Λ parameters

associated with the particular lattice regularization and the MS scheme:

ΛL

ΛMS

= exp
( l0
2b0

)
(5.14)

5.1 Lattice QCD with O(a) improvement

Let us revisit some concepts regarding the precision determination of the strong

coupling constant as discussed in Chapter 2. The world average of the

strong-coupling constant (αs), evaluated at the Z-boson mass scale, includes various

determinations, each classified based on their methodological approach (e.g, hadron

collisions, τ decays, etc.). The most accurate determinations arise from lattice QCD,

providing a result of αs(m
2
Z) = 0.01184 ± 0.0008 [33]. However, employing lattice

QCD introduces systematic uncertainties in the precise determination of αs. These

uncertainties are associated with perturbative truncation, discretization errors in

continuum limit extrapolations, and finite volume effects.

Overcoming the limitations of simulations is challenging without employing a specific

strategy to control systematic uncertainties. Addressing this challenge, a recent lattice

QCD strategy has been proposed, named as the decoupling method [44]. This method

enables the connection of an experimentally well-measured low-energy quantity with

the high-energy regime of QCD, where perturbation theory can be safely applied. Thus,
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it effectively eliminates systematic errors in a controlled way, as opposed to most “large

volume” approaches.

As seen in Chapter 2, the decoupling strategy requires linking observables at different

quark masses, and thus it is crucial to keep a constant lattice spacing up to order O(a)2.

So, there is a need to study a lattice theory that respects O(a) improvements.

In an O(a) improved lattice theory, one has to properly impose renormalization

conditions in a way that correlation functions of the renormalized field converge to

the continuum limit as O(a2). A simple strategy is to choose all renormalization

conditions defined at the same point (g0, am0) in the bare parameter space. In this

scheme, transformations of the bare parameters and rescaling of the bare fields do not

affect renormalization quantities. Hence, the corresponding counterterms of O(a) can

be ignored and so this category of renormalization schemes is automatically

compatible with O(a) improvement. However, in this manner, the renormalized

coupling constant and renormalized fields implicitly depend on the quark mass. This

can be avoided though, by using mass-independent renormalization schemes [63].

In mass-independent schemes, renormalization conditions are defined at zero quark

mass. As a result, renormalized quark masses are decoupled from the running coupling

and it is convenient to study its scale evolution (β-function) since the arguments of the

massless theory will remain the same. Then, the issue is that the theory of finite mass

quark must be related to the massless theory. This link is usually established through

the bare parameters. Thus, there is a need for reparametrization of the bare theory, so

that we can preserve the O(a) improvement.

To set up a general mass-independent renormalization scheme respecting O(a)

improvement, we introduce a modified bare coupling through:

g̃20 = g20(1 + bg(g
2
0) amq) (5.15)

while the subtracted mass, mq, is given by:

mq = m0 −mc(g
2
0) (5.16)

The parameter mc(g
2
0) is the critical value of the bare quark mass at which the

renormalized quark masses vanish. Note that mc(g
2
0) depends on how the physical

quark mass is defined, but its exact form should differ at O(a2). Nevertheless, order
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a2 corrections are considered negligible. At m0 = mc, the modified and ordinary bare

coupling coincide. Moreover, bg(g
2
0) in Eq.5.15 must be appropriately selected so as to

remove any remaining cutoff effects of O(a). The bottom line is that the scaling

required for g0 depends on the quark mass, while g̃0 scales independently of the quark

mass.

For heavier quarks in decoupling methods, values of amq increase, emphasizing the

significance of determining bg(g
2
0) in both perturbation and non-perturbation theories.

Non-perturbative calculations of bg(g
2
0) have been recently carried out [64]. Currently,

in perturbation theory bg(g
2
0) is only known to 1-loop order [63], which introduces a

significant systematic error to the precision of the strong coupling constant due to the

truncated perturbative result [44].

In this context, the renormalized coupling g within a mass-independent scheme,

compatible with O(a) improvement, is related to the bare parameters through:

g̃0 = Zg(g̃
2
0, aµ̄)g (5.17)

where Zg is a power expansion of g̃0. Meanwhile, the bare lattice β function, defined

by Eq. 5.3, is now transformed as:

βL(g̃0) ≡ −adg̃0
da

∣∣∣
µ̄,g

(5.18)

Consequently, statements made in the context of the massless theory remain valid to

the massive case, except for the necessity to use the modified bare coupling constant

as defined in Eq. 5.15 for all quantities defined in the preceding section.

5.2 Formulation

5.2.1 Improved lattice action

Our computations are carried out within the lattice regularization, utilizing the clover

improved action (Sheikholeslami-Wohlert) [65] for fermions. The clover action reads,
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in standard notation:

SF =
∑
f

∑
x

(4r +m0)ψ̄f (x)ψf (x)

− 1

2

∑
f

∑
x, µ

[
ψ̄f (x) (r − γµ)Ux, x+µψf (x+ µ) + ψ̄f (x+ µ) (r + γµ)Ux+µ, xψf (x)

]
− 1

4
cSW

∑
f

∑
x, µ, ν

ψ̄f (x)σµνF̂ µν(x)ψf (x), (5.19)

where r is the Wilson parameter, f is a flavor index, σµν = [γµ, γν ]/2, m0 is the

Lagrangian quark mass2 and cSW is the clover parameter. In the following

calculations, r is set to 1 as customary, and cSW is considered as a free parameter for

wider applicability of results. Powers of the lattice spacing a have been omitted and

may be directly reinserted by dimensional counting. The tensor F̂µν is proportional to

a lattice representation of the gluon field tensor, defined through:

F̂ µν ≡ 1

8
(Qµν −Qνµ) (5.20)

where Qµν is the sum of the plaquette loops:

Qµν = Ux, x+µUx+µ, x+µ+νUx+µ+ν, x+νUx+ν, x

+ Ux, x+νUx+ν, x+ν−µUx+ν−µ, x−µUx−µ, x

+ Ux, x−µUx−µ, x−µ−νUx−µ−ν, x−νUx−ν, x

+ Ux, x−νUx−ν, x−ν+µUx−ν+µ, x+µUx+µ, x (5.21)

For the gauge fields we employ a class of Symanzik improved gauge actions [66],

involving Wilson loops with 4 and 6 links (1 × 1 plaquettes and 1 × 2 rectangles,

respectively), which is given by the relation

SG =
2

g20

[
c0
∑
plaq.

ReTr {1− Uplaq.}+ c1
∑
rect.

ReTr {1− Urect.}

]
(5.22)

The coefficients c0 and c1 can in principle be chosen arbitrarily, subject to the following

normalization condition, which ensures the correct classical continuum limit of the

2For simplicity of notation, we denote all flavor masses by m0; the case of different flavor masses
can be trivially recovered from our results.
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action:

c0 + 8c1 = 1 (5.23)

For the numerical evaluation, particular choices of values for {c0, c1} are employed in

our calculations as shown in Table 5.1.

Gluon action c0 c1
Wilson 1 0
TL Symanzik 5/3 −1/12
Iwasaki 3.648 −0.331

Table 5.1: Commonly used sets of values for Symanzik coefficients.

5.2.2 Theoretical setup

The most convenient and economical approach to computing Z2
g involves employing

the background field method discussed in Chapter 2. In this method, link variables

are decomposed into a background field Bµ(x) and a quantum field Qµ(x) (refer to

Eq. 4.10).

The fact that exact gauge invariance is preserved in the background field formalism,

leads to a relation between the renormalization factors of background field ZB and of

coupling constant Zg [67]:

ZB(g
2
0, aµ) Z

2
g (g

2
0, aµ) = 1 (5.24)

where Bµ
0 = ZB(g

2
0, aµ)

1/2Bµ. In this framework, the relation between the lattice bare

coupling constant and the renormalized one can be extracted by the evaluation of ZB,

instead of Z2
g , with no need to calculate any 3-point Green’s functions. Note that the

inclusion of quark masses adds a layer of complexity to this calculation.

Henceforth we consider the 1-particle-irreducible (1-PI) 2-point Green’s function of

background field, both in the continuum (ΓBB
R (p,m, λ)abµν) and on the lattice

(ΓBB
L (p,mq, λ0)

ab
µν), in the presence of a fermion mass 3 . These functions can be

expressed in terms of scalar amplitudes νR(p,m, λ), ν(p,mq, λ0). Following the

3We adopt the notation ΓBB for the vertex function, in contrast to the Γ(2,0,0) notation used in
Chapter 2.
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notation of Ref.[58] the Green’s functions of the background field in the continuum

are given as:

ΓBB
R (p,m, λ)abµν = −δab(δµνp2 − pµpν) (1− νR(p,m, λ)) /g

2 ,

νR(p,m, λ) =
∞∑
ℓ=1

g2ℓν
(ℓ)
R (p,m(g20), λ(g

2
0))

(5.25)

where ν
(ℓ)
R (p,m(g20), λ(g

2
0)) can be written as:

ν
(ℓ)
R (p,m(g20), λ(g

2
0))) = ν

(ℓ)
R (p, 0, λ(g20))) + ∆ν

(ℓ)
R (p,m(g20), λ(g

2
0))) (5.26)

where λ is the inverse MS-renormalized gauge parameter, m is the renormalized mass

(wherem = Zm(g
2
0)mq) and ν

(ℓ)
R (p, 0, λ(g20))) is the result corresponding to the massless

case.

Similarly, the Green’s functions of the background field in the lattice are given as:∑
µ

ΓBB
L (p,mq, λ0)

ab
µµ = −δab3p̂2 (1− ν(p,mq, λ0)) /g

2
0 ,

ν(p,mq, λ0) =
∞∑
ℓ=1

g2ℓ0 ν
(ℓ)(p,mq, λ0)

(5.27)

where p̂2 =
∑

µ p̂
2
µ, p̂µ = (2/a) sin(apµ/2), and λ0 is the inverse bare gauge parameter.

The amplitude ν(ℓ)(p,mq, λ0) can be written as:

ν(ℓ)(p,mq, λ0) = ν
(ℓ)
0 (p,mq, λ0) + amq ν

(ℓ)
1 (p,mq, λ0) +O(a2m2

q)

= ν
(ℓ)
0 (p, 0, λ0) + ∆ν

(ℓ)
0 (p,mq, λ0)

+ amq

(
ν
(ℓ)
1 (p, 0, λ0) + ∆ν

(ℓ)
1 (p,mq, λ0)

)
+O(a2m2

q)

(5.28)

where ν
(ℓ)
0 (p, 0, λ0) represents the outcome to the massless theory without considering

the O(a) improvement. The tensor structure of these Green’s functions, as given above,

is implied by the symmetries of the theory.

As discussed in Ref.[52], the continuum and lattice Green’s functions are related by

ΓBB
R = ΓBB

L . Thus, using the Eqs.(5.24),(5.25), and (5.27) we can express Z2
g in terms

of νR(p), ν(p):

Z2
g = Z−1

B =
1− ν(p,mq, λ0)

1− νR(p,m, λ)
(5.29)
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In the computation, we used an arbitrary bare gauge-fixing parameter. Therefore the

gauge parameter must be explicitly renormalized. To find a similar relation to Eq.

5.29 for the renormalization factor Zλ (where λ = Zλ(g
2
0) λ0), we need to introduce the

scalar terms ωR(p,m) and ω(p,mq) into the definition of the quantum field self-energy

in the continuum (ΓQQ
R (p,m, λ)abµν) and on the lattice (ΓQQ

L (p,mq, λ0)
ab
µν), respectively.

The Green’s functions of the quantum field in the continuum are given as:

ΓQQ
R (p,m, λ)abµν = −δab

[
(δµνp

2 − pµpν) (1− ωR(p,m)) + λ pµpν
]
,

ωR(p,m) =
∞∑
ℓ=1

g2ℓω
(ℓ)
R (p,m(g20))

(5.30)

where ω
(ℓ)
R (p,m(g20)) can be written as:

ω
(ℓ)
R (p,m(g20)) = ω

(ℓ)
R (p, 0) + ∆ω

(ℓ)
R (p,m(g20)) (5.31)

where ω
(ℓ)
R (p, 0) is the result corresponding to the massless case.

Similarly, the Green’s functions of the quantum field in the lattice are given as:∑
µ

ΓQQ
L (p,mq, λ0)

ab
µµ = −δabp̂2 [3 (1− ω(p,mq)) + λ0] ,

ω(p,mq) =
∞∑
ℓ=1

g2ℓ0 ω
(ℓ)(p,mq)

(5.32)

where the amplitude ω(ℓ)(p,mq) can be written as:

ω(ℓ)(p,mq) = ω
(ℓ)
0 (p,mq) + amq ω

(ℓ)
1 (p,mq) +O(a2m2

q)

= ω
(ℓ)
0 (p, 0) + ∆ω

(ℓ)
0 (p,mq) + amq

(
ω
(ℓ)
1 (p, 0) + ∆ω

(ℓ)
1 (p,mq)

)
+O(a2m2

q)

(5.33)

where ω
(ℓ)
0 (p, 0) is the result corresponding to the massless case.

The relation between the continuum and lattice Green’s functions is now given by

ΓQQ
R = Z−1

λ ΓQQ
L [52]. Hence, using the Eqs.(5.30), and (5.32) we can express Zλ in

terms of ωR(p,m), ω(p,mq):

Zλ =
1− ω(p,m)

1− ωR(p,mq)
(5.34)

DEMETRIANOS G
AVRIEL



Chapter 5 QCD running coupling 44

Expressed in terms of the perturbative expansions given by Eqs. (5.25), (5.27),

(5.30), and (5.32), and utilizing the relations provided by Eqs. (5.29) and (5.34), the

renormalization factor Z2
g in the asymptotic limit (g0 → 0) of the mass-independent

renormalization scheme (m→ 0) takes the following form:

Z2
g =

[
1 + g20

(
ν
(1)
R − ν(1)

)
+ g40

(
ν
(2)
R − ν(2)

)
+ g40

(
ω
(1)
R − ω(1)

)
λ
∂ν

(1)
R

∂λ
+O(g60,m

2)

]
λ=λ0,
m=mq

(5.35)

with ν
(ℓ)
R (p,m, λ), ν(ℓ)(p,mq, λ0), ω

(ℓ)
R (p,m) and ω(ℓ)(p,mq) given by Eqs. (5.26), (5.28),

(5.31), and (5.33) respectively. Although ν
(1)
R (p,m, λ) is required for a general gauge

λ, in all other cases, we can choose the Feynman gauge, λ = λ0 = 1. This choice

significantly simplifies the computations, particularly in lattice regularization.

The amplitudes ν
(1)
R (p, 0, λ), ω

(1)
R (p, 0), ν

(2)
R (p, 0, λ) calculated in dimensional

regularization for the massless case, have been already known in the literature

[54, 57].

ν
(1)
R (p, 0, λ) =

Nc

16π2

[
− 11

3
ln(

p2

µ̄2
)+

205

36
+
3

2
λ−1+

1

4
λ−2

]
+

Nf

16π2

[
2

3
ln(

p2

µ̄2
)− 10

9

]
, (5.36)

ω
(1)
R (p, 0) =

Nc

16π2

[(
− 13

6
+
1

2
λ−1
)
ln(

p2

µ̄2
)+

97

36
+
1

2
λ−1+

1

4
λ−2

]
+

Nf

16π2

[
2

3
ln(

p2

µ̄2
)− 10

9

]
,

(5.37)

ν
(2)
R (p, 0, λ) =

N2
c

(16π2)2

[(34
3

− 13

4
λ−1 − 1

3
λ−2 +

1

4
λ−3 − 1

16
λ−4
)
ln(

p2

µ̄2
) +

(2687
72

− 57

8

)
+
(
− 187

48
+

5

4
ζ(3)

)
λ−1 +

(
− 161

144
− 1

8

)
λ−2 − 3

16
λ−3 − 1

16
λ−4

]
+

Nf

(16π2)2

[
Nc

(
3 ln(

p2

µ̄2
)− 401

36

)
+

1

Nc

(
− ln(

p2

µ̄2
) +

55

12
− 4ζ(3)

)]
︸ ︷︷ ︸ (5.38)

for λ = 1

Moreover, the amplitudes ν
(1)
0 (p, 0, λ0), ω

(1)
0 (p, 0) and ν

(2)
0 (p, 0, λ0) have been calculated

before using a variety of lattice actions (in agreement up to 5 - 6 decimal places) by
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[57, 58, 60, 61], in general gauge λ0:

ν
(1)
0 (p, 0, λ0) =

Nc

16π2

[
− 11

3
ln(a2p2) + cν

(1)

Nc
+

3

2
λ−1
0 +

1

4
λ−2
0

]
+

1

Nc

1

16π2
cν

(1)

1/Nc
+

Nf

16π2

[
2

3
ln(a2p2) + cν

(1)

Nf

]
+O(a2p2),

(5.39)

ω
(1)
0 (p, 0) =

Nc

16π2

[(
− 13

6
+

1

2
λ−1
0

)
ln(a2p2) + cω

(1)

Nc
+ cω

(1)

λ−1
0 Nc

λ−1
0 +

1

4
λ−2
0

]
+

1

Nc

1

16π2
cω

(1)

1/Nc
+

Nf

16π2

[
2

3
ln(a2p2) + cω

(1)

Nf

]
+O(a2p2),

(5.40)

where

cω
(1)

λ−1
0 Nc

= −0.88629444(4), (5.41)

cν
(1)

Nf
= cω

(1)

Nf
= −2.16850086(2) + 0.79694512(11) cSW − 4.712691443(4) c2SW (5.42)

and the numerical constants cν
(1)

i , cω
(1)

i (i = Nc, 1/Nc) are listed in Table 5.2 for different

gluon actions.

Gluon action cν
(1)

Nc
cν

(1)

1/Nc
= cω

(1)

1/Nc
cω

(1)

Nc

Wilson 32.5328199(5) -19.7392089(2) 22.3156745(1)
TL Symanzik 18.860597(3) -6.6594802(3) 10.308794(3)
TILW, βc0 =8.60 10.5954557(3) 1.3040804(4) 3.06253640(3)
TILW, βc0 =8.45 10.2868675(4) 1.5985007(6) 2.7923321(3)
TILW, βc0 =8.30 9.8615392(2) 2.0038705(5) 2.4199523(3)
TILW, βc0 =8.20 9.5977109(3) 2.2550514(4) 2.1889929(4)
TILW, βc0 =8.10 9.2575332(5) 2.5786980(4) 1.8912290(2)
TILW, βc0 =8.00 8.8354866(3) 2.9797868(4) 1.5218513(2)
Iwasaki -1.152587(2) 11.888842(1) -8.5190295(6)
DBW2 -25.693965(165) 32.281461(3) -29.853124(130)

Table 5.2: Numerical coefficients for the quantities ν(1)(p) and ω(1)(p).

Note that the fermionic contributions in ω
(1)
0 (p, 0), as well as the contributions of the

form 1/Nc, are identical to those in ν
(1)
0 (p, 0).
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The quantities l0 and l1 can be also expressed in terms of νR(p), ν(p), ωR(p), ω(p):

l0 = −b0 ln(a2µ̄2) +

[
ν
(1)
R − ν(1)

]
λ=λ0

, (5.43)

l1 = −b1 ln(a2µ̄2) +

[
ν
(2)
R − ν(2) + λ

∂ν
(1)
R

∂λ

(
ω
(1)
R − ω(1)

)]
λ=λ0

. (5.44)

The resulting one-loop quantity l0, as well as the ratio ΛL/ΛMS, are given by:

l0 =
Nc

16π2
cl0Nc

+
1

Nc

1

16π2
cℓ01/Nc

+
Nf

16π2
cl0Nf

, (5.45)

ΛL

ΛMS

= exp

[
Ncc

ℓ0
Nc

+ 1
Nc

cl01/Nc
+Nfc

l0
Nf

22
3
Nc − 4

3
Nf

]
(5.46)

where

cl0Nc
=

205

306
− cν

(1)

Nc
, (5.47)

cl01/Nc
= −cν(1)1/Nc

, (5.48)

cl0Nf
= −3.27961197(2) + 0.79694512(11) cSW − 4.712691443(4) c2SW (5.49)

Finally, the relation between the renormalized running coupling g and the bare running

coupling g0 can be expressed as:

g2 =

{
g20 − g40

(
ν
(1)
R − ν(1)

)
+ g60

[(
ν
(1)
R − ν(1)

)2
− ν

(2)
R + ν(2) − λ

∂ν
(1)
R

∂λ

(
ω
(1)
R − ω(1)

)]

+O(g80)

}
λ=λ0,
m=mq

(5.50)

Writing bg(g0) as an expansion in powers of g0 in Eq.5.15:

g̃20 = g20
[
1 + amq

(
b(1)g g20 + b(2)g g40 +O(g60)

)]
(5.51)DEMETRIANOS G
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we can reparameterize the bare coupling constant so fermion mass will be decoupled

from the renormalized running coupling:

g2 =

{
g̃20 − g̃40

[(
ν
(1)
R − ν

(1)
0

)
+ amq

(
b(1)g − ν

(1)
1

)]
+ (4π)2g̃60

[(
ν
(1)
R − ν

(1)
0

)2
− ν

(2)
R + ν

(2)
0

− λ
∂ν

(1)
R

∂λ

(
ω
(1)
R − ω

(1)
0

)
+ amq

(
ν
(2)
1 − b(2)g + 2

(
ν
(1)
0 − ν

(1)
R

)(
ν
(1)
1 − b(1)g

)
+ λ

∂ν
(1)
R

∂λ
ω
(1)
1

)]
+O(g̃80)

}
λ=λ0,
m=mq

(5.52)

Therefore, b
(1)
g is given by:

b(1)g = ν
(1)
1 (5.53)

and at 2-loop order, b
(2)
g must be:

b(2)g = ν
(2)
1 + λ

∂ν
(1)
R

∂λ
ω
(1)
1 (5.54)

5.3 One-loop Calculations

As already discussed, the most efficient way of calculating Z2
g is to consider the 2-

point Green’s function of the background field. We are only interested in calculating

diagrams having a fermion propagator as seen in Fig.5.1, since these are associated

with the O(am) effects of the strong coupling constant.

1 2

Figure 5.1: One-loop Feynman diagrams for fermion contributions to ΓBB,1loop
L,F . A

solid line represents quarks. Wavy lines ending on a cross represent background
gluons. Each diagram is meant to be symmetrized over the color indices, Lorentz
indices, and momenta of the two external background fields.
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The one-loop result of the fermion contributions (’F’) to 2-pt lattice Green’s function

is:

ΓBB,1loop
L,F (p,mq)

ab
µν = δab

(
δµνp

2 − pνpµ
){

F1(ap) + F2

(
m2

q

p2

)

+ amq

[
F3(ap) + F4

(
m2

q

p2

)]
+O

(
a2m2

q

)}
(5.55)

where:

F1(ap) = Nf

{
−0.0137322 + 0.0050467 csw − 0.0298435 c2sw +

2

3

1

16π2
log(a2p2)

}

F2

(
m2

q

p2

)
=

Nf

16π2

{
8

3

m2
q

p2
− 8

3

(
−1

2
+
m2

q

p2

)√
1 + 4

m2
q

p2
arccoth

√1 + 4
m2

q

p2


+

2

3
log

(
m2

q

p2

)}

F3(ap) = Nf

{
0.0272837− 0.0223503csw + 0.0070667c2sw − (1− csw)

2

16π2
log
(
a2p2

)}

F4

(
m2

q

p2

)
=

Nf

16π2

{
4

[
(−1 + csw)

(
1 + 4

m2
q

p2

)
+ 4

(
m2

q

p2

)2
] arccoth

(√
1 + 4

m2
q

p2

)
√

1 + 4
m2

q

p2

− (1− csw)2 log

(
m2

q

p2

)
− 4

m2
q

p2

}

Since the above Green’s function stems from diagrams of closed fermion loops, the one-

loop results are independent of the Symanzik coefficients. Furthermore, incorporating

stout links into the lattice action we find that the one-loop outcome is independent

of the stout coefficient. This stems from the fact that after N successive smearing

steps, the transverse part of a gluon field in 1-loop corrections is multiplied by a factor

(1 − wa2p̂2)N [68]. Eliminating terms of order O(a2) should result in no contribution

from the stout-smearing coefficient, as indicated by our findings.
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In terms of the amplitudes ν(1)(p,mq, λ0) in Eq.5.28, using Eq. 5.55 we find the

following:

ν
(1)
0 (p, 0, λ0) = ν

(1)
0 (p, 0, λ0)|Nf=0+F1(p)

∆ν
(1)
0 (p,mq, λ0) = O

(
m2

q

p2

)
ν
(1)
1 (p, 0, λ0) = F3(p)

∆ν
(1)
1 (p,mq, λ0) = O

(
m2

q

p2

)
(5.56)

The above amplitudes can be derived using two approaches; first, by evaluating the

momentum integrals and subsequently performing a first-order Taylor expansion in

mass, as outlined in this section, and second, by reversing the steps. Both methods yield

identical results, with the latter being the most straightforward for lattice calculations.

Consequently, for the 2-loop calculations, we will employ only the second method.

Using Eq.5.53 we find the first coefficient of the bg(g
2
0) as:

b(1)g = Nf

{
0.0272837− 0.0223503csw + 0.0070667c2sw − (1− csw)

2

16π2
log
(
a2p2

)}

+O
(
m2

q

p2

)
(5.57)

For the tree-level Sheikholeslami-Wohlert coefficient, csw = 1 + O(g20), we obtain the

well established result [63]:

b(1)g = 0.012000Nf (5.58)

To incorporate a mass-dependent running coupling, it is necessary to consider the

terms of O
(
m2

q/p
2
)
in the amplitudes of Eq. 5.56. For heavy fermions, taking the limit

z → ∞ (where z ≡ m2
q/p

2) and setting csw = 1 +O(g20) , we obtain:

∆ν
(1)
0 (p,mq, λ0) =

Nf

16π2

{
10

9
+

4

3
log(z) +

2

15z2

}
+O

(
1

z4

)
∆ν

(1)
1 (p,mq, λ0) =

Nf

16π2

{
−2

3
+

2

15z2

}
+O

(
1

z4

)
(5.59)
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Using the above relations and Eq.5.52, one can find the logarithmic mass dependence

of the mass-depended renormalized running coupling in the limit of heavy fermions, as

determined in Ref.[69].

5.4 Two-loop Calculations

To derive the two-loop amplitude ν(2) of the fermion contribution, we are computing

the 2-point lattice Green’s function of twenty Feynman diagrams, as shown in Figure

5.2.

1 2 3 4

5 6 7 8

1 21 11 09

1 3 1 4 1 5 1 6

1 7 1 8 1 9 2 0

Figure 5.2: Two-loop Feynman diagrams for the fermion contributions to
ΓBB,2loop
L,F . A wavy (solid) line represents gluons (quarks). Wavy lines ending on a

cross represent background gluons. A solid circle is the one-loop fermion mass
counterterm. Each diagram is meant to be symmetrized over the color indices,
Lorentz indices, and momenta of the two external background fields.

The tree-level fermion propagator in momentum space is given by:

⟨ψψ̄⟩ = −i /p◦ +M(p,m)

p◦2 +M(p,m)2
, (5.60)
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where: /p
◦
=
∑

µ γµ
1
a
sin(apµ) and M(p,m) = m+ 2

a

∑
µ sin

2(apµ/2).

As mentioned in Section 5.3, we proceed by first expanding the denominator of

Eq. (5.60) with respect to mass up to O(a) corrections:

1

p◦2 +M(q,m)2
=

1

p◦2 +M(p, 0)2

(
1−

4m 1
a

∑
µ sin

2(apµ/2)

p◦2 +M(p, 0)2
+O(a2m2)

)
(5.61)

One main difficulty in this computation, as compared to the massless case, stems

from the fact that the fermion propagator now contains contributions of O(p−2); this

amplifies the presence of potential IR divergences, which must be carefully addressed.

Also, the sheer number of terms which must be integrated over the two loop momenta is

of the order of ∼ 106; this has necessitated the creation of special-purpose integration

routines, to overcome the severe constraints on CPU and memory. However, it is

essential to note also that the computational challenges were further amplified by the

distinct methodologies and manipulations required for each diagram. Particularly,

the ”diamond” diagrams (diagrams 15 and 16 in Figure 5.2) stand out as the most

challenging within this computation.

The two-loop results regarding fermion contributions to the 2-point lattice Green’s

function has the following form:

∑
ρ

ΓBB,2loop
L,F (p,mq)

ab
ρρ = δab 3p2

∑
j

[
G0,j(p) + amq G1,j(p) +O(a2m2)

]
(5.62)

The index j runs over the diagrams shown in Fig. 5.2. Since two-loop diagrams can

have a maximum of 4 fermionic vertices, Gi,j(p) is a polynomial in cSW of degree up to

4.

On general grounds, we expect:

Gi,j(p) = c0,i,j + c1,i,j a
2
∑
µ

p4µ
p2

+ a2p2

{
c2,i,j

(
ln(a2p2)

(4π)2

)2

+ c3,i,j
ln(a2p2)

(4π)2
+c4,i,j

}
+O(a4p4)

(5.63)
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where p̂2 = 4
∑

µ sin
2(pµ/2), and the most general dependence of cn,i,j on Nc, Nf , cSW

is given by:

cn,i,j =
4∑

k=0

Nf c
k
SW

(
1

Nc

c
(−1,k)
n,i,j +Nc c

(1,k)
n,i,j

)
. (5.64)

It’s worth mentioning that specific diagrams exhibit infrared convergence only when

considered in pairs: (1, 2), (3, 4). We have assessed these pairs accordingly, ensuring

careful handling to prevent divergences in intermediate results.

Here, we briefly outline some validation checks that can be conducted on our

calculations. Various constraints on the coefficients cn,i,j can be used for both

verifying the algebraic expressions and the numerical outcomes:

c0,i,j: According to gauge invariance:

∑
i

c0,i,j = 0 (5.65)

We can verify this condition through three methods [57]: a formal derivation of a Ward

identity type, wherein vertices with background fields at zero momentum are expressed

in terms of appropriate derivatives of inverse propagators. This yields not only the

aforementioned equation but also additional constraints:

2c0,i,20 + c0,i,14 = 0

c0,i,20 + c0,i,14 + c0,i,9 + c0,i,6 = 0

(c0,i,19 + c0,i,18)|N2
c=2= 0

c0,i,4 + c0,i,2 + c0,i,3 +
1

2
c0,i,15 + c0,i,1 = 0

c0,i,11 = 0

c0,i,7 + c0,i,10 = 0

(c0,i,8 + c0,i,5)(N
2
c − 2) + c0,i,12(N

2
c − 1)− c0,i,16(N

2
c − 1)(N2

c − 2) = 0

(5.66)

These conditions hold for any value of the fermion mass m and Wilson parameter r.

Secondly, we can confirm all the above identities through algebraic manipulation of

the complete expression for each coefficient. Thirdly, we can substitute the numerical

results for the coefficients into each identity, consistently obtaining zero within the

error estimates.
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c1,i,j: If Lorentz invariance is to be restored in the continuum limit, the sum of these

terms must disappear. Only diagrams 1 and 2 contribute non-zero values, and we have

verified that their combined sum equals zero.

c2,0,j: We verified that these coefficients align with those of the continuum:

c2,0,16 =
1

3

1

Nc

Nf , c2,0,15 =
4

3
NcNf , c2,0,1 = −5

3
NcNf , c2,0,5 =

1

3

N2
c − 1

Nc

Nf

(5.67)

For all other diagrams: c2,0,j = 0.

c3,0,j: The overall contribution from single logarithms must coincide the continuum

result: ∑
j

c3,0,j =

(
3Nc −

1

Nc

)
Nf (5.68)

Again, this can be checked both algebraically and numerically.

The preliminary results for each diagram are presented in Tables 5.3-5.15. Diagrams

not appearing in these Tables give vanishing contributions.
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j c
(−1,0)
0,0,j c

(−1,1)
0,0,j c

(−1,2)
0,0,j

−0.00068730(28) 0.00162886(15) 0.000162221(21)
5 −0.00026913(31) 0.00145195(15) 0.000138480(16)

0.00039527(32) 0.00114316(15) 0.000099190(8)
−0.00316447(8) 0 0

6 −0.00262031(8) 0 0
−0.001935441(31) 0 0
0.00112494(14) −0.00072330(7) −0.000323395(23)

8 0.00082062(8) −0.00069047(7) −0.000272079(26)
0.000268266(33) −0.00060490(4) −0.000189186(22)
0.00158227(5) 0 0

9 0.00131017(4) 0 0
0.000967735(27) 0 0
0.00022981(15) −0.0000802(5) 0

12 −0.000101289(23) −0.0000677(4) 0
−0.0005336(5) −0.00004800(35) 0

0.00316443073(21) 0 0
14 0.00262027066(18) 0 0

0.00193541596(13) 0 0
−0.0005092(4) 0.00007030(14) −0.00007632(17)

16 −0.00057771(31) 0.00005433(13) −0.00006290(15)
−0.0006570(8) 0.00003727(14) −0.00004365(16)
−0.00050773(6) 0 0

18 −0.00049253(6) 0 0
−0.00043479(6) 0 0
0.00039280(6) 0.000040203(15) 0

19 0.00054317(7) 0.000033948(12) 0
0.00070176(9) 0.000024069(9) 0
−0.00158227(5) 0 0

20 −0.00131017(4) 0 0
−0.000967735(27) 0 0

Table 5.3: Coefficients c
(−1,k)
0,0,j ,r=1. The three values of each diagram correspond

to different Symanzik improved actions: Wilson action (first line), Tree-Level
Symanzik (second line), and Iwasaki action (third line).
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j c
(−1,0)
0,1,j c

(−1,1)
0,1,j c

(−1,2)
0,1,j

0.0050933(7) −0.0048230(21) −0.000199144(21)
5 0.0041580(10) −0.0043157(22) −0.000156729(29)

0.00275792(11) −0.0034206(23) −0.000089821(24)
0.0076499(7) 0 0

6 0.0063344(6) 0 0
0.0046788(4) 0 0

−0.0059980(13) 0.00193787(22) 0.00041980(6)
8 −0.0052415(12) 0.00176113(22) 0.00033840(5)

−0.0040376(10) 0.00139419(18) 0.000211346(23)
−0.0051000(6) 0 0

9 −0.0042230(5) 0 0
−0.0031193(4) 0 0
−0.0000539(8) 0.0006100(11) 0

12 0.00044375(28) 0.0005123(10) 0
0.0011289(5) 0.0003603(8) 0

−0.00509976855(25) 0 0
14 −0.00422280501(21) 0 0

−0.00311909924(16) 0 0
−0.0003874(26) 0.0014473(25) 0.00038181(25)

16 −0.0000495(22) 0.0012304(25) 0.00033267(28)
0.000403(4) 0.0008971(21) 0.00025365(26)
0.00057224(6) 0 0

18 0.00056020(6) 0 0
0.000485524(31) 0 0
−0.00054513(7) −0.00030519(20) 0

19 −0.00078195(10) −0.00025635(16) 0
−0.00105013(9) −0.00018026(11) 0
0.00255002(30) 0 0

20 0.00211152(26) 0 0
0.00155963(19) 0 0

Table 5.4: Coefficients c
(−1,k)
0,1,j ,r=1. The three values of each diagram correspond

to different Symanzik improved actions: Wilson action (first line), Tree-Level
Symanzik (second line), and Iwasaki action (third line).
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j c
(1,0)
0,0,j c

(1,1)
0,0,j c

(1,2)
0,0,j

−0.0020082(11) 0.00022193(21) −0.0028072(12)
1+2 −0.0022026(10) 0.00023620(19) −0.0030422(11)

−0.0024047(6) 0.00025562(14) −0.0033149(8)
0.00145603(19) −0.000215063(30) 0.00238751(11)

3+4 0.00146733(19) −0.000220718(28) 0.00254495(29)
0.00145912(19) −0.000220758(9) 0.0025644(4)
0.00068730(28) −0.00162886(15) −0.000162221(21)

5 0.00026913(31) −0.00145195(15) −0.000138480(16)
−0.00039527(32) −0.00114316(15) −0.000099190(8)
0.00316447(8) 0 0

6 0.00262031(8) 0 0
0.001935441(31) 0 0
−0.00112494(14) 0.00072330(7) 0.000323395(23)

8 −0.00082062(8) 0.00069047(7) 0.000272079(26)
−0.000268266(33) 0.00060490(4) 0.000189186(22)
−0.00158227(5) 0 0

9 −0.00131017(4) 0 0
−0.000967735(27) 0 0

0 −0.0000573(4) 0.0009552(14)
11 0.000157315(13) −0.0000646(4) 0.0011115(14)

0.000330707(26) −0.0000792(4) 0.0016031(14)
−0.00011491(7) 0.00029885(28) 0.00026804(9)

12 0.000050644(12) 0.00026594(28) 0.00024220(9)
0.00026682(23) 0.00021724(26) 0.00018887(6)

−0.00316443073(21) 0 0
14 −0.00262027066(18) 0 0

−0.00193541596(13) 0 0
0.001349(5) 0.0000436(8) −0.00011568(14)

15 0.001556(5) 0.0000337(8) −0.00011666(14)
0.001802(4) 0.0000095(11) −0.00010172(13)
0.00045024(4) 0.0000402030(29) −0.0077682(9)

18 0.00043918(4) 0.0000353047(26) −0.0064232(8)
0.00040291(4) 0.0000274085(20) −0.0046228(6)
−0.00039280(6) −0.000160812(12) 0.0071560(5)

19 −0.00054317(7) −0.000135791(10) 0.0057458(4)
−0.00070176(9) −0.000096275(7) 0.00372632(30)
0.00158227(5) 0 0

20 0.00131017(4) 0 0
0.000967735(27) 0 0

Table 5.5: Coefficients c
(1,k)
0,0,j ,r=1. The three values of each diagram correspond to

different Symanzik improved actions: Wilson action (first line), Tree-Level
Symanzik (second line), and Iwasaki action (third line).

DEMETRIANOS G
AVRIEL



Chapter 5 QCD running coupling 57

j c
(1,0)
0,1,j c

(1,1)
0,1,j c

(1,2)
0,1,j

0.0038168(26) −0.0017134(28) 0.00060610(29)
1+2 0.0041574(25) −0.0018097(26) 0.00065729(27)

0.0045263(22) −0.0019482(22) 0.00071661(19)
−0.00297502(18) 0.00165076(33) −0.00048649(8)

3+4 −0.00299543(19) 0.0016997(4) −0.00052973(9)
−0.00296564(21) 0.0017142(4) −0.00054116(10)
−0.0050933(7) 0.0048230(21) 0.000199144(21)

5 −0.0041580(10) 0.0043157(22) 0.000156729(29)
−0.00275792(11) 0.0034206(23) 0.000089821(24)
−0.0076499(7) 0 0

6 −0.0063344(6) 0 0
−0.0046788(4) 0 0
0.0059980(13) −0.00193787(22) −0.00041980(6)

8 0.0052415(12) −0.00176113(22) −0.00033840(5)
0.0040376(10) −0.00139419(18) −0.000211346(23)
0.0051000(6) 0 0

9 0.0042230(5) 0 0
0.0031193(4) 0 0

0 0.00053259(6) −0.00022873(21)
11 −0.000249029(26) 0.00057339(6) −0.00025542(21)

−0.00052711(5) 0.00066218(9) −0.0003586(5)
0.0000269(4) −0.00236349(11) −0.0004656(8)

12 −0.00022187(14) −0.00209473(19) −0.0004043(7)
−0.00056446(25) −0.00170194(28) −0.0003003(6)
0.00509976855(25) 0 0

14 0.00422280501(21) 0 0
0.00311909924(16) 0 0

−0.002322(8) −0.0000146(23) −0.0001447(5)
15 −0.002296(7) −0.0001814(33) −0.0001358(5)

−0.001325(7) −0.0006773(30) −0.0001268(4)
−0.000558677(18) −0.00030519(4) 0.0022034(4)

18 −0.000546553(5) −0.000264678(34) 0.00180793(29)
−0.000504270(6) −0.000201129(25) 0.00127506(20)
0.00054513(7) 0.00122076(16) −0.0018550(5)

19 0.00078195(10) 0.00102539(13) −0.00147783(35)
0.00105013(9) 0.00072102(9) −0.00094452(22)

−0.00255002(30) 0 0
20 −0.00211152(26) 0 0

−0.00155963(19) 0 0

Table 5.6: Coefficients c
(1,k)
0,1,j ,r=1. The three values of each diagram correspond to

different Symanzik improved actions: Wilson action (first line), Tree-Level
Symanzik (second line), and Iwasaki action (third line).
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j c
(−1,0)
4,0,j c

(−1,1)
4,0,j c

(−1,2)
4,0,j c

(−1,3)
4,0,j c

(−1,4)
4,0,j

0.00069295(5) −0.0000201015(15) 0.00059633(5) 0 0
3+4 0.000109289(11) 4.32917(25)× 10−6 −0.0000204284(22) 0 0

−0.000372439(27) 0.0000351782(10) −0.00061565(6) 0 0
0.0027(4) 0.00447(24) 0.001008(31) −0.00068072(8) 0.0000140219(11)

5 0.0044(5) 0.00379(21) 0.000840(29) −0.00058213(7) 9.4883(8)× 10−6

0.0066(6) 0.00273(15) 0.000578(26) −0.00042562(6) 4.0157(8)× 10−6

−0.0154(7) −0.00039098(5) 0.00231200(26) 0 0
6 −0.0127(6) −0.00032375(4) 0.00191443(22) 0 0

−0.0094(5) −0.000239130(30) 0.00141406(17) 0 0
−0.00011586(4) 0.000186623(13) 5.9016(14)× 10−6 0 0

12 −5.59(4)× 10−6 0.000143805(16) 4.6789(11)× 10−6 0 0
0.000151014(25) 0.000073876(9) 2.9442(7)× 10−6 0 0

−0.00106378758(4) 0.000826315389(28) −0.00746086682(16) 0 0
14 −0.000880857132(34) 0.000623967525(24) −0.00546527413(13) 0 0

−0.000650629333(25) 0.000384844011(18) −0.00313752882(10) 0 0
−0.001111(5) 0.00125785(24) 0.00075480(25) 0.000166547(10) −0.0000381711

16 −0.000780(5) 0.00110098(22) 0.00066396(23) 0.000146814(8) −0.0000308278
−0.000324(5) 0.00085197(17) 0.00053131(18) 0.000113649(5) −0.0000202313
0.000108788(6) 0 0 0 0

18 0.000105420(5) 0 0 0 0
0.000095401(7) 0 0 0 0

0 0.0000201015(12) −0.00119266(7) 0 0
19 0 0.0000169738(10) −0.00095763(6) 0 0

0 0.0000120343(7) −0.00062105(4) 0 0

Table 5.7: Coefficients c
(−1,k)
4,0,j ,r=1. The three values of each diagram correspond to different Symanzik improved actions: Wilson

action (first line), Tree-Level Symanzik (second line), and Iwasaki action (third line).DEMETRIANOS G
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j c
(−1,0)
4,1,j c

(−1,1)
4,1,j c

(−1,2)
4,1,j c

(−1,3)
4,1,j c

(−1,4)
4,1,j

−0.00113873(15) 0.000152595(20) −0.00015458(4) 0 0
3+4 −0.000153849(19) −0.0000298762(19) 1.08952(17)× 10−6 0 0

0.00068827(8) −0.000256895(16) 0.000143724(28) 0 0
0.01780(34) −0.0363(22) −0.00146(16) 0.00129413(13) −0.000115914(12)

5 0.011334(33) −0.0318(20) −0.00171(15) 0.00116215(6) −0.000099774(9)
0.0022(5) −0.0246(17) −0.00200(13) 0.00094418(18) −0.000073955(7)
0.0737(31) −0.00592703(25) −0.00082124(15) 0 0

6 0.0611(26) −0.00490781(26) −0.00068002(12) 0 0
0.0451(19) −0.00362507(22) −0.00050228(9) 0 0

0.00003208(5) −0.00037763(16) 0.00008612(13) 0 0
12 −0.00016569(6) −0.00022383(4) 0.00007138(12) 0 0

−0.00045518(6) 4.225(31)× 10−6 0.00004785(11) 0 0
0.00211357914(13) −0.00365949362(15) 0.00176668007(6) 0 0

14 0.00175012503(11) −0.00276335794(12) 0.00129413795(5) 0 0
0.00129269848(8) −0.00170435438(9) 0.00074294446(4) 0 0

0.00514(4) 0.00355(11) −0.00210(9) 8.256(9)× 10−6 0.0000166996
16 0.0146(6) 0.00371(10) −0.00196(8) −2.858(12)× 10−6 0.0000137191

0.0432(24) 0.00379(6) −0.00173(5) −0.000017944(21) 9.44635486785388× 10−6

−0.000151344(20) 0 0 0 0
18 −0.000145358(19) 0 0 0 0

−0.000128649(17) 0 0 0 0
0 −0.000152595(16) 0.00030916(6) 0 0

19 0 −0.000128174(13) 0.00024631(5) 0 0
0 −0.000090128(8) 0.000157421(29) 0 0

Table 5.8: Coefficients c
(−1,k)
4,1,j ,r=1. The three values of each diagram correspond to different Symanzik improved actions: Wilson

action (first line), Tree-Level Symanzik (second line), and Iwasaki action (third line).DEMETRIANOS G
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j c
(1,0)
4,0,j c

(1,1)
4,0,j c

(1,2)
4,0,j c

(1,3)
4,0,j c

(1,5)
4,0,j

−0.0010903(6) 0.00007742(9) −0.0014856(5) 0 0

1+2 −0.0009526(6) 0.00006439(9) −0.0013209(5) 0 0

−0.0007641(5) 0.00004030(7) −0.00105896(30) 0 0

−0.00074284(11) 0.0000377508(29) −0.00074562(7) 0 0

3+4 −0.000130647(20) −1.7160(7)× 10−6 −0.000056858(11) 0 0

0.00049279(7) −0.000066534(9) 0.00078204(11) 0 0

−0.0027(4) −0.00447(24) −0.001008(31) 0.00068072(8) −0.0000140219(11)

5 −0.0044(5) −0.00379(21) −0.000840(29) 0.00058213(7) −9.4883(8)× 10−6

−0.0066(6) −0.00273(15) −0.000578(26) 0.00042562(6) −4.0157(8)× 10−6

0.0154(7) 0.00039098(5) −0.00231200(26) 0 0

6 0.0127(6) 0.00032375(4) −0.00191443(22) 0 0

0.0094(5) 0.000239130(30) −0.00141406(17) 0 0

0.0000690696(32) 0.000040123(19) −0.00055809(9) 0 0

11 0.0000694665(25) 0.000041335(12) −0.00052884(9) 0 0

0.000069021(7) 0.000043270(26) −0.00052731(19) 0 0

0.000057929(19) −0.00022232(10) −0.0001601650(29) −0.0000140519(33) 0

12 2.797(22)× 10−6 −0.00015567(8) −0.000114738(7) −0.0000146039(33) 0

−0.000075507(12) −0.00007059(5) −0.000062081(25) −0.0000135287(29) 0

0.00106378758(4) −0.000939614357(27) 0.00880084109(16) 0 0

14 0.000880857132(34) −0.000753148083(23) 0.00699307822(13) 0 0

0.000650629333(25) −0.000524268946(17) 0.00478649205(10) 0 0DEMETRIANOS G
AVRIEL
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0.01216(22) −0.0029943(8) 0.00029296(18) −0.000169822(25) 0

15 0.01351(22) −0.0031878(8) 0.00044870(21) −0.00016299(4) 0

0.01732(32) −0.0035582(8) 0.00091398(33) −0.00015735(7) 0

0 −0.00016956(8) 0.00200515(32) 0 0

17 0 −0.00014250(8) 0.00168484(34) 0 0

0 −0.00010318(8) 0.0012198(4) 0 0

−0.000088930(22) 4.360(6)× 10−7 −0.000170561(22) 0 0

18 −0.000087444(22) 5.690(6)× 10−7 −0.000111322(10) 0 0

−0.000082212(21) 1.0483(6)× 10−6 −0.000102964(11) 0 0

0 −5.0254(4)× 10−6 0.000298165(23) 0 0

19 0 −4.24346(31)× 10−6 0.000239407(19) 0 0

0 −3.00858(21)× 10−6 0.000155263(12) 0 0

Table 5.9: Coefficients c
(1,k)
4,0,j ,r=1. The three values of each diagram correspond to different Symanzik improved actions: Wilson

action (first line), Tree-Level Symanzik (second line), and Iwasaki action (third line).
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j c
(1,0)
4,1,j c

(1,1)
4,1,j c

(1,2)
4,1,j c

(1,3)
4,1,j c

(1,4)
4,1,j

0.0022779(19) −0.0011826(14) 0.00025340(12) 0 0

1+2 0.0020174(21) −0.0010873(15) 0.00021920(13) 0 0

0.0016425(23) −0.0009012(16) 0.00016564(7) 0 0

0.00127531(27) −0.00028828(6) 0.00018090(4) 0 0

3+4 0.00019508(8) 0.0000162243(30) 0.0000173368(18) 0 0

−0.00098527(9) 0.000537723(21) −0.000171132(33) 0 0

−0.01780(34) 0.0363(22) 0.00146(16) −0.00129413(13) 0.000115914(12)

5 −0.011334(33) 0.0318(20) 0.00171(15) −0.00116215(6) 0.000099774(9)

−0.0022(5) 0.0246(17) 0.00200(13) −0.00094418(18) 0.000073955(7)

−0.0737(31) 0.00592703(25) 0.00082124(15) 0 0

6 −0.0611(26) 0.00490781(26) 0.00068002(12) 0 0

−0.0451(19) 0.00362507(22) 0.00050228(9) 0 0

−0.000105343(12) −0.0002971(4) 0.00015842(5) 0 0

11 −0.000107988(4) −0.0003025(4) 0.00014435(6) 0 0

−0.000111859(15) −0.00031521(34) 0.00013708(8) 0 0

−0.000016042(26) 0.00083334(26) −5.8(1.9)× 10−7 −1.81(0.12)× 10−6 0

12 0.000082843(29) 0.00064044(24) −0.00002039(18) 1.52(11)× 10−6 0

0.000227590(28) 0.00038125(23) −0.00005439(18) 5.89(9)× 10−6 0

−0.00211357914(13) 0.00416125932(15) −0.00208397640(6) 0 0

14 −0.00175012503(11) 0.00333545827(12) −0.00165591105(5) 0 0

−0.00129269848(8) 0.00232182387(9) −0.00113340718(4) 0 0DEMETRIANOS G
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C
hapter

5
Q
C
D

ru
n
n
in
g
cou

plin
g

63

−0.0199(4) 0.006549(17) −0.0010149(5) 0.00004803(6) 0

15 −0.0240(4) 0.007169(17) −0.0011078(8) 0.00009369(6) 0

−0.0356(4) 0.00890(5) −0.0013591(35) 0.00020187(9) 0

0 0.0007509(4) −0.00047487(15) 0 0

17 0 0.0006310(4) −0.00039904(15) 0 0

0 0.0004569(5) −0.00028895(16) 0 0

0.000128347(32) −3.9282(15)× 10−6 0.000010186(8) 0 0

18 0.000126678(32) −4.5205(8)× 10−6 2.5432(30)× 10−6 0 0

0.000120257(31) −7.6210(18)× 10−6 0.000017301(8) 0 0

0 0.000038149(5) −0.000077290(19) 0 0

19 0 0.000032044(4) −0.000061576(15) 0 0

0 0.0000225319(27) −0.000039355(9) 0 0

Table 5.10: Coefficients c
(1,k)
4,1,j ,r=1. The three values of each diagram correspond to different Symanzik improved actions: Wilson

action (first line), Tree-Level Symanzik (second line), and Iwasaki action (third line).
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j c
(−1,0)
3,0,j c

(−1,1)
3,0,j c

(−1,2)
3,0,j

0.005987949322865560(7) 0.0168125 0.00216441
5 0.011279691840390010(7) 0.0142852 0 .00205177

0.018864013084219830(7) 0.0102781 0.00180472
−0.0516445 0 0

6 −0.0427636 0 0
−0.0315866 0 0

0.00528244554(15) −0.01449434464(6) 0
12 −0.00015727738(17) −0.01261049781(6) 0

−0.00813690678(30) −0.00951504612(12) 0
0.0516445 0 0

14 0.0427636 0 0
0.0315866 0 0

−0.0194564(16) 0.00500016(24) −0.0058984(13)
16 −0.0204232(12) 0.00410192(5) −0.0052439(9)

−0.02198074(10) 0.00275597(12) −0.00410844(24)

Table 5.11: Coefficients c
(−1,k)
3,0,j ,r=1. The three values of each diagram correspond

to different Symanzik improved actions: Wilson action (first line), Tree-Level
Symanzik (second line), and Iwasaki action (third line).
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j c
(−1,0)
3,1,j c

(−1,1)
3,1,j c

(−1,2)
3,1,j c

(−1,3)
3,1,j

0 −0.176868885998176500(20) −0.0435517 0
5 0 −0.163435963512354600(20) −0.0388631 0

0.078428741304771940(13) −0.140479437381027000(20) −0.0308436 0
−0.01883007542(14) 0.06150748172(8) −0.02174151702(13) 0

12 −0.0037152229(6) 0.0464924430(6) −0.01891574666(11) 0
0.02001163378(28) 0.02318904363(19) −0.014272569341(18) 0

−0.154933 0.327467 0 0
14 −0.128291 0.247277 0 0

−0.0947597 0.152513 0 0
0.038236(5) −0.017618(32) 0.0248933(33) −0.00520687(6)

16 0.045443(8) −0.022879(31) 0.0224227(30) −0.004845862(5)
0.058106(5) −0.033687(32) 0.0178267(21) −0.00409382(7)

Table 5.12: Coefficients c
(−1,k)
3,1,j ,r=1. The three values of each diagram correspond to different Symanzik improved actions: Wilson

action (first line), Tree-Level Symanzik (second line), and Iwasaki action (third line).
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j c
(1,0)
3,0,j c

(1,1)
3,0,j c

(1,2)
3,0,j

0.0813261088(8) −0.0252335742(7) 0.14921733618(35)
1+2 0.0813261088(8) −0.0252335742(7) 0.14921733618(35)

0.0813261088(8) −0.0252335742(7) 0.14921733618(35)
−0.005987949322865560(7) −0.0168125 −0.00216441

5 −0.011279691840390010(7) −0.0142852 −0.00205177
−0.018864013084219830(7) −0.0102781 −0.00180472

0.0516445 0 0
6 0.0427636 0 0

0.0315866 0 0
0 0.002523357011(34) −0.02984346720(4)

11 0 0.002523357011(34) −0.02984346720(4)
0 0.002523357011(34) −0.02984346720(4)

−0.00264122277(7) −0.005000260418(22) 0.010528965436(18)
12 0.00007863869(8) −0.005199568630(25) 0.00975201723(8)

0.00406845339(15) −0.00491505806(32) 0.008155014073(31)
−0.0516445 0 0

14 −0.0427636 0 0
−0.0315866 0 0

−0.021053(13) 0.0271101(26) −0.0046299(7)
15 −0.017221(22) 0.0263235(33) −0.0045076(7)

−0.011226(9) 0.024289(4) −0.0040462(6)
0 0.0100951(27) −0.119379(10)

17 0 0.0100951(27) −0.119379(10)
0 0.0100951(27) −0.119379(10)

Table 5.13: Coefficients c
(1,k)
3,0,j ,r=1. The three values of each diagram correspond

to different Symanzik improved actions: Wilson action (first line), Tree-Level
Symanzik (second line), and Iwasaki action (third line).
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j c
(1,0)
3,1,j c

(1,1)
3,1,j c

(1,2)
3,1,j c

(1,3)
3,1,j

−0.174414004(5) 0.1497470687(9) −0.03533360140(4) 0
1+2 −0.174414004(5) 0.1497470687(9) −0.03533360140(4) 0

−0.174414004(5) 0.1497470687(9) −0.03533360140(4) 0
0 0.176868885998176500(20) 0.0435517 0

5 0 0.163435963512354600(20) 0.0388631 0
−0.078428741304771940(13) 0.140479437381027000(20) 0.0308436 0

0 −0.00167630123(4) 0.007066720288(32) 0
11 0 −0.00167630123(4) 0.007066720288(32) 0

0 −0.00167630123(4) 0.007066720288(32) 0
0.00941503771(7) −0.00741987168(7) −0.043181620961(25) 0.015793448154(27)

12 0.00185761146(29) 0.0014624225(4) −0.0408514560(5) 0.01462802585(8)
−0.01000581689(14) 0.01435074267(33) −0.03504827712(25) 0.01223252112(9)

0.154933 −0.372367 0 0
14 0.128291 −0.298471 0 0

0.0947597 −0.207766 0 0
−0.012751(24) 0.033406(18) 0.051912(5) −0.00694526(34)

15 −0.019465(19) 0.038577(13) 0.048889(6) −0.0067619(6)
−0.03232(9) 0.049539(0.000023 0.041539(6) −0.0060698(7)

0 −0.111897(20) 0.028270(5) 0
17 0 −0.101166(19) 0.028270(5) 0

0 −0.085583(22) 0.028270(5) 0

Table 5.14: Coefficients c
(1,k)
3,1,j ,r=1. The three values of each diagram correspond to different Symanzik improved actions: Wilson

action (first line), Tree-Level Symanzik (second line), and Iwasaki action (third line).
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j c
(−1,0)
2,0,j c

(−1,0)
2,1,j c

(−1,1)
2,1,j c

(1,0)
2,0,j c

(1,0)
2,1,j c

(1,1)
2,1,j

0 0 0 −5
3

5 −5
1+2 0 0 0 −5

3
5 −5

0 0 0 −5
3

5 −5
−1

3
2
3

1 1
3

−2
3

−1
5 −1

3
2
3

1 1
3

−2
3

−1
−1

3
2
3

1 1
3

−2
3

−1
0 0 0 0 0 1

2

11 0 0 0 0 0 1
2

0 0 0 0 0 1
2

0 0 0 0 0 1
12 0 0 0 0 0 1

0 0 0 0 0 1
0 0 0 4

3
−3 −3

2

15 0 0 0 4
3

−3 −3
2

0 0 0 4
3

−3 −3
2

1
3

0 −1 0 0 0
16 1

3
0 −1 0 0 0

1
3

0 −1 0 0 0
0 0 0 0 0 4

17 0 0 0 0 0 4
0 0 0 0 0 4

Table 5.15: Coefficients c
(l,k)
2,i,j , r=1. The three values of each diagram correspond

to different Symanzik improved actions: Wilson action (first line), Tree-Level
Symanzik (second line), and Iwasaki action (third line).
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Chapter 6

Hadron structure

Hadron structure is explained through the parton model, which revolutionized our

understanding of the constituents and dynamics within hadrons. Proposed by Richard

Feynman in 1969 [70, 71], the model treats hadrons as collections of point-like entities

called partons, which include quarks and gluons. In high-energy experiments, when

probing particles interact with the partons inside a target hadron, they experience

scattering as if they are colliding with these constituent particles individually.

Within the framework of the parton model and QCD, information on this structure is

achieved through the parton distribution functions (PDFs), which encode the

distribution of a hadron’s momentum and spin among its partons. Defined in a

reference frame where the hadron has infinite momentum, the partons’ momenta are

nearly collinear with that of the hadron. This allows the hadron to be visualized as a

stream of free partons, each carrying a fraction of the longitudinal momentum.

However, these distributions cannot be directly measured in experiments, because

individual quarks or gluons have not been detected in isolation, a consequence of

QCD color confinement. Since the discovery of quarks within nucleons, significant

experimental and computational resources have been dedicated to determining the

distribution of quarks and gluons within hadrons. Two main methods are currently

employed: global QCD analysis and lattice QCD [72].

69
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6.1 Global PDF fits

The PDFs are classified as unpolarized (spin-averaged), and polarized

(spin-dependent), where each can be obtained through the QCD factorization [73] of

the cross-section from different high-energy processes, including deep-inelastic

scattering (DIS) and Drell-Yan processes.

Specifically, let’s examine the process e+A→ e+X of the unpolarized DIS, occurring

through the exchange of a virtual photon with momentum qµ. Here, A denotes a

hadron, and X represents the recoiling system. From the measured cross-section, we

can extract the standard hadronic tensor W µν(qµ, pµ):

W µν =
1

4π

∫
d4y eiq·y ⟨A |jµ(y)|X⟩ ⟨X |jν(0)|A⟩

=F1(x,Q
2)

(
−gµν + qµqν

q2

)
+ F2(x,Q

2)
(pµ − qp·q

q2
qµ)(pν − qp·q

q2
qν)

p · q
(6.1)

where pµ is the momentum of the incoming hadron A, and jµ(y) denotes the

electromagnetic current. It’s worth noting that in other processes, jµ(y) can represent

any electroweak current, and we should include more than two scalar structure

functions Fi. Moreover, Q is the kinematic energy scale of the scattering, where

Q2 = −qµqµ, and x = Q2

2q·p .

For large Q at a fixed x, factorization theorem allows expressing W µν as a convolution

of a hard scattering coefficient and a parton distribution:

W µν (qµ, pµ) =
∑
a

∫ 1

x

dz

z
fa/A(z, µ)H

µν
a (qµ, zpµ, µ, αs(µ)) +O(Q−1) (6.2)

where a includes all possible types of partons (quarks, anti-quarks, and gluons),

fa/A(z, µ) is the parton distribution function, and Hµν
a is the hard scattering

coefficient. This coefficient is process-dependent and can be calculated in

perturbation theory as a power series in αs(Q) with finite coefficients. The expression

fa/A(z, µ)dz is interpreted as the probability of finding a parton of type a in a hadron

of type A carrying a fraction z to z +dz of the hadron’s momentum. The distribution

function fa/A, characterizes the non-perturbative aspect of the process, revealing

insights into the structure of hadrons. In this context of the unpolarized DIS process,

the relevant distribution function is the unpolarized PDF. In contrast to the hard

scattering coefficients, distribution functions are universal. They are not entirely
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process-independent due to their reliance on the renormalization scale µ. Typically,

both the distribution functions and hard scattering coefficients are defined within the

MS scheme. However, when they are convoluted, the resulting physical observables

are scheme-independent as expected.

We can project Eq.(6.2) onto individual structure functions:

F1

(
x,Q2

)
=
∑
a

∫ 1

x

dz

z
fa/A(z, µ)H1a

(
x

z
,
Q

µ
, αs(µ)

)
+O(Q−1)

1

x
F2

(
x,Q2

)
=
∑
a

∫ 1

x

dz

z
fa/A(z, µ)

z

x
H2a

(
x

z
,
Q

µ
, αs(µ)

)
+O(Q−1), (6.3)

The extra factors of 1/x and z/x in the equation for F2 are needed because of the

dependence on the target momentum of the tensor multiplying F2. Analogous

expressions for the structure functions can be derived for other hard scattering

processes as well.

The evolution in µ of the parton distribution functions is described by the DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations [74–76], which have

the form of:

∂fa (x, µ
2)

∂ lnµ2
=
∑
b

∫ 1

x

dz

z
Pab

(
x

z
,
Q

µ
, αs(µ)

)
fb
(
z, µ2

)
(6.4)

where Pab is the DGLAP kernels, which describe the parton splitting b→ a. They can

be expressed as powers of αs.

Using Eq. 6.4, we can predict the evolution of parton distribution functions from a

given scale µ0. However, these evolution equations are incapable of directly predicting

these at any particular µ0. Thus, the initial scale µ0 needs to be determined first,

before comparing the QCD predictions of PDFs to other µ scales. This is a key aspect

utilized in global QCD analyses.

Global PDF fits conduct a QCD analysis of hard-scattering measurements, typically

incorporating a range of hadronic observables [77–83]. Parton distributions are

parametrized at an initial energy scale, followed by their evolution to the scale of the

data through the DGLAP equations. These distributions are then used to formulate

theoretical predictions for the relevant observables.
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Within this process, parton distributions are initially parameterized at an initial

energy scale, followed by their evolution to the scale of the data through the DGLAP

equations. These distributions are then used to formulate theoretical predictions for

relevant observables. Typically, the factorization scale µ in the corresponding

factorization formula is set equal to the characteristic scale of the process, Q. Finally,

the determination of the best-fit parameters of PDFs is achieved through the

minimization of a suitable metric, such as the log-likelihood χ2.

However, global QCD analyses from high-energy experiments fall short of providing a

complete picture of parton distributions. While they do offer accurate results in cases

involving specific parton flavors, spin configurations, and kinematic regions, limitations

within experimental programs or phenomenological models restrain a comprehensive

determination. For instance, experiments face difficulties in accessing regions of small

x values, while models struggle to capture the QCD dynamics [84–86].

6.2 PDFs from lattice QCD

To address the limitations of determining PDFs based on experimental data, the

development of a theoretical systematic framework becomes necessary for studying

the parton distributions. Currently, the only available method is through lattice QCD

simulations.

The distribution functions can be defined as matrix elements in a hadron state of

specific operators intended to count the number of quarks or gluons carrying a fraction

x of the hadron’s momentum. Typically, this definition is given in a light-cone reference

frame, where the hadron carries momentum P µ with plus and minus components,

expressed as P± = (P 0 ± P 3)/
√
2, while its transverse components are set to zero.

We thus arrive at the definition for quark PDFs:

fΓ
q/A(x) =

1

4π

∫
dz− exp (−ixP+z−)

〈
P
∣∣∣ψ(z−) ΓW (z−, 0)ψ(0)

∣∣∣P〉 (6.5)

where z± ≡ (z0 ± z3)/
√
2 denote the light-cone space coordinates, |P ⟩ represent the

hadron state, and Γ takes values of γ+, γ5γ
+ or γ+γ⊥ (where γ+ ≡ (γ0 + γi)/

√
2 and

γ⊥·γ+ = 0), corresponding to the unpolarized, longitudinally polarized and transversely

polarized types of PDFs respectively. The operator W (z−, 0), known as the light-cone
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Wilson line, connects the light-like separated quark and antiquark fields, ensuring gauge

invariance. Its expression is given by:

W
(
z−, 0

)
= P exp

[
ig

∫ z−

0

dy−A+
(
y−
)]
, (6.6)

where P is the path order exponential, indicating the arrangement of gluon field

operators A+(y−) along the path.

6.2.1 Mellin moments

In the Euclidean formulation of lattice QCD, direct determination of parton

distributions is impossible since they are light-cone correlation functions. Instead,

they can be obtained through the Mellin moments of PDFs. These moments

correspond to matrix elements of local twist-two operators, where the twist is defined

as the dimension minus the spin. While the leading-twist (twist-two) contributions

have a probabilistic interpretation, the higher-twist contributions are influenced by

soft dynamics. Typically, studies prioritize isolating the leading twist contributions

due to their straightforward identification. While the higher-twist corrections have

received less attention, there is an increasing interest in studying them, with efforts

including exploration through lattice calculations.

The Mellin moments of the structure functions can be expressed, up to higher-twist

effects, as:

F̃1

(
n,Q2

)
=

∫ 1

0

dx

x
xnF1

(
x,Q2

)
,

F̃2

(
n,Q2

)
=

∫ 1

0

dx

x
xn−1F2

(
x,Q2

)
. (6.7)

Using this notation, Eq. 6.3 transforms into:

F̃i

(
n,Q2

)
=
∑
a

f̃a/A(n, µ)H̃ia

(
n,
Q

µ
, αs(µ)

)
(6.8)

For integer values of n, the f̃j/A(n, µ) are hadron matrix elements of specific local

operators, calculated at a renormalization scale µ. Conversely, the structure-function

moment F̃2 (n,Q
2) can be described in relation to the hadron matrix element of a
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product comprising two electromagnetic current operators, computed at two

neighboring spacetime points. The equation above demonstrates an application of the

operator product expansion (OPE). It expresses the product of the two operators

using local operators and certain coefficients H̃ia (n,Q/µ, αs(µ)), known as Wilson

coefficients, which can be calculated in perturbation theory.

In principle, the reconstruction of PDFs using an OPE is possible given a sufficient

number of Mellin moments. However, in practice, only the lowest three moments have

been accurately computed [87–90]. These moments are insufficient for fully

reconstructing the momentum dependence of the PDFs without significant reliance

on models. Despite their limitations, the lowest three moments are directly associated

with measurable quantities like the axial charge and quark momentum fraction.

Obtaining precise calculations of higher moments via lattice simulations is extremely

challenging. The signal-to-noise ratio decreases due to the covariant derivatives in

higher-twist operators. Additionally, higher moments encounter unavoidable

power-law mixing under renormalization, making the reconstruction of full parton

distributions from their moments practically unfeasible.

6.2.2 The x-dependence of PDFs

While the lowest three moments of PDFs can provide valuable benchmarks for lattice-

QCD calculations and constraints in global PDF extractions, they are not in themselves

sufficient to determine the x-dependence of PDFs. Various methods are being explored

for extracting the x-dependence of PDFs on the lattice [91–95].

PDFs can be determined from hadronic tensors in the Euclidean path-integral by

subtracting higher-twist contributions. The hadronic tensor method does not require

large momentum, as it is frame-independence, allowing calculations in any

momentum frame. It is also free of renormalization. The method relies on analyzing

ratios of suitable four-point and two-point functions, which is computationally very

challenging, as one has to suppress the gauge noise and isolate the ground state at the

same time. Another difficulty is the reconstructing the hadronic tensor from

Euclidean space to Minkowski space, a process that suffers from the inverse Laplace

transform.

Another promising technique, termed ”OPE without OPE,” involves computing

matrix elements of time-ordered products of local currents. This approach facilitates

DEMETRIANOS G
AVRIEL



Chapter 6 Hadron structure 75

the extraction of scalar functions related to DIS structure functions and avoids the

computational complexity associated with four-point functions. It involves the

Compton amplitude, critical for understanding nucleon structure, which can be

directly computed in lattice QCD using the Feynman-Hellmann technique. By

working at sufficiently large momentum transfers, twist-two contributions dominate,

simplifying the computation process.

One notable approach is the quasi-distribution method, which employs the large

momentum effective theory (LaMET) [96, 97]. Instead of directly computing

light-cone correlation functions, this method calculates a Euclidean version of PDFs,

called quasi-PDFs. These quasi-PDFs are defined as matrix elements of

momentum-boosted hadrons coupled to gauge-invariant nonlocal operators, including

a finite-length Wilson line. The resulting quasi-observable, which depends on the

hadron’s momentum but is independent of time, can be computed on the lattice and

then renormalized nonperturbatively using an appropriate scheme. Finally, the

renormalized quasi-PDF is matched to the standard PDF through a factorization

formula, calculated in perturbation theory [98–102].

Another alternative framework to quasi-PDFs is the pseudo-ITDs. Like quasi-PDFs,

pseudo-ITDs utilize matrix elements of boosted hadrons coupled to non-local

operators. However, instead of using the variables z and P z, the pseudo-ITDs

approach employs Lorentz invariants z2 and ν ≡ −p · z, where ν is historically known

as Ioffe time. In Euclidean space, ν = zP z M(ν, z2). The matrix elements M(ν, z2) in

this framework are referred to as Ioffe-time pseudo-distributions (pseudo-ITDs). One

notable difference between quasi- and pseudo-distributions is their Fourier transforms.

Quasi-distributions are Fourier transforms of M(P z, z) in z, whereas

pseudo-distributions are Fourier transforms of M(ν, z2) in ν. Similar also to

quasi-distributions, the pseudo-distributions approach relies on factorizing

pseudo-ITDs obtained on the lattice to extract light-cone ITDs, using a matching

kernel calculable in perturbative QCD. However, the necessary matching in the

pseudo-distributions approach is performed at the level of ITDs in coordinate space,

while in the quasi-PDFs approach, it is done in momentum space.

In addition to the methods mentioned earlier, lattice cross-sections offer another path

for extracting the x-dependence of PDFs from lattice-QCD calculations. Analogous

to global QCD analyses of high-energy scattering data, lattice cross-sections involve

analyzing data generated by lattice-QCD calculations of well-defined lattice
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cross-sections. These cross-sections are defined as single-hadron matrix elements of

time-ordered, renormalized, nonlocal operators, and they encapsulate the collision

kinematics. The choice of operator determines the dynamical features of the lattice

cross-section. A good lattice cross-section possesses three key properties: it is

calculable in lattice QCD with Euclidean time, it converges to a well-defined

continuum limit as the lattice spacing approaches zero, and it exhibits the same

factorizable logarithmic collinear divergences as PDFs.

6.3 Three-dimensional structure of hadrons

PDFs are one-dimensional functions that depend only on the longitudinal momentum

fraction carried by the partons, making them the most straightforward to compute

among distribution functions. However, to describe the three-dimensional structure of

hadrons, additional distribution functions are required [103]: the Generalized Parton

Distributions (GPDs) [104–108], and the Transverse-Momentum-Dependent

Distributions (TMD PDFs) [109–112].

GPDs describe the correlation functions of quarks and gluons, which involve

off-diagonal matrix elements of operators positioned at a lightlike separation between

the parton fields. Unlike the diagonal PDFs (see the quark definition in Eq. 6.5),

GPDs should not be interpreted as parton densities; instead, they are to be perceived

as probability amplitudes. Experimental access to GPDs is possible through exclusive

processes like deeply virtual Compton scattering or meson electroproduction. They

are significant in non-forward scattering phenomena, which effectively capture the

transfer of momentum between the initial and final states of hadrons.

The definition of the quark GPDs is provided as [103]:

F Γ
q/A(x, ξ, t) =

1

4π

∫
dz− exp (ixP

+
z−)
〈
P ′
∣∣∣ψ(−z−

2
) ΓW (−z

−

2
,
z−

2
)ψ(

z−

2
)
∣∣∣P〉∣∣∣∣∣

z+=0
zT=0

(6.9)

where P (P ′) is the incoming (outgoing) hadron momentum, P = (P + P ′)/2, and

∆ = P ′−P . They rely on two extra kinematic variables, apart from the fraction x: the

momentum transfer squared t = ∆2, and the light-cone component of the longitudinal

momentum transfer (skewness), ξ ≡ −2∆+/P . It’s worth noting that the transverse

component of the longitudinal momentum transfer enters via t.
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Extracting GPDs from experimental data poses several challenges due to the limited

nature of the data and their coverage of a small kinematic region. These data sets

are indirectly linked to GPDs through the Compton form factors, and it’s particularly

challenging to distinguish between different GPDs involved in the same high-energy

process. The x-dependence of GPDs for fixed t and ξ values can be obtained from the

lattice using the techniques established for PDFs. This approach has been recently

investigated through the quasi- and pseudo-distributions approach.

The TMD PDFs extend the usual PDFs by including dependency on the transverse

momentum of the parton kT, thus providing insight into the three-dimensional

structure of hadrons. In other words, instead of having a number density f(x) of

partons per unit of lightcone momentum fraction x, there is now a density f(x,kT) of

partons per unit of both the momentum fraction x and the (small) transverse

momentum components. TMD PDFs emerge in processes that involve multiple

kinematic scales, such as Drell-Yan, e+e− annihilation, and semi-inclusive deep

inelastic scattering. As a result, a more intricate factorization framework is necessary

[113].

For example, the quark TMDs are defined as [114]:

ΦΓ
q/A(x,kT) =

∫ ∞

−∞

d2zT
(2π)2

∫ ∞

−∞

dz−

4π
exp(ixP+z− − ikT · zT)

×
〈
P
∣∣∣ψ(0) ΓW⊏(z

µ, 0)ψ(zµ)
∣∣∣P〉∣∣∣∣∣

z+=0

(6.10)

where zµ = (0, z−, zT) denotes the four-vector of the light-cone spatial coordinates,

where zT refers to the coordinates perpendicular to z±. The quark and antiquark

fields at positions 0 and zµ are connected by the staple shaped Wilson line W⊏(z
µ, 0)

which are defined by products of straight line segments:

W⊏(z
µ, 0) = W [0 → −∞n̂z → −∞n̂z + zT → (z−, zT)]

= Wnz(z
µ;−∞, 0)WẑT (−∞n̂z; 0, zT)Wnz(0

µ; 0,−∞) (6.11)

The individual Wilson lines Wn(x; a, b) are defined as path-ordered exponentials

connecting the point xµ + anµ to xµ + bnµ along the direction n,

Wn(x
µ; a, b) = P exp

[
−ig

∫ b

a

ds nµ · A0
µ(x

µ + s nµ)

]
. (6.12)
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Note that for Wn the subscript n is always a four-vector denoting the direction of the

moving hadron.

According to Eq. 6.10 the light-cone quark TMD PDFs involve matrix elements of

nonlocal operators with a staple-shaped Wilson line. These Wilson lines are infinite and

have edges located on or near the light cone. Thus, directly determining the TMD PDFs

in lattice QCD is unfeasible. To address this challenge, one can calculate correlation

functions involving space-like separated partons, similar to the methodology used for

PDFs and GPDs. These correlation functions can then be appropriately matched to

their light-cone counterparts. Using the quasi-distributions approach, TMDs can be

investigated through the lattice QCD [115–117]. Nevertheless, the field is still in its

early stages, and significant progress is needed.

6.4 Gluon PDFs

While quark PDFs have been extensively studied both experimentally and

theoretically, the investigation of gluon PDFs has been relatively limited. However,

understanding gluon PDFs is essential as gluons play a critical role in various physical

measurements. Gluonic contributions make a significant impact on the proton’s spin

[118–120]. Phenomenological data also suggest that gluon PDFs dominate over quark

PDFs in the small-x region [121]. Global analysis finds that accurate calculations of

the gluon-dependent quantities are essential for the cross-section of Higgs boson

production, heavy quarkonium and jet production [122–125], as well as for providing

theoretical input to the upcoming Electron-Ion Collider [126]. In this direction,

first-principle calculations of gluon PDFs using lattice QCD can significantly

complement the experimental investigations.

One complication in extracting gluon PDFs is the presence of mixing with quark flavor-

singlet PDFs [127]. The disentanglement of the mixing will help to eliminate one of the

sources of systematic uncertainties in simulations. In the case of Mellin moments of

PDFs, the mixing arises during renormalization. When using quasi-PDFs or pseudo-

ITDs approach, the mixing between the flavor-singlet quark and gluon PDFs should

be resolved at the factorization level.
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The definition of gluons PDFs is similar to Eq. 6.5:

fg/A(x) =
1

2πxP+

∫
dz e−ixP+z−⟨P |F ν

a (z
−)+W ab(z−, 0)Fbν(0)

+|P ⟩. (6.13)

where where Fµν is the gluon field strength operator and W is defined in the adjoint

representation.

The framework for extracting the x-dependence of quark distributions can also be

applied to gluon PDFs. This concept has been recently explored in various studies

concerning quasi-PDFs [99, 100, 128–130], the pseudo-ITDs [131–139], and lattice cross-

sections [140]. However, ab initio calculations of gluon PDFs represent a novel and

relatively uncharted territory.

An important aspect in the direct calculation of PDFs from lattice QCD is the

nonperturbative renormalization of the quasi-PDFs. As regards quark quasi-PDFs, in

Ref. [141] two important features of the Wilson-line operator matrix elements were

revealed on the lattice: linear divergences in addition to logarithmic divergences, and

mixing among certain subsets of the original operators during renormalization.

Efforts to eliminate these linear divergences have been made using various methods,

however a complete nonperturbative renormalization program has only recently been

developed [142]. Similar effects are expected to be present in the renormalization of

nonlocal gluon operators as well. A recent study [143], using the auxiliary field

approach, showed that different components of nonlocal gluon operators have

nontrivial renormalization patterns, making it challenging to accurately evaluate

gluon quasi-PDFs. In addition, four gluon operators have been identified as

multiplicatively renormalizable, making them suitable for defining some of the gluon

quasi-PDFs. Related studies can be found in Refs. [99, 100, 144–146].
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Gluon nonlocal operators

7.1 Definition of operators

The nonlocal gluon operators under study are defined in the fundamental representation

as:

Oµνρσ(x+ zτ̂, x) ≡ 2 Tr

(
Fµν(x+ zτ̂)W (x+ zτ̂, x)Fρσ(x)W (x, x+ zτ̂)

)
(7.1)

where Fµν is the gluon field strength tensor and W (x, x + zτ̂) denotes the straight

Wilson line with length z. Its expression is given by the path-ordered (P) exponential

of the gauge field Aµ as follows:

W (x, x+ zτ̂) ≡ P exp

[
ig

∫ z

0

Aµ(x+ ζτ̂) dζ

]
(7.2)

Without loss of generality, the Wilson line is chosen to lie along the z direction: τ = 3;

also, the origin of the axes is placed on one of the endpoints of the operator.

There are several relations among these operators, stemming both from their definition

and from the symmetries of the QCD Lagrangian; these relations will be extensively

discussed in Section 7.2.

Due to the antisymmetry of Fµν , for a fixed choice of the Wilson line, there are 36

nonlocal operators in total by selecting the indices of Oµνρσ to be in any direction.

However, only gluon operators that exhibit multiplicative renormalizability are

appropriate for defining the gluon quasi-PDF [98]. Suitable candidates for the

80
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unpolarized gluon quasi-PDF can be provided by [128]:

f̃
(n)

g/H(x, P
z) = N (n)

∫
dz

2πxP z
eizxP

z⟨H(P )|O(n)(z, 0)|H(P )⟩ (7.3)

where N (n) is a renormalization factor, x is the longitudinal momentum fraction carried

by the gluon, P µ = (P 0, 0, 0, P z) is the hadron momentum, and H(P ) stands for

momentum-boosted hadron states. Potential candidates for the gluon operator are

denoted here as O(n)(z, 0).

7.2 Symmetry properties

In this Section, we make use of all available symmetries [including space-time

symmetries and local BRST (Becchi-Rouet-Stora-Tyutin) invariance] to pinpoint the

possible mixing sets among nonlocal gluon operators. The first observation to be

made is that all mixing operators will necessarily be of the same form as Eq. (7.1),

possibly with different values for the Lorentz indices µ, ν, ρ, σ. This stems from the

following arguments:

• Wilson lines renormalize multiplicatively [147] (see also Ref. [148] for smooth

closed Wilson loops and Ref. [149] for Wilson loops involving singular points).

• There can be no mixing with nonlocal fermion operators, i.e. with operators

having the generic form:

Ψ̄(x+ zτ̂) ΓW (x+ zτ̂, x)Ψ(x) (7.4)

where Ψ generically stands for a fermion field, possibly with one or more covariant

derivatives, and Γ is a Dirac γ-matrix (or product thereof). The reason for this

absence of mixing is that Ψ transforms under the fundamental, rather than the

adjoint, representation of the global gauge group.1

• As in the case of local operators, there could, a priori, exist mixing with non-gauge

invariant operators, in particular[127, 150]: BRST variations of other operators

1A more complicated alternative, in which Ψ could stand for a product of two fermion fields
(and thus could transform under the adjoint representation) would lead to an operator of higher
dimensionality and thus would be excluded from mixing.
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[Class A]; operators which vanish by the equations of motion [Class B]; and finite

mixing with any other operator having the same symmetry properties [Class C].

However, it can be verified by inspection that substitution of the field strength

tensor Fµν , on either side of the Wilson line, by any combination of elementary

fields, would violate one or more of the symmetries, first and foremost the local

BRST symmetry.

Thus, in what follows we will investigate the mixing set, exclusively among operators

shown in Eq. (7.1)

In lattice QCD, the action remains invariant under discrete transformations of charge

conjugation (C), parity (P), and time reversal (T ) [151, 152]. In what follows, we

present the analysis of the symmetry properties concerning the nonlocal gluon

operators under C, P , T transformations, and transformations under the discrete

rotational group. Since we consider the Wilson line direction as special, we study the

residual three-dimensional rotational symmetry (or the discrete rotational octahedral

symmetry on the lattice). The importance of this study lies in the fact that if two

operators undergo different transformations, symmetries act as a safeguard,

preventing them from mixing with each other under renormalization across all orders

of perturbation theory. Conversely, operators lacking protection from symmetries are

generally prone to mixing.

7.2.1 C, P, T transformations

First, let us review the transformations of fields under C, P , T symmetries. Since the

operators under study (Eq. (7.1)) are made out of the gluon field strength tensor and

the Wilson line, we only need to consider the transformations of links, Uµ. We work in

Euclidean spacetime with coordinates (x, y, z, t) = (1, 2, 3, 4) throughout this paper.

Charge conjugation C acts on lattice links as:

Uµ(x)
C−→ Uµ(x)

∗ = (U †
µ(x))

⊤ (7.5)

Since there is no distinction between time and space in the Euclidean formulation,

the parity transformation, denoted as Pµ with µ ∈ {1, 2, 3, 4}, can be defined in any
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direction [152].

Uµ(x)
Pµ−→ Uµ (Pµ(x))

Uν(x)
Pµ−→ U †

ν (Pµ(x)− ν̂) , ν ̸= µ
(7.6)

where Pµ(x) is the vector x with sign flipped except for the µ-direction.

Analogously, for any direction in Euclidean space one may define a time reversal

transformation, denoted as Tµ:

Uµ(x)
Tµ−→ U †

µ(Tµ(x)− µ̂)

Uν(x)
Tµ−→ Uν(Tµ(x)) , ν ̸= µ

(7.7)

where Tµ(x) is the vector x with sign flipped in the µ-direction.

Utilizing the link transformations, we can construct the transformations of the gluon

field strength tensor. For charge conjugation, we find that,

Fµν(x)
C−→ −Fµν(x)

⊤ (7.8)

By employing the above transformation relations and the cyclic property of traces, it

can be shown that under charge conjugation the operators in Eq. (7.1) remain invariant.

Under parity transformations, the gluon field strength tensor transforms as:

Fµν(x)
Pµ−→ −Fµν(Pµ(x))

Pν−→ −Fµν(Pν(x))

Pρ−→ Fµν(Pρ(x)) , µ ̸= ρ ̸= ν

(7.9)

Finally, the transformation of the gluon field strength tensor under time reversal is as

follows:

Fµν(x)
Tµ−→ −Fµν(Tµ(x))

Tν−→ −Fµν(Tν(x))

Tρ−→ Fµν(Tρ(x)) , µ ̸= ρ ̸= ν

(7.10)
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Taking into consideration the antisymmetry of the gluon field strength tensor and the

specified direction of the Wilson line (along the z direction), we observe the following

operator transformations under parity:

O3ν3ν(z, 0)
P3−→ O3ν3ν(z, 0)

Pν−→ O3ν3ν(−z, 0)
Pρ−→ O3ν3ν(−z, 0)
Pρ−→ O3ν3ν(−z, 0)

(7.11)

Oµνµν(z, 0)
P3−→ Oµνµν(z, 0)

Pµ−→ Oµνµν(−z, 0)
Pν−→ Oµνµν(−z, 0)
Pρ−→ Oµνµν(−z, 0)

(7.12)

O3ν3σ(z, 0)
P3−→ O3ν3σ(z, 0)

Pν−→ −O3ν3σ(−z, 0)
Pσ−→ −O3ν3σ(−z, 0)
Pρ−→ O3ν3σ(−z, 0)

(7.13)

Oµνµσ(z, 0)
P3−→ Oµνµσ(z, 0)

Pν−→ −Oµνµσ(−z, 0)
Pσ−→ −Oµνµσ(−z, 0)
Pµ−→ Oµνµσ(−z, 0)

(7.14)

O3νµν(z, 0)
P3−→ −O3νµν(z, 0)

Pµ−→ −O3νµν(−z, 0)
Pν−→ O3νµν(−z, 0)
Pρ−→ O3νµν(−z, 0)

(7.15)

Oµν3ν(z, 0)
P3−→ −Oµν3ν(z, 0)

Pµ−→ −Oµν3ν(−z, 0)
Pν−→ Oµν3ν(−z, 0)
Pρ−→ Oµν3ν(−z, 0)

(7.16)

O3νµσ(z, 0)
P3−→ −O3νµσ(z, 0)

Pµ−→ −O3νµσ(−z, 0)
Pν−→ O3νµσ(−z, 0)
Pσ−→ O3νµσ(−z, 0)

(7.17)

Oµσ3ν(z, 0)
P3−→ −Oµσ3ν(z, 0)

Pµ−→ −Oµσ3ν(−z, 0)
Pν−→ Oµσ3ν(−z, 0)
Pσ−→ Oµσ3ν(−z, 0)

(7.18)

Given that some of these transformations alter the sign of z, it is useful to consider the

translation invariance of the Lagrangian, which imposes:

Oµνρσ(−z, 0) → Oµνρσ(0, z) (7.19)

and the cyclic permutations on the trace of the operators in Eq. (7.1):

Oµνρσ(z, 0) = Oρσµν(0, z) (7.20)
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Taking advantage of Eqs. (7.19), and (7.20), it is convenient to perform a change of

basis in the form of,

O±
µνρσ(z, 0) =

1

2
(Oµνρσ(z, 0)±Oρσµν(z, 0)) (7.21)

where now these operators are eigenstates of parity transformations (performed with

respect to the midpoint of the operators) with eigenvalues of +1 (even, E) or −1 (odd,

O). Note that O−
µνρσ(z, 0) vanishes when (µ, ν) = (ρ, σ). This way allows us to classify

the 36 operators into several categories, each demonstrating distinct transformations

under parity, as illustrated in Table 7.1.

Operators P1 P2 P3 P4

O+
3131, O

+
3232, O

+
3434

O+
1212, O

+
1414, O

+
2424

E E E E

O+
3132, O

+
4142 E E E O

O+
3134, O

+
2124 O E E O

O+
3234, O

+
1214 E O E O

O−
3132, O

−
4142 O O E E

O−
3134, O

−
2124 E O E E

O−
3234, O

−
1214 O E E E

O+
3212, O

+
3414 O E O E

O+
3121, O

+
3424 E O O E

O+
3141, O

+
3242 E E O O

O−
3212, O

−
3414 E O O O

O−
3121, O

−
3424 O E O O

O−
3141, O

−
3242 O O O E

O+
3124, O

+
3241, O

+
3412 O O O O

O−
3124, O

−
3241, O

−
3412 E E O E

Table 7.1: Categories of operators exhibiting different parity transformations.
The arguments of the operators are omitted.

Thus, operators belonging to different categories cannot mix among themselves. The

mixing pattern will be further reduced in the following subsection, by taking into

account octahedral symmetry. Given that time reversal transformations are merely

a composition of 3 parity transformations (and vice versa), they provide no further

information on the mixing pattern.
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7.2.2 Rotational octahedral point group

The rotational octahedral point group refers to a symmetry group that describes the

discrete rotational symmetry of an octahedron or a cube. This group consists of 24

elements, corresponding to rotations by various angles with respect to different axes. It

possesses five irreducible representations, including two 1-dimensional representations

denoted as A1 and A2, one 2-dimensional representation labeled as E, and two 3-

dimensional representations labeled as T1 and T2. The character table can be found in

Appendix A.

Taking into account the classification of operators in Table 7.1, we can explore whether

they share the same irreducible representations.

Let us start with the operator triplet O+
3131, O

+
3232, O

+
3434: it supports a 3-dimensional

reducible representation. Under the operation C2(z), defined as a 180◦ rotation around

the z axis which transforms x→ −x, y → −y, z → z, we find that:

C2(z)


O+

3131

O+
3232

O+
3434

 =


O+

3131

O+
3232

O+
3434

 (7.22)

Thus, C2(z) operation can be represented by a 3× 3 identity matrix:

C2(z) ≡


1 0 0

0 1 0

0 0 1

 (7.23)

By applying C2(x) and C2(y) operations, one can arrive at the same conclusion. The

resulting transformation matrix of Eq. 7.23 has a character value of 3, indicating a

3-dimensional reducible representation, as shown in Table A.1. This representation

can be decomposed into a one-dimensional representation (A1) and a two-dimensional

representation (E). Various choices for the basis elements of E are possible, for

example: For checking purposes, we study the transformation of the aforementioned

A1 : O+
3131 +O+

3232 +O+
3434

E :

(
2O+

3434 −O+
3131 −O+

3232

O+
3131 −O+

3232

)
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2-dimensional representation under the C4(z) operation:

C4(z)

(
2O+

3434 −O+
3131 −O3232

O+
3131 −O+

3232

)
=

(
2O+

3434 −O+
3232 −O+

3131

O+
3232 −O+

3131

)
(7.24)

where the operation C4(z) is defined in a manner such that it can be represented

through a 2× 2 matrix having a character value of 0. Its form is given as:

C4(z) ≡

(
1 0

0 −1

)
(7.25)

Similar reasoning can be applied to the operators O+
1212, O

+
1414, and O

+
2424. In this case,

we can identify the following operators, supporting irreducible representations:

A1 : O+
1212 +O+

1414 +O+
2424

E :

(
2O+

1212 −O+
1414 −O+

2424

O+
1414 −O+

2424

)

For completeness, we examine the impact of C4(z) operation on the above 2-dimensional

representation:

C4(z)

(
2O+

1212 −O+
1414 −O+

2424

O+
1414 −O+

2424

)
=

(
2O+

2121 −O+
2424 −O+

1414

O+
2424 −O+

1414

)
(7.26)

It is evident that the C4(z) transformation matrix is equivalent to Eq. 7.25.

Proceeding analogously, we can draw conclusions about the rest of the categories of

Table 7.1. For the second and third set of categories, we can identify operators

supporting the three-dimensional irreducible representations T1 and T2:

T1 :

 O−
3132

O−
3431

O−
3234

 ,

 O−
4142

O−
2421

O−
1214


T2 :

 O+
3132

O+
3431

O+
3234

 ,

 O+
4142

O+
2421

O+
1214



Concerning the remaining categories, the analysis becomes somewhat more intricate;

we can construct linear combinations of these operators that support the following

irreducible representations:
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T1 :

 O+
3212 +O+

3414

O+
3121 +O+

3424

O+
3141 +O+

3242

 ,

 O−
3212 +O−

3414

O−
3121 +O−

3424

O−
3141 +O−

3242



T2 :

 O+
3212 −O+

3414

O+
3121 −O+

3424

O+
3141 −O+

3242

 ,

 O−
3212 −O−

3414

O−
3121 −O−

3424

O−
3141 −O−

3242


A1 : O+

3124 +O+
3241 +O+

3412 , O−
3124 +O−

3241 +O−
3412

E :

(
2O+

3412 −O+
3241 −O+

3124

O+
3124 −O+

3241

)
,

(
2O−

3412 −O−
3241 −O−

3124

O−
3124 −O−

3241

)

Combining our findings from the octahedral point group and parity transformations,

we arrange the 36 operators into 16 groups, as shown in Table 7.2. We notice that the

operators in groups {1, 2} have exactly the same behavior under parity

transformations and the octahedral group: consequently, they have the potential to

mix under renormalization. The same conclusion applies to the operators in groups

{3, 4}, {5, 6}, {7, 8}. By the same arguments, operators in groups 9-16 cannot

possibly mix; thus, quantum corrections result in a mere multiplicative

renormalization for these operators. Finally, we note that, in groups containing

multiplets (doublets or triplets) the renormalization and mixing coefficients are the

same for each component of the multiplet.

We emphasize that all the above findings, being based on symmetry properties alone,

are valid beyond perturbation theory. Thus, by making use of the operators of

Table 7.2 in numerical simulations, one can avoid unnecessary contamination from

spurious mixing contributions.

It is worth mentioning that the same mixing pattern will be observed in the continuum,

where octahedral symmetry is replaced byO(3) symmetry. This is because every mixing

pair contains one operator with at least one index along the z-axis and one operator

with no such index; such operators cannot be related via a continuum transformation,

and thus they can still mix, just as on the lattice. However, in the continuum some

of the Z factors of different groups will coincide; this is related to the fact that the E

and T2 representations of the cubic group combine into the spin-2 representation of the

O(3) group, and therefore the corresponding renormalization factors must be equal. In
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Group Operators P1 P2 P3 P4 Irreducible Repr.

1 O+
3131 +O+

3232 +O+
3434 E E E E A1

2 O+
1212 +O+

1414 +O+
2424 E E E E A1

3

(
2O+

3434 −O+
3131 −O+

3232

O+
3131 −O+

3232

)
E E E E E

4

(
2O+

1212 −O+
1414 −O+

2424

O+
1414 −O+

2424

)
E E E E E

5

 O−
3132

O−
3431

O−
3234

 E
E
O

E
O
E

E
E
E

O
E
E

T1

6

 O−
4142

O−
2421

O−
1214

 E
E
O

E
O
E

E
E
E

O
E
E

T1

7

 O+
3132

O+
3431

O+
3234

 O
O
E

O
E
O

E
E
E

E
O
O

T2

8

 O+
4142

O+
2421

O+
1214

 O
O
E

O
E
O

E
E
E

E
O
O

T2

9

 O+
3212 +O+

3414

O+
3121 +O+

3424

O+
3141 +O+

3242

 O
E
E

E
O
E

O
O
O

E
E
O

T1

10

 O−
3212 +O−

3414

O−
3121 +O−

3424

O−
3141 +O−

3242

 E
O
O

O
E
O

O
O
O

O
O
E

T1

11

 O+
3212 −O+

3414

O+
3121 −O+

3424

O+
3141 −O+

3242

 O
E
E

E
O
E

O
O
O

E
E
O

T2

12

 O−
3212 −O−

3414

O−
3121 −O−

3424

O−
3141 −O−

3242

 E
O
O

O
E
O

O
O
O

O
O
E

T2

13 O+
3124 +O+

3241 +O+
3412 O O O O A1

14 O−
3124 +O−

3241 +O−
3412 E E O E A1

15

(
2O+

3412 −O+
3241 −O+

3124

O+
3124 −O+

3241

)
O O O O E

16

(
2O−

3412 −O−
3241 −O−

3124

O−
3124 −O−

3241

)
E E O E E

Table 7.2: Groups of operators exhibiting different parity transformations, along
with the corresponding representation of the octahedral group.
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particular:

ZDR,MS
33 = ZDR,MS

77 , ZDR,MS
34 = ZDR,MS

78 , ZDR,MS
43 = ZDR,MS

87 ,

ZDR,MS
44 = ZDR,MS

88 , ZDR,MS
11 11 = ZDR,MS

15 15 , ZDR,MS
12 12 = ZDR,MS

16 16

(7.27)
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Perturbative renormalization of

gluon nonlocal operators

8.1 Formulation

8.1.1 Lattice action

We consider a nonabelian gauge theory of SU(Nc) group and Nf multiplets of fermions.

To simplify our calculations, we employ the Wilson plaquette gauge action for gluons:

S =
2

g2

∑
plaq.

ReTr {1− Uplaq.}+ SF (8.1)

where

Uplaq. = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν(x) (8.2)

and a stands for the lattice spacing. For simplicity, we will often omit a in what follows;

its presence can always be inferred by dimensional reasoning. The fermionic part of the

action, SF , only enters the one-loop calculation through the gluon field renormalization

factor (see Sec. 8.2). For the sake of definiteness, we will use the clover-improved Wilson

fermion action [65]; however, adapting our results to any other fermion action is trivial

to one-loop order.
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A standard lattice discretization of the Wilson line in Eq. 7.1, using gluon links Uτ (x),

can be formulated as follows:

W (x, x+ zτ̂) =
n∓1∏
ℓ=0

U±τ (x+ ℓaτ̂) , n ≡ z/a (8.3)

where U−τ (x) ≡ U †
τ (x − aτ̂) and upper (lower) signs correspond to n > 0 (n < 0).

Alternative discretization methods incorporate smeared gluon links, such as stout,

HYP, and Wilson flow.

Furthermore, on the lattice, Fµν is determined by the standard clover discretization of

the gluon field strength tensor, defined as follows:

F̂µν ≡ − i

8g
(Qµν −Qνµ) (8.4)

where Qµν is defined as the sum of the open plaquette loops:

Qµν = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν(x)

+ Uν(x)U
†
µ(x+ aν̂ − aµ̂)U †

ν(x− aµ̂)Uµ(x− aµ̂)

+ U †
µ(x− aµ̂)U †

ν(x− aµ̂− aν̂)Uµ(x− aµ̂− aν̂)Uν(x− aν̂)

+ U †
ν(x− aν̂)Uµ(x− aν̂)Uν(x+ aµ̂− aν̂)U †

µ(x).

(8.5)

We expect that improved gauge actions, such as the Symanzik improved action, or the

implementation of stout-smeared links, will not have an impact on determining the

mixing pattern under renormalization of the nonlocal operators.

8.1.2 Renormalization of operators

To study the renormalization of the nonlocal gluon operators, we choose, for

convenience, to calculate the following one-particle-irreducible (1-PI) two-point bare

amputated Green’s functions 1:

δ(4)(q + q′)ΛO(q, z) = ⟨Aa
α(q)

(∫
d4xOµνρσ(x+ zτ̂, x)

)
Ab

β(q
′)⟩amp (8.6)

1For simplicity, we omit color and Lorentz indices whenever they can be understood from the
context. The Green’s functions under study typically depend on seven Lorentz indices: two from the
external gluon fields, four from the operators, and one indicating the direction of the Wilson line.
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where operator Oµνρσ is defined by Eq. (7.1), and Aa
α(q), A

b
β(q

′) are two external gluon

fields. [Use has been made of the fact that, the renormalization of Oµνρσ(x + zτ̂, x) is

x-independent due to translational invariance.]

In general, the nonlocal gluon operators may undergo mixing under renormalization.

Their mixing pattern could be determined by the symmetries of the theory, as we

explore in the next section. Consequently, we define the renormalization mixing matrix

Z, which relates the bare operators to their renormalized counterparts, as follows:

OR
(i) =

∑
j

(
Z−1

)
ij
O(j) (8.7)

Here, we use i and j as generic indices, to list operators within a mixing set. Note

that all renormalization factors depend on the regularization X (where X = DR

[dimensional regularization], LR [lattice regularization] etc.) and on the

renormalization scheme Y (where Y = MS, RI′, etc.), and should thus be properly

represented as ZX,Y unless it is clear from the context.

The corresponding renormalized amputated Green’s functions are expressed as:

ΛR
O(i)

= ZA

∑
j

(
Z−1

)
ij
ΛO(j)

, AR
µ = Z

−1/2
A Aµ (8.8)

where Aµ (AR
µ ) is the bare (renormalized) gluon field. The perturbative expansions of

the operators’ renormalization matrix Z and the gluon field renormalization factor ZA

are given by:

Zij = δij + g2zij +O
(
g4
)
, ZA = 1 + g2zA +O

(
g4
)

(8.9)

To determine the mixing matrix elements zij on the lattice, we perform calculations

in the MS scheme employing both dimensional and lattice regularization. Subsequent

to the computation of the MS renormalized Green’s functions in DR, the process of

extracting zLR,MS
ij follows from the requirement that the renormalized Green’s functions

be independent of the regularization:

ΛDR,MS
O(i)

= ΛLR,MS
O(i)

∣∣∣
a→0

(8.10)
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Here, ΛDR,MS
O(i)

(ΛLR,MS
O(i)

) denotes the MS renormalized Green’s function of operator O(i),

computed in dimensional (lattice) regularization.

After replacing the right-hand side of the above equation with the expressions provided

in Eqs. (8.8), and (8.9), we obtain:

ΛDR,MS
O(i)

− ΛLR
O(i)

= g2
(
zLR,MS
A − zLR,MS

ii

)
Λtree

O(i)
− g2

∑
j ̸=i

zLR,MS
ij Λtree

O(j)
+O

(
g4
)

(8.11)

where ΛLR
O(i)

denotes the bare Green’s function in LR. The Green’s functions appearing

on the left-hand side of Eq. (8.11) represent the main calculations of this study. In

the absence of mixing, the renormalization matrix ZLR,MS
ij becomes diagonal (zLR,MS

ij =

0, for i ̸= j) and thus the operators are multiplicative renormalized.

8.1.3 Conversion factors

Apart from the commonly used MS scheme, typically employed in phenomenological

studies, we also adopt the modified regularization-invariant (RI′) scheme (see

Subsection 8.2.1.2). Nonperturbative calculations of the renormalization factors

cannot be directly performed within the MS scheme since its definition is

perturbative. Instead, they can be computed within a suitably defined variant of the

RI′ scheme, which is applicable in both nonperturbative and perturbative studies.

Then, quantities that are renormalized in the RI′ scheme, calculated in lattice

nonperturbatively, can be converted to the MS scheme through appropriate

conversion factors between RI′ and MS. These conversion factors, denoted as CMS,RI′ ,

can only be determined using perturbation theory and are regularization independent:

CMS,RI′ ≡
(
ZLR,MS

)−1 (
ZLR,RI′

)
=
(
ZDR,MS

)−1 (
ZDR,RI′

)
(8.12)

Hence, the evaluation of CMS,RI
′
can be performed in DR, where computations are

notably simpler compared to LR. Note that the conversion factors generally depend

on the length of the Wilson line and the components of the RI′ renormalization-scale

four-vector. It is understood that, in the presence of mixing among n operators, the

conversion factor will be an n× n matrix.
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The Green’s functions in RI′ can be directly converted to MS through:

ΛMS
O(i)

=
ZLR,MS

A

ZLR,RI′

A

∑
j

[(
ZLR,MS

)−1

ZLR,RI′
]
ij

ΛRI′

O(j)
=

1

CMS,RI′

A

∑
j

[
CMS,RI

′]
ij
ΛRI′

O(j)

(8.13)

where the value of gluon field conversion factor

CMS,RI′

A ≡ ZLR,RI′

A /ZLR,MS
A = ZDR,RI′

A /ZDR,MS
A is given by [153]:

CMS,RI′

A = 1 +
g2

16π2

(97 + 18(1− β) + 9(1− β)2)Nc − 40Nf

36
(8.14)

where β is the standard gauge parameter: β = 0(1) corresponds to the Feynman

(Landau) gauge.

In nonperturbative investigations of Green’s functions using physical nucleon states

through lattice simulations, the normalization of external states is conducted without

involving gluon field renormalization ZA. Consequently, the only required conversion

factor in this case is CMS,RI′ .

8.2 Perturbative Calculation - Results

In this section, we provide the one-loop results for the MS renormalized Green’s

functions of the operators, along with the renormalization factors in MS and the

conversion factors between the RI′ and MS schemes. Our calculations have been

performed in both DR and LR. Due to the very lengthy expressions of the

renormalized Green’s functions and conversion factors, we include them as

Supplemental Material, provided in the form of a Mathematica input file named

“Renormalized Greens Functions and Conversion Factors.m”. The Feynman

diagrams corresponding to the one-loop two-point Green’s functions ΛO of Eq. (8.6)

are illustrated in Fig. 8.1. Diagrams 1 and 2 contain two gluon fields stemming from

the operator insertion (denoted as a blue-filled rectangle), while diagrams 3 to 6 (7 to

15) contain three (four) gluon fields stemming from the operator, which can be from

either side (i.e., emerging from either Fµν) or from the center (i.e., originating from

the Wilson line) of the operator.
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Figure 8.1: Feynman diagrams contributing to the one-loop calculation of the
Green’s functions of the nonlocal operators. Mirror diagrams are not shown, for
compactness. Solid lines represent gluons. The operator insertion is denoted by a
solid box.

8.2.1 Dimensional Regularization

We first present our results from DR. The computations are performed in

D-dimensional Euclidean spacetime, where D = 4 − 2ϵ and ϵ is the regularization

parameter. In contrast to two-point Green’s functions involving local operators, the

integration results become significantly more complicated due to the presence of both

the external momentum q and the length of the Wilson line z in the integrands.

Additionally, there is a nontrivial dependence on the preferred direction of the Wilson

line, leading to further complexity. We apply new techniques, similar to [154], for

handling one-loop tensor integrals with an exponential factor in D dimensions. For

the elimination of the poles in ϵ, we adopt the MS scheme.

8.2.1.1 Renormalization Functions

We start by considering the amputated tree-level Green’s functions of Eq. (8.6), which

read:
Λtree

Oµνρσ
= δab( + qµqρ δανδβσ e

−izq3 + qµqρ δασδβν e
izq3

− qνqρ δαµδβσ e
−izq3 − qνqρ δασδβµ e

izq3

− qµqσ δανδβρ e
−izq3 − qµqσ δαρδβν e

izq3

+ qνqσ δαµδβρ e
−izq3 + qνqσ δαρδβµ e

izq3)

(8.15)
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where z is the length of the Wilson line. Notice that, as expected, the above expression

is antisymmetric in {µ, ν} and {ρ, σ}; also, it is symmetric under (µ, ν) ↔ (ρ, σ) and

under (α, β, q) ↔ (β, α,−q).

Subsequently, we proceed to the 1-loop calculations. In DR, diagrams 11, 12 do not

exist. We find that only diagrams 3, 6, and 13, contribute to the 1/ϵ terms, and

therefore the renormalization function of the operators in MS is not affected by the

remaining diagrams. However, they contribute to the renormalized Green’s functions

and the conversion factors. Below we present the O(1/ϵ) contributions of the

perturbative calculation:

Λ1-loop
Oµνρσ

∣∣∣
O(1/ϵ)

=
g2Nc

16ϵπ2

(
δµ3 + δν3 + δρ3 + δσ3 −

1

2
β

)
Λtree

O (8.16)

The computation was carried out in an arbitrary covariant gauge, allowing for a direct

verification of the gauge invariance of the renormalization factors. It should be noted

that, at the one-loop level in DR, the pole terms are proportional to the tree-level

values for each one of the operators, indicating no mixing with operators of equal or

lower dimension.

The renormalization factor of the gluon field in (DR, MS) is given by [153]:

ZDR,MS
A = 1 +

g2

16ϵπ2

(
13Nc

6
− Nc

2
(1− β)− 2

3
Nf

)
(8.17)

Using the MS renormalization condition and Eqs. (8.8), (8.16), and (8.17), the

renormalization function of the operators turns out to be diagonal, both in the

original basis (Oµνρσ) and in the basis of Table 7.2. Its value is:

ZDR,MS
Oµνρσ

= 1 +
g2

16ϵπ2

((
5

3
+ δµ3 + δν3 + δρ3 + δσ3

)
Nc −

2

3
Nf

)
(8.18)

[We recall that the cases µ = ν and ρ = σ give a vanishing operator; thus, it is

understood that µ ̸= ν and ρ ̸= σ in Eq. (8.18).] We observe that this result depends

on the choice of indices for the operators, specifically whether they align with the

direction of the Wilson line or not. In the basis of Table 7.2, the diagonal matrix

ZDR,MS
ij takes the form:

ZDR,MS
ij = δij

[
1 +

g2

16ϵπ2

((
5

3
+ ωi

)
Nc −

2

3
Nf

)]
(8.19)
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where ωi is defined as follows:

ωi =


0 for i = 2, 4, 6, 8

1 for i = 9-16

2 for i = 1, 3, 5, 7

(8.20)

At this point, we remind the reader that groups containing multiplets share the same

renormalization factor for each component within the multiplet. Note that Eq. 8.19 is

compatible with rotational symmetry arguments in the continuum described by

Eq. 7.27. Our results agree with previous studies using the auxiliary-field

formulation [143, 144, 146].

As expected from gauge invariance in MS, the β dependence disappears in the

renormalization function of the operators, upon taking into account the gluon field

renormalization function. Gauge invariance cannot be ensured in all schemes due to

the presence of gauge-dependent renormalized external fields in the Green’s functions.

It is worth mentioning that the renormalization function of the operators is independent

of the length of the Wilson line (z). There is no dimensionless factor dependent on z

that could emerge in the pole part because the leading pole at each loop cannot depend

on external momenta or the renormalization scale. Consequently, z independence is

expected to persist at all orders in perturbation theory.

8.2.1.2 RI′ renormalization prescription

In a RI′ scheme, there exists significant flexibility in defining normalization conditions

in Green’s functions, particularly in cases involving operator mixing. These variations

only differ by finite terms. Hence, it is convenient to adopt a minimal prescription,

containing the smallest possible set of operators prone to mixing, typically consistent

with the mixing pattern identified by symmetries. This includes groups {1, 2}, {3, 4},
{5, 6}, {7, 8} of Table 7.2. However, such a scheme must be independent of the

regularization method, incorporating any potential additional finite or power-divergent

mixing, as encountered, for instance, in lattice regularization.

A practical choice for a RI′-like scheme suitable for nonperturbative studies is to

consider four 2 × 2 mixing matrices, since there are four mixing pairs of operators,

alongside eight 1 × 1 matrices for operators that are multiplicatively renormalizable.
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However, renormalization conditions for operator 13 cannot be set, as the bare

Green’s function under study is zero. To properly select its renormalization

conditions, further calculations involving other Green’s functions, such as three-point

Green’s functions, are required. Consequently, we need to impose a total of 23

conditions to identify the elements of these matrices. The proposed renormalization

conditions for this variant of the RI ′ scheme are as follows (where α and β are the

Lorentz indices of the external gluons, cf. Eq. 8.6):

Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=β=3

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=β=3

=



2q̄2 for i = 1

−2q̄2 for i = 3

2q̄1q̄2 for i = 7

0 for i = 2, 4, 8

(8.21)

Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=β=4

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=β=4

=



2q̄2 for i = 2

−2q̄2 for i = 4

2q̄1q̄2 for i = 8

0 for i = 1, 3, 7

(8.22)

Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣ q̄1=0,
α=1,β=3

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣ q̄1=0,
α=1,β=3

=

i sin (zq̄3) q̄2q̄3 for i = 5

0 for i = 6

(8.23)

Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣ q̄1=0,
α=1,β=4

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣ q̄1=0,
α=1,β=4

=

0 for i = 5

i sin (zq̄3) q̄2q̄4 for i = 6

(8.24)

Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=1,β=3

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=1,β=3

= q̄22 for i = 9, 11 (8.25)
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Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄1=q̄4=0,
α=1,β=3

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄1=q̄4=0,
α=1,β=3

= i sin (zq̄3) q̄
2
2 for i = 10, 12

(8.26)

Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄1=q̄4=0,
α=4,β=1

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄1=q̄4=0,
α=4,β=1

=

2i sin (zq̄3) q̄2q̄3 for i = 14

i sin (zq̄3) q̄2q̄3 for i = 16

(8.27)

Tr
[
ΛRI′

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=3,β=4

=
Tr
[
Λtree

O(i)
(q̄, z)

]
N2

c − 1

∣∣∣∣∣q̄3=q̄4=0,
α=3,β=4

=
q̄1q̄2
2

for i = 15 (8.28)

where the momentum of the external gluon fields is represented by qν , while the four-

vector q̄ν denotes the RI ′ renormalization scale. The trace in the above equations

is performed across color space. It is important to note that considering only the

magnitude of q̄ doesn’t fully define the renormalization prescription. Various directions

within q̄ correspond to distinct renormalization schemes, interconnected through finite

renormalization factors. In our proposed conditions, we select certain values for the

Lorentz indices α, β and we set specific components of q̄ to zero. With this choice,

we isolate, in each condition, one of the possible Lorentz structures appearing in the

Green’s functions ΛO(i), in a way as to lead to a solvable system of conditions and to,

as much as possible, simpler expressions. Other options can be tested by using our

results for the Green’s functions provided in the supplemental file.

For ‘minus-type’ operators (i.e., for mixing pair {5, 6} and operators 10,12,14, and 16

with multiplicative renormalization) we cannot select q̄3 = 0 (nor q̄3 = π
z
n, where n

is an integer) because sin(q̄3z) which appears in their tree-level expression will vanish,

thus making this expression noninvertible.

Note that the RI′ conditions are expressed in terms of amputated Green’s functions.

Consequently, in order to treat nonperturbative, non-amputated Green’s functions,

coming from lattice simulations, we must multiply each external gluon by an inverse

gluon propagator. Such a propagator is non-invertible in the Landau gauge, which is
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typically employed in simulations, however its inverse in the transverse subspace can

be constructed in standard fashion, using singular value decomposition.

8.2.1.3 Conversion factors

The MS-renormalized Green’s functions are the fundamental ingredient for the

construction of the conversion factors between MS and RI′ scheme, defined in

Eqs. (8.21)–(8.28). These renormalized Green’s functions are equal to the finite part

of Λ1-loop
O and are complex expressions involving integrals over Bessel functions. By

applying the renormalization conditions of the RI′ scheme in Eq. (8.13), one can

straightforwardly derive the 2× 2 conversion factors for the mixing pairs of operators

found in Section 7.2, represented as CMS,RI′

{i,j} , where i and j denote the two operators

belonging to a mixing pair. Due to the very lengthy expressions of the conversion

factors, we present below only the explicit results for ‘plus-type’ operators (i.e., for

mixing pairs {1, 2},{3, 4},{7, 8} and multiplicatively renormalizable operators 9, 11,

and 15); the expressions are presented for a general gauge-fixing parameter (β) in

terms of the quantities F1(q̄
2, q̄3, z)–F9(q̄

2, q̄3, z) where q̄ is the 4-vector

renormalization scale dictated by the renormalization conditions of RI′ for each

operator set. The quantities Fi are integrals of modified Bessel functions of the

second kind, Kn, over a Feynman parameter, and are provided in Eqs. (B.1)–(B.9) of

Appendix B.

The expressions for the ‘minus-type’ operators are provided in the supplementary

Mathematica input file. They involve a double integral of modified Bessel functions,

see Appendix B for an example.

Also, it is important to note that the conversion factors depend on the dimensionless

quantities zq and q/µ. The RI′ and MS renormalization scales (q and µ, respectively)

have been left arbitrary.
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[
CMS,RI′

{1,2}

]
1,1

= 1 +
g2Nc

16π2

[
67

9
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β − 4

2
log

(
q̄2

µ̄2

)
+
F2 − F3

2
(261β + 40) + (2− 69β) (F8 − F9)−

10Nf

9Nc
− β2

4

+
F7

2
(23β − 1) + q̄2|z|27β

2
(3 (F3 − 2F4 + F5)− (F2 − F3))

+
6

q̄2|z|2
(1− β + F7) +

F1

2
(−28β − 11)

]
(8.29)

[
CMS,RI′

{1,2}

]
1,2

=
g2Nc

16π2

[
12

q̄2|z|2
((2β − 1)F7 + 1) + 4(β − 2) (F2 − F3)

+ 4(5β − 1) (F8 − F9) + 4F1

] (8.30)

[
CMS,RI′

{1,2}

]
2,1

=
g2Nc

16π2

[
37β

2
(F2 − F3) +

F7

2

(
−β
2
− 5

)
+ (−5β − 2) (F8 − F9) +

5F1

2

+ q̄2|z|2β
2

(
1

2
(F2 − F3) + 5 (F3 − 2F4 + F5)

)
+

2

q̄2|z|2
((β + 3)− F7)

]
(8.31)

[
CMS,RI′

{1,2}

]
2,2

= 1 +
g2Nc

16π2

[
31

9
− β2

4
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β

2
log

(
q̄2

µ̄2

)
+ (76β + 14) (F2 − F3) + (−105β − 4)

F8 − F9

2
− 14βF1

+
3F7

4
(13β + 2) + q̄2|z|2β

2
(13 (F3 − 2F4 + F5)− 5 (F2 − F3))

+
4

q̄2|z|2
(4− β − 14βF7)−

10Nf

9Nc

]
(8.32)

DEMETRIANOS G
AVRIEL



Chapter 8 Perturbative renormalization of gluon nonlocal operators 103

[
CMS,RI′

{3,4}

]
1,1

= 1 +
g2Nc

16π2

[
67

9
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β − 4

2
log

(
q̄2

µ̄2

)
− 7(2β + 1)F1 + (69β + 8) (F2 − F3) +

F7

4
(49β − 2)

− β2

4
+ q̄2|z|27β

2
(3 (F3 − 2F4 + F5)− (F2 − F3))

− 10Nf

9Nc
+ (−99β − 8)

F8 − F9

2

]
(8.33)

[
CMS,RI′

{3,4}

]
1,2

=
g2Nc

16π2

[
2(5β − 1) (F2 − F3) + 2(1− 5β) (F8 − F9)− 2F1

]
(8.34)

[
CMS,RI′

{3,4}

]
2,1

=
g2Nc

16π2

[
(−43β − 6) (F2 − F3) +

F7

2
(β − 2) + 4(7β + 1) (F8 − F9) + F1

+ q̄2|z|2β
2
(− (F2 − F3)− 10 (F3 − 2F4 + F5))

+
4

q̄2|z|2
(F7 − β − 3)

]
(8.35)

[
CMS,RI′

{3,4}

]
2,2

= 1 +
g2Nc

16π2

[
31

9
− β2

4
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β

2
log

(
q̄2

µ̄2

)
− 2(7β + 3)F1 + (106β + 8) (F2 − F3) +

3F7

4
(13β + 2)

− 10Nf

9Nc
+ q̄2|z|2β

2
(13 (F3 − 2F4 + F5)− 5 (F2 − F3))

+
4

q̄2|z|2
(1− β − (8β + 3)F7) + (−105β − 4)

F8 − F9

2

]
(8.36)
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[
CMS,RI′

{7,8}

]
1,1

= 1 +
g2Nc

16π2

[
67

9
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β − 4

2
log

(
q̄2

µ̄2

)
− 7(2β + 1)F1 + (69β + 8) (F2 − F3) +

F7

4
(49β − 2)

+ q̄2|z|27β
2

(3 (F3 − 2F4 + F5)− (F2 − F3))

+ (−99β − 8)
F8 − F9

2
− 10Nf

9Nc
− β2

4

]
(8.37)

[
CMS,RI′

{7,8}

]
1,2

=
g2Nc

16π2

[
2(1− 5β) (F2 − F3) + 2(5β − 1) (F8 − F9) + 2F1

]
(8.38)

[
CMS,RI′

{7,8}

]
2,1

=
g2Nc

16π2

[
2(1− 5β) (F2 − F3) + 6β (F8 − F9) + 2F1 − 2F7

]
(8.39)

[
CMS,RI′

{7,8}

]
2,2

= 1 +
g2Nc

16π2

[
31

9
− β2

4
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β

2
log

(
q̄2

µ̄2

)
+ (−14β − 3)F1 + (69β + 8) (F2 − F3) +

F7

4
(41β + 6)

+ q̄2|z|2β
2
(13 (F3 − 2F4 + F5)− 5 (F2 − F3))

+ (−95β − 4)
F8 − F9

2
− 10Nf

9Nc

]
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CMS,RI′

(9) = 1 +
g2Nc

16π2

[
49

9
− β2

4
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β − 2

2
log

(
q̄2

µ̄2

)
− 2(8β + 1)F1 + (125β − 2) (F2 − F3) + (−153β − 4)

F8 − F9

2

+
3F7

4
(15β + 2) + q̄2|z|2β

2
(23 (F3 − 2F4 + F5)− 6 (F2 − F3))

+
q̄2

q̄22

(
2(β − 2)F1 + (12− 13β) (F2 − F3) + 21β (F8 − F9)−

βF7

2

)

− 10Nf

9Nc
+

4

q̄22|z|2
(1− β − 3F7)

]
(8.41)

CMS,RI′

(11) = 1 +
g2Nc

16π2

[
49

9
− β2

4
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β − 2

2
log

(
q̄2

µ̄2

)
− 7(2β + 1)F1 + (79β + 6) (F2 − F3) +

3F7

4
(15β + 2)

+ q̄2|z|2β
2
(23 (F3 − 2F4 + F5)− 6 (F2 − F3))−

10Nf

9Nc

+ (−101β − 4)
F8 − F9

2

]
(8.42)

CMS,RI′

(15) = 1 +
g2Nc

16π2

[
49

9
− β2

4
+ (β + 2)

(
2γE − log(4) + log

(
z2q̄2

))
+
β − 2

2
log

(
q̄2

µ̄2

)
+ (7β + 6) (F2 − F3) + (45β + 6)

F7 − F8

2
+ (−17β − 4)

F8 − F9

2

− 4F1 + 144β (F2 − 2F3 + F4)− 84β (F8 − 2F9 + F10)

+ q̄2|z|2β
2

(
− 12 (F2 − 2F3 + F4) + 35 (F3 − 2F4 + F5)

− 24 (F4 − 2F5 + F6)
)
+ (−28β − 6) (F1 − F2)−

10Nf

9Nc

]
(8.43)
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Plotting conversion factors for the parameters used in lattice simulations can offer very

useful insights and visual representations. To facilitate this, we select specific values of

the free parameters that correspond to the Nf = 2 + 1 + 1 ensemble of twisted-mass

clover-improved fermions described in Ref. [139]. In this setup, the MS scale is fixed

at µ = 2 GeV while the lattice volume is L3 × T with L = 32 and T = 64 (in lattice

units). The lattice spacing is a = 0.0938 fm, while g2 = 3.47625 and β = 1 (Landau

gauge).

The RI′ scale is defined in lattice units as aq̄ =
(
2π
L
n1,

2π
L
n2,

2π
L
n3,

2π
T

(
n4 +

1
2

))
, where

ni are integers. For the momentum scales, we choose isotropic spatial directions (n1 =

n2 = n3) when possible and introduce a nonzero twist of 1/2 in the temporal component.

This choice aligns with the antiperiodic boundary conditions applied to the fermion

fields in the temporal direction. Additionally, we rescale the length of the Wilson line

with the lattice spacing, denoted as z/a.

Depending on the choice of q̄ the numerical values of the conversion factors can be

excessively large. It is thus important to tune the values of q̄ accordingly. Similarly

to the continuum, most appropriate choices of values for q̄3 on the lattice will be:

q̄3 =
2π
aL
n3, where n3 is an odd integer: these choices guarantee that tree-level Green’s

functions will be invertible for all integer values of z/a in the range 1 ≤ z/a < L/2.

As an example, we apply the following values for the plus-type operators: n1 = n2 = 3,

n3 = 0, and n4 = −1/2. The conversion matrix elements for pair {7, 8} are shown in

Fig. 8.2; the other plus-type mixing pairs, i.e., {1, 2} and {3, 4}, have similar qualitative

behavior. The plus-type operators undergoing multiplicative renormalization (9,11, and

15) exhibit a similar graphical representation as demonstrated, for example, in Fig. 8.3,

for operator 15.

0 2 4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

2.5

z/a


M
S
,R
I'

[{7,8}]1,1

[{7,8}]2,2

(a) Diagonal elements.

0 2 4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

z/a


M
S
,R
I'

[{7,8}]1,2

[{7,8}]2,1

(b) Nondiagonal elements.

Figure 8.2: Elements of CMS,RI′

{7,8} conversion matrix as a function of z/a.
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0 2 4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

2.5

z/a


M
S
,R
I'

[{15}]1,1

Figure 8.3: Conversion factor CMS,RI′

{15} as a function of z/a

Furthermore, in Fig.8.4, the conversion matrix elements for the pair {5, 6} of minus-

type operators are presented, where the values n2 = n3 = 3, n1 = 0, and n4 = 5 are

employed. For the remaining minus-type operators, we have selected n1 = n2 = 0,

n3 = 3, and n4 = 5; a representative plot is given in Fig.8.5 for operator 16. The rest

of the multiplicatively renormalizable minus-type operators (10,12, and 14) follow the

same format as operator 16.

The plots of Figs. 8.2–8.5 show the real part of the conversion factors as a function of

z/a. They highlight data points at integer values of z/a ranging from 1 to L/2 = 16,

while dashed lines connecting these points display the conversion factors for arbitrary

noninteger values of z/a. The value at z/a = 0 has been excluded from the analysis;

indeed, a singular behavior is expected at z = 0, where the nonlocal operator collapses

to a local composite operator with additional contact singularities. The imaginary part

of plus-type operators is strictly zero given our choice of renormalization conditions.

For minus-type operators the imaginary part is negligible, having a magnitude less than

10−5. In these plots, we include all possible positive values of z up to half the lattice

size, focusing only on the positive directions of the Wilson line. By definition of the

plus-type and minus-type operators and the selected RI′ renormalization conditions,

the conversion factors are symmetric with respect to z = 0, and therefore, negative

values of z are not shown in the plots.

We note here the divergent behavior shown in the plots of ‘minus-type’ operators

(Figs. 8.4 and 8.5) for noninteger values of z/a; this is due to the unavoidable factor

of sin(zq̄3) in their tree-level expressions (cf. Eqs. (8.23, 8.24, 8.26, 8.27), which

renders these expressions non-invertible for some noninteger z/a). Of course, z/a is

necessarily an integer in the lattice definition of the operators, making these

divergences inconsequential; however, this behavior points out the necessity for a
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Figure 8.4: Elements of CMS,RI′

{5,6} conversion matrix as a function of z/a.
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Figure 8.5: Conversion factor CMS,RI′

{16} as a function of z/a

judicious choice of the renormalization 4-vector scale q̄, as mentioned above, so that

no divergences will occur at integer values of z/a.

8.2.2 Lattice Regularization

We now focus on computing the bare Green’s functions, as given by Eq. (8.6), using

lattice regularization. The tree-level Green’s functions yield the same result as in

dimensional regularization, shown in Eq. (8.15).

The 1-loop computation is considerably more complicated than in dimensional

regularization due to the subtleties involved in extracting divergences from lattice

integrals. To begin, we write the lattice expressions in the form of a sum of

continuum integrals plus additional lattice corrections. Noteworthy, these additional

terms, although they have a simple quadratic dependence on the external momentum

q, are expected to have a nontrivial dependence on z as seen in nonlocal fermion

operators [141].

Several diagrams (1, 2, 4, 5, 8, 10, and 14), as seen in Fig. 8.1, give precisely the

same contributions as in DR. This aligns with expectations, considering that these
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contributions are finite as ϵ → 0. Consequently, the limit a → 0 can be applied right

from the beginning, without inducing any lattice corrections. However, we must ensure

that we eliminate the overall factor of 1/a2, attributed to the presence of the external

gluons in the Green’s functions, by extracting two powers of the external momentum,

(aq).

As an example of the ensuing expressions, we present the one-loop lattice result for

diagram 13, which is particularly simple, but includes all types of divergences found in

our calculations:

Λd13
Oµνρσ

=
g2Nc

16π2

(
c1 + c2 β − c3

|z|
a

+ 8 log
|z|
a

(2 + β)

)
Λtree

Oµνρσ
(8.44)

where c1 = 32.24812(2), c2 = 14.24059(4), and c3 = 79.81936(8). Note here the

presence of both linear divergence and logarithmic divergence in a, features revealed

in the nonlocal fermion operators as well. Other diagrams typically have more

complicated tensorial structures than the tree level, and also contain a very complex

dependence on the momenta of the Green’s function, in terms of the integrals over

Bessel functions shown in Appendix B. The complete expression for ΛMS can be found

in the supplemental file.

The difference between the bare lattice Green’s functions and the MS-renormalized

ones, calculated up to one loop, is as follows:

ΛDR,MS
Oµνρσ

− ΛLR
Oµνρσ

=
g2

16π2

{
− 4π2

Nc

+Nc

[ (
α1 + log(a2µ̄2)

)
(δµ3 + δν3 + δρ3 + δσ3)

+ α2 + α3β + α4
|z|
a

− β

2
log(a2µ̄2)

]}
Λtree

Oµνρσ

(8.45)

where α1 = −8.37940, α2 = 36.04994, α3 = 1.38629, and α4 = 19.95484. Despite the

extremely complicated momentum dependence and the complex tensorial structure of

both the MS and the bare lattice Green’s functions, their difference (Eq. 8.45) is

proportional to the tree-level Green’s function, indicating multiplicative

renormalization without mixing in MS; the proportionality factor is

momentum-independent, as expected. Note that the coefficient α4 in front of the

linear divergence has the same value with the corresponding divergent term in the

quark nonlocal operators of an arbitrary Wilson line’s shape [155]. This is a
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consequence of the fact that linear divergence arises only from Wilson-line self-energy.

As expected, the linear divergent term depends on the length of the Wilson lines and

logarithmic divergences arise from the endpoints and contact points of the Wilson

lines.

Using the above equation together with Eq. (8.11) one can extract the multiplicative

renormalization and mixing coefficients in LR using the MS-scheme. The value found

for the of coefficient α3 was expected, since all gauge dependence must disappear in

the MS scheme for gauge-invariant operators: Indeed, this term will cancel against a

similar term in ZLR,MS
A in Eq. (8.46). For clover-improved Wilson fermions the latter

has the value [153]:

ZLR,MS
A = 1 +

g2

16π2

{
− 2π2

Nc

+Nf

(
eA1 + eA2 cSW + eA3 c

2
SW

)
+Nc

(
eA4 + eA5 β

)
+

[(
−5

3
− β

2

)
Nc +

2Nf

3

]
log(a2µ̄2)

}

where eA1 = −1.05739, eA2 = 0.79694, eA3 = −4.71269, eA4 = 18.2349, eA5 = 1.38629, and

cSW is the standard clover coefficient [66].

At the one-loop level, the renormalization factors of the operators are found to be

diagonal, in both original basis (Oµνρσ) and basis shown in Table 7.2, as observed in the

case of DR. This implies that in the lattice theory at the 1-loop level, the nonlocal gluon

operators under investigation are multiplicatively renormalized. By using Eq. 8.11, one

can derive:

ZLR,MS
Oµνρσ

= 1 +
g2

16π2

{
2π2

Nc

+Nf

(
e1 + e2 cSW + e3 c

2
SW +

2

3
log(a2µ̄2)

)

+Nc

[
e4 + e5

|z|
a

− 5

3
log(a2µ̄2)−

(
e6 + log(a2µ̄2)

)
(δµ3 + δν3 + δρ3 + δσ3)

]}

where e1 = eA1 = −1.05739, e2 = eA2 = 0.79694, e3 = eA3 = −4.71269, e4 = −17.81504,

e5 = −α4 = −19.95484, and e6 = α1 = −8.37940. It is worth mentioning that the

presence of cSW in ZLR,MS
Oµνρσ

is inherited from ZLR,MS
A . As expected, ZLR,MS

Oµνρσ
is gauge

independent, and the cancellation of the gauge dependence was numerically confirmed

up to O(10−5). This gives an estimate of the accuracy of the numerical loop integration.

DEMETRIANOS G
AVRIEL



Chapter 8 Perturbative renormalization of gluon nonlocal operators 111

Similarly to Eq. 8.19, in the basis of Table 7.2, the matrix ZLR,MS
ij takes the following

diagonal form:

ZLR,MS
ij = δij

[
1 +

g2

16π2

{
2π2

Nc

+Nf

(
e1 + e2 cSW + e3 c

2
SW +

2

3
log(a2µ̄2)

)

+Nc

(
e4 + e5

|z|
a

− 5

3
log(a2µ̄2)−

(
e6 + log(a2µ̄2)

)
ωi

)}]
(8.46)

where ωi is defined by Eq. 8.20.

Even though the one-loop lattice calculation shows a multiplicative renormalization for

all the gluon nonlocal operators under study, we expect that mixing among pairs of

operators, as dictated by the symmetries of QCD, will be revealed at higher orders. The

absence of mixing at one loop, found in our calculation, provides a valuable input to

the nonperturbative studies regarding the size of mixing contributions expected to arise

in lattice simulations: Although a multiplicatively renormalizable operator is a better

candidate to explore the hadron matrix elements of gluon PDFs, in practice, other

operators, which can mix only at higher orders of perturbation theory, can be possible

alternatives, if their mixing contributions are small enough compared to statistical

errors, and thus, negligible.
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Chapter 9

Conclusions

In this dissertation, we have performed a series of perturbative calculations using lattice

perturbation theory. We have examined the discretization errors affecting the QCD

running coupling in relation to the fermion mass, as well as the renormalization of

gluon nonlocal operators. We summarize below our findings from these calculations

and outline several paths for extending our work in the future.

In Chapter 5, we have presented the one-loop result of the fermion contributions of

the two-point Green’s functions of background gluon field using lattice perturbation

theory. This calculation incorporates a finite fermion mass and respects the O(a)

improvement. We have calculated the renormalization factor, Zg, which relates the

bare running coupling g0 to the MS-renormalized running coupling g. By employing

the background field method we have found the discretization errors associated with

the finite fermion mass. We have extracted the coefficient b
(1)
g of the perturbative

expansion of the reparameterized running coupling. We observed that the one-loop

results are independent of the stout-smearing coefficient. The process of computing two-

loop Feynman diagrams with a fermion propagator that contributes to the two-point

Green’s functions of the background field is at its final stage: all calculations are finished

and consistency controls are being performed. The outcomes of these computations can

be valuable for nonperturbative studies concerning the precision determination of the

strong coupling constant. Specifically, our findings will assist research groups employing

the decoupling method in eliminating uncertainties of O(am) introduced by truncating

the perturbative results of bg(g
2
0).
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In Chapter 8, we have studied the renormalization of the gluon nonlocal operators.

By analyzing the symmetry properties of these operators, we have identified their

mixing pattern under renormalization; some undergo mixing into pairs ({1, 2},
{3, 4}, {5, 6}, {7, 8} for notation, see Table 7.2), while others are multiplicatively

renormalizable (9-16). We have computed the two-point bare Green’s functions of

gluon nonlocal operators using both dimensional and lattice regularization methods.

We have evaluated the renormalization factors in the MS scheme. At the one-loop

level, the renormalization factors for the operators were found to be diagonal, both in

the continuum and on the lattice. This suggests that in lattice theory, at the 1-loop

level, the nonlocal gluon operators undergo multiplicative renormalization. This

observation aligns with the pattern revealed by symmetry arguments, where mixing

may occur between certain operators but not necessarily at all orders of perturbation

theory. Additionally, we determined the conversion factors of these operators between

the RI’ and MS renormalization schemes. The RI’ scheme was defined to be

compatible with the mixing pattern of the operators and be practical for

nonperturbative studies. The outcomes of this study are essential for exploring

potential paths for investigating gluon PDFs through lattice QCD. Furthermore, it

contributes valuable insights into the renormalization of general gluon nonlocal

operators on the lattice, thereby facilitating the development of nonperturbative

renormalization prescriptions.

Expanding on our calculations presented in Chapter 5, our next step involves

conducting a comprehensive two-loop calculation including all Feynman diagrams

contributing to the background field propagator. This will enable us to determine the

three-loop beta function of the strong coupling constant using the clover and

Symanzik improved actions. Another aspect we intend to incorporate into our

analysis is the inclusion of stout smearing on gluon links, with a focus on finding its

effects on two-loop calculations. Additionally, we plan to undertake a thorough

one-loop evaluation of lattice artifacts proportional to the fermion mass at higher

orders of lattice spacing, specifically of order O(a2m2).

Simultaneously, we intend to delve deeper into the realm of gluon nonlocal operators,

as explored in Chapter 8. There is a number of possible extensions to this work. One

particular direction is the study of higher-order effects beyond the one-loop level.

Another extension regards using a number of improved lattice actions and

investigating their effect on the renormalization factors. Further, the calculation of

additional Green’s functions and use of variant renormalization schemes will allow for

DEMETRIANOS G
AVRIEL



Chapter 9 Conclusions 114

alternative ways of renormalizing the nonlocal operators, enabling stringent

cross-checks when converting to MS ; one possible variant scheme is a

coordinate-space Gauge Invariant Renormalization scheme [156]. This broader

investigation can provide a tight control of sources of systematic error, which is

essential for nonperturbative studies.
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Appendix A

Character Table of Octahedral

point group

Table A.1 provides a comprehensive overview of the representations of the rotational

octahedral point group. Each row corresponds to an irreducible representation, while

the columns denote the classes of symmetry operations, including the identity operation

(E) and rotations (Cn) along different axes. For our purposes it is sufficient to focus

on classes C2 representing 180◦ rotations about each of the 3 axes perpendicular to the

Wilson line and C4 representing 90◦ rotations about these axes.

E 8C3 3C2 = 3C2
4 6C ′

2 6C4

A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T1 3 0 -1 -1 1
T2 3 0 -1 1 -1

Table A.1: Character table of the rotational octahedral point group.
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Appendix B

Definition of Feynman parameter

Integrals

In this appendix we provide a list of Feynman parameter integrals, featured in the

expressions of the conversion factors, which lack a closed analytical form. Notably, all

the integrals discussed in this context are convergent and their numerical calculation

is straightforward.

These integrals depend on both the external momentum 4-vector qν and the length

of the Wilson line, z. Within the integrands, we encounter modified Bessel functions

of the second kind, denoted as K0 and K1. To simplify notation, we introduce the

parameter s ≡
√
q2(1− x)x. All integrals are dimensionless by definition.

116

DEMETRIANOS G
AVRIEL



Appendix B Definition of Feynman parameter Integrals 117

F1(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK0(s|z|) (B.1)

F2(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK0(s|z|)x (B.2)

F3(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK0(s|z|)x2 (B.3)

F4(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK0(s|z|)x3 (B.4)

F5(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK0(s|z|)x4 (B.5)

F6(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK0(s|z|)x5 (B.6)

F7(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK1(s|z|) s|z| (B.7)

F8(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK1(s|z|) s|z|x (B.8)

F9(q
2, q3, z) =

∫ 1

0

dx e−iq3xzK1(s|z|) s|z|x2 (B.9)

For ‘minus-type’ operators there appear also double integrals of modified Bessel

functions over both x and the parameter ζ; an example is provided below:

∫ 1

0

dx

∫ z

0

dζ e−iq3xζ K0(s|ζ|)
1

|z|
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