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ABSTRACT

This dissertation was produced as a component of the "Monetary and Finance Economics™
postgraduate program at the University of Cyprus. Its primary objective is to examine the
time series data of weekly returns on crude oil prices to forecast their future fluctuations. The
study proposes a methodology for predicting oil returns movements utilizing the Box-Jenkins
approach, a widely recognized method in time series analysis. The Box-Jenkins methodology
involves the identification, estimation, and diagnostic checking of a suitable autoregressive

integrated moving average model for the time series data.

In addition to the theoretical framework, the study will also include empirical validation of
the forecasting model using historical crude oil price data. A theoretical overview is
presented, elucidating the crude oil concept and its significance within the global market and
financial domain. Subsequent chapters delve into empirical analysis, employing suitable
methods to effectively model and forecast crude oil returns. Specifically, autoregressive
moving average (ARMA) models and hybrid models within the Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) family are constructed utilizing the statistical
software EViews 9. By comparing the forecasted values with actual returns movements, the
model's performance will be evaluated, thereby contributing to the practical applicability of
the Box-Jenkins methodology in the context of crude oil returns forecasting. By shedding
light on the predictability of oil returns and the factors driving their movements, this study
aims to provide valuable insights that can aid in risk management and strategic planning in

the energy and financial sectors.

Keywords: Brent crude oil, prices, returns, time-series, Box-Jenkins, Eviews 9, hybrid

models
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CHAPTER 1: INTRODUCTION

1.1 PURPOSE

Crude oil, a global energy powerhouse, wields a profound influence over the economic
landscape, drawing the attention of businesses, investors, and governments. In this ever-
shifting environment, companies in the electricity market rely heavily on returns forecasting
techniques to navigate market volatility. These forecasts, which are not just crucial but often
the lifeblood of commodity purchases and portfolio management, play a pivotal role in risk
mitigation and formulation of energy strategy. However, the art of returns forecasting is a
labyrinth, intricately woven with a myriad of factors such as weather conditions, business

cycles, and international trade dynamics, all vying for attention.

This paper aims to employ a range of econometric models drawn from extant literature to
identify the most suitable model for forecasting weekly returns of Brent crude oil. Following
the compilation of data about weekly returns on Brent crude oil prices, this time series dataset
was utilised to construct an Autoregressive Moving Average (ARMA) model using the Box-
Jenkins methodology alongside four hybrid models within the Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) family. The objective behind applying these
econometric models was to identify the model that most accurately captures the
characteristics of the underlying time series. With the aid of evaluation criteria, the most
appropriate model was selected, facilitating the generation of oil returns forecasts by utilising
the statistical software EViews 9.0. Crude oil is a significant player in the global energy
industry and significantly impacts the economy, attracting the attention of businesses,
investors, and governments. Electricity market companies rely heavily on forecasting
techniques to navigate market volatility. These forecasts are crucial for commodity purchases

and portfolio management and play a key role in risk mitigation and energy strategy



formulation. However, forecasting is a complex task, influenced by several factors such as

weather conditions, business cycles, and international trade dynamics.

The significance of this paper lies in its quest to identify the most suitable model for
forecasting weekly returns of Brent crude oil by employing a range of econometric models.
The dataset of weekly returns on Brent crude oil prices was used to construct different
models, such as the Autoregressive Moving Average (ARMA) model, and four hybrid models
within the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family,
using the Box-Jenkins methodology. The objective of using these econometric models was to
identify the model that best captures the characteristics of the underlying time series. With the
help of rigorous evaluation criteria, the most appropriate model was selected, and the

statistical software EViews 9.0 was used to generate oil returns forecasts.

1.2 SUBJECT

Given the aforementioned rationales, this study undertakes an examination of the weekly
returns of Brent crude oil prices through the application of time series modelling and
forecasting methods. In particular, academic attention towards forecasting crude oil returns
has escalated in the preceding decade. Within recent literature, numerous investigations
regarding return prediction and risk evaluation have shifted emphasis towards methodological

performance comparisons rather than exploring interrelationships among input variables.

1.3 BRIEF DESCRIPTION OF THE RESEARCH

This paper, composed of seven chapters, drafts an approach to forecasting Brent crude oil
returns utilising the Box—Jenkins methodology, a widely utilised technique in time series
analysis. The initial chapter delivers a theoretical framework, enclosing the definition of
Brent crude oil and its key role within the global market and financial aspect. This theoretical

illustration highlights the significance of crude and its pricing dynamics. Moreover, a
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historical backwards-looking of critical crises impacting the commodity is detailed,
examining factors that substantially influence its pricing trends. Furthermore, several
econometric models are applied based on existing literature. The prior objective of this study

is to conduct forecasts of Brent crude oil returns within the global market context.

Following the introductory chapter, Chapter 2 presents a more comprehensive context of
crude oil, clarifying its economic significance and pervasive effect on everyday life.
Thereafter, Chapter 3 synthesises relevant elements from prior literature, outlining the models
and methodologies employed in the modelling and forecasting crude oil returns. The
subsequent chapters comprise the empirical segment of this study. Chapters 4 and 5
illuminate the theoretical reinforcements of statistical and econometric components essential
for modelling. Additionally, fundamental concepts and features of time series are expounded
upon as the principal forecasting methodologies alongside an evaluation metrics synopsis.
Moreover, Chapter 6 analyses the examination of stationary and non-stationary processes.
Together, within the same chapter, a brief overview of the econometric software EViews 9 is

provided, facilitating the performance of econometric analyses.

Chapter 7 provides a comprehensive version of the weekly pricing dynamics of crude oil and
the data sources which support this study. It examines weekly returns transiting a 5-year
period from 2014 to 2019. This thorough research process forms the bedrock for applying
specific econometric models, which are instrumental in forecasting the returns of the
commaodities under investigation. The journey includes a strict stationarity test, model
construction, and heteroscedasticity assessment, culminating in selecting a model
documented in existing literature. Once the model is developed, we generate and evaluate
forecasts of crude oil returns. Finally, Chapter 8 encapsulates the conclusions from the

preceding econometric analysis and outlines avenues for prospective research endeavours.
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CHAPTER 2: THEORETICAL FRAMEWORK OF CRUDE OIL

2.1 ORGANIZATION OF PETROLEUM EXPORTING COUNTRIES (OPEC)

Crude oil has shaped the world economy. By the early 1970s, this important energy
commaodity shifted consumption to nearly 50% of global energy consumption. The current
daily production, which is approximately 96.3 million barrels (U.S. Energy Information

Administration, 2017), keeps us informed about the present state of crude oil production.

At this point, it is essential to refer to the geopolitical importance of crude oil. Since the
beginning of the oil industry, its strategic importance has been evident, endowing countries
possessing it with substantial national power on both political and economic fronts. In terms
of global crude oil production structure, the Organization of the Petroleum Exporting
Countries (OPEC)member nations collectively hold 81% of the world's reserves, accounting
for 40% of global oil output (OPEC Annual Statistical Bulletin, 2016). Middle Eastern
nations such as Saudi Arabia, Iran, Iraq, and the United Arab Emirates control the largest
share of OPEC production and reserves, thereby consolidating wealth and influence within

their domain (Hamilton, 2008).

The OPEC is an international economic consortium that was established in Baghdad in 1960.
Its main objective is to coordinate policies among member states to ensure equitable and
stable crude oil prices for producers. Moreover, it strives to achieve efficient, economical,
and stable crude oil supplies while seeking fair returns on investment capital within the
industry. As of 2016, OPEC comprises 13 member states, including the five founding
nations—Iran, Iraq, Kuwait, Saudi Arabia, and Venezuela—and subsequent additions such as
Algeria, Angola, Ecuador, Gabon, Libya, Nigeria, Qatar, and the United Arab Emirates

(OPEC, 2012).
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Although the crude oil market was dominated by multinational oil companies with American
interests, nowadays, OPEC exercises considerable power over the crude oil market, with
control over approximately 40% of global oil production and 81% of proven reserves
worldwide (OPEC Annual Statistical Bulletin, 2016). The establishment of this organization

marked a climactic shift in the national sovereignty over natural resources.

In summary, OPEC operates as an entity leveraging its substantial oil reserves to influence
the global crude oil market by adjusting production quotas in line with its interests. Despite a
decline in its share of the global oil supply market since the beginning of the 21st century,
OPEC retains a considerable stake, ensuring that the market will remain susceptible to the

organization's decisions and interventions.

2.2 OIL CRISIS

In recent years, a significant number of researchers have highlighted the correlation between
oil shocks and the real economy. These studies have established oil shocks not only as key
factors influencing oil prices but also as noteworthy economic indicators. For instance,
Hamilton's (1983) analysis during the years 1948 to 1980 reveals a consistent pattern of
preceding recessions in the American economy; there were typically concurrent increases in
oil prices. This finding emphasizes the conclusion that substantial fluctuations (or shocks) in
oil prices have a concrete impact on economic activity. To further illuminate this, a collection
of the most consequential oil crises in the post-World War 11 era will be presented,

highlighting their interconnectedness with fluctuations in crude oil prices.

The crude oil crisis spread in late 1973, surrounded by escalating geopolitical tensions. This
disruption was triggered by the Yom Kippur War, a conflict that saw Israel encircled by
Egypt, Syria, and other Arab nations. In response to the Western support extended to Israel,

Iran and several Arab exporting nations imposed an oil embargo on nations supporting Israel.
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This strategic manoeuvre, coupled with OPEC's announcement of a production reduction,
precipitated a sharp spike in crude oil prices, soaring from $2.50 to $12. The historical
context of this crisis, marked by geopolitical tensions and strategic moves, adds a layer of

intrigue to its economic implications.

Subsequently, the world was rocked by a second crude oil shock in 1979 and 1980 sparked by
Iran and Irag. The cessation of oil production in Iran and diminished exports from Iraq
catalyzed a surge in crude oil prices, overlapping with a global economic downturn. As a
result, this led to a significant spike in prices, also worsening the economic downturn. Post-
1980, oil prices began a downward course in response to declining demand and a
simultaneous uptick in production from other nations (U.S. Energy Information

Administration, Thomson Reuters).

As the new millennium began in 2000, European nations attempted to diminish their reliance
on crude oil sourced from Arab nations, seeking alternative energy sources. Nevertheless,
despite these efforts, oil remained the superior energy resource in Europe by a notable margin

(Hamilton, 2013).

Since 2011, oil prices have experienced an upward movement, reaching levels slightly
exceeding $100 until early 2014. However, in the latter half of 2014, there was a downturn in
oil prices attributable to the magnified shale oil production in the United States and the

reduced demand from European countries and China (Hamilton, 2013).

2.3 DETERMINING FACTORS OF THE PRICE OF OIL

Crude oil price dynamics are sensitive to various disruptive events, including geopolitical
crises or significant weather phenomena, which can hamper its distribution. Such events may
engender uncertainty regarding future demand or supply. Consequently, causing higher
volatility in crude oil prices. A significant portion of crude oil reserves is situated in regions
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historically tolerant to political unrest or prostrate to production disruptions due to political
disruptions. Under these circumstances, the market perpetually evaluates the likelihood of
future disruptions and their prospective ramifications. Also, it jointly measures the
availability and capability of remaining producers whose actions are important to mitigate

potential supply losses (U.S. Energy Information Administration, 2016).

Supply

Oil supply is a major determinant of crude oil prices, containing the outputs of both OPEC
and non-OPEC nations (OPEC, 2016). OPEC's supply holds significant power over crude oil
price dynamics, underscored by historical evidence. OPEC member countries collectively
contribute 40% of global crude oil production and account for 60% of global oil trade. The
organisation actively regulates production levels among its members, establishing quotas and
demonstrating a correlation between reduced production targets and subsequent oil price
increases. Additionally, the indicator of OPEC's excess production capacity assumes

consequences in potential crude oil organisations' crises, as it recalls the market's resilience.

Conversely, non-OPEC countries contribute 60% of global crude oil production, with
significant production hubs in North America, the former Soviet Union territories, and the
North Sea. Unlike OPEC's centralised management structure, non-OPEC nations' production
activities are predominantly overseen by International Oil Companies (I0Cs). IOCs operate
in decentralised terms of production volumes. A considerable portion of non-OPEC
production occurs at a higher cost than OPEC counterparts, driving these nations to explore

frontier areas such as deepwater and unconventional sources like oil sands.
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Demand

Similar to supply, the demand for oil stands as a crucial determinant of oil prices, which can
be categorized into demand from member nations of the Organization for Economic

Cooperation and Development (OECD) and demand from non-OECD countries.

The OECD comprises the United States, European nations, and other developed countries,
collectively accounting for 53% of global oil consumption in 2010 (EIA, Short Term Energy
Outlook, Thomson Reuters, 2016). The economic structure of each nation variably influences
the relationship between oil prices and consumption. Developed nations are characterized by
high levels of per capita vehicle ownership, resulting in the transportation sector's significant
share of total oil consumption. Moreover, OECD member countries implement policies such
as increased fuel taxation and the promotion of fuel efficiency and biofuel consumption,

leading to a decline in oil consumption despite economic growth.

Conversely, non-OECD countries exhibit a substantial increase (40%) in crude oil
consumption, spearheaded by China, India, and Saudi Arabia, reflecting their rapid economic
development. These nations utilize crude oil across various sectors, including construction
and electricity production, a trend also compounded by population growth. Notably, China's
recent economic surge has forced it to become the world's largest energy consumer, thereby

significantly contributing to the global increase in crude oil consumption.

Inventories

Inventories are a crucial factor in shaping oil prices. They are functioning as a stabilizing fac-
tor between supply and demand dynamics. During periods of surplus production relative to
consumption, crude oil can be stored for future utilization. This has been evidenced during

the 2008 crisis, where a decrease in oil consumption led to the accumulation of record-level
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inventories in the United States and other Organization for Economic Cooperation and Devel-
opment (OECD) countries. Conversely, when consumption outpaces production rates, exist-
ing reserves are tapped in order to meet the demand for consumption (EIA, Short Term En-

ergy Outlook, Thomson Reuters, 2016).
Weather

Like many commodities, crude oil is subject to seasonal fluctuations, resulting in amplified
demand and consumption during specific periods. For instance, increased heating oil con-
sumption occurs during winter, while greater utilization of diesel is observed in summer due
to heightened travel activity. Although market participants anticipate high demand and con-
sumption periods, they often overlap with upward price pressures, which tend to normalize
towards the season's finale. Moreover, extreme weather events can disrupt crude oil produc-
tion facilities, drizzling supply upsets and subsequent price escalations (Breitenfellner et al.,

2009).
Expectations

Oil prices are influenced not only by prevailing price levels, demand, and supply dynamics
but also by global expectations and investor sentiments regarding future trends in these indi-
cators. For instance, between 2005 and 2008, production reports for non-OPEC countries
consistently revealed lower production levels than forecasted, leading to an unforeseen surge
in production by OPEC member nations. Consequently, this exerted pressure on their produc-
tion capacity margins, causing upward tension in crude oil prices. The equilibrium between
current and anticipated future prices constitutes a pivotal linkage between investors and trad-

ing entities engaged in futures contracts (Levin et al., 2014).
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CHAPTER 3: LITERATURE REVIEW

Theoretical discussions on the interplay between crude oil prices and crucial economic
factors also have significant practical implications. Numerous researchers, including
Hamilton (1983), have argued that oil prices correlate with key economic factors. Hamilton's
study, for instance, scrutinizes the interaction between WTI crude oil prices and crucial
indicators of the American economy, such as Gross National Product (US GNP),
unemployment rates, hourly earnings, and imported product prices. These discussions outline
the indirect mechanisms through which crude oil prices influence economic activity,

providing a theoretical framework that can inform real-world economic decisions.

In recent years, various methodologies have been utilized in research to forecast prices in
electricity markets. These methodologies encompass a range of econometric models, such as
Automatic Regressive Integrated Moving Average (ARIMA), Function Transfer, Artificial
Neural Networks (ANN), Value-at-Risk, and Stochastic Linear Regression models like
GARCH. The volatility of prices, particularly during specific periods, presents a significant
challenge for techniques like the Fourier Transform and stochastic modelling (Garcia et al.,

2005).

Saltik, Degirmen, and Ural (2016) investigated the spot price volatility of crude oil and other
commodities, employing various formulations of the GARCH model. Specifically, they
employed the GARCH, IGARCH, GJIRGARCH, EGARCH, FIGARCH, and FAPARCH
models. Their aim was to assess the accuracy of linear and non-linear asymmetric models in
predicting volatility. The study showed that asymmetric and integrated models outperformed
during two periods. Moreover, the FIGARCH model demonstrated ideal performance during
the initial period, whereas the EGARCH model was deemed more suitable for capturing the

volatility of both commaodities in the subsequent period.
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A study authored by Faith Wacuka Ng'ang'a and Meleah Oleche (2017) examines various
volatility models utilized for forecasting crude oil price volatility. The research assesses the
performance and efficacy of diverse GARCH, EGARCH, and IGARCH models in predicting
oil price volatility, utilizing empirical analysis. The findings indicate that the IGARCH T-
distribution model is the most effective in forecasting Brent crude oil price volatility and

Value at Risk (VaR) estimations.

The study by He et al.(2018) illuminates the effectiveness of employing a multiscale analysis
approach for forecasting crude oil risk. This has succeeded by investigating the dynamic
interaction between crude oil price volatility and risk across various time scales. The results
offer valuable insights for stakeholders, including practitioners and policymakers, engaged in

managing risk within the oil market.

Yingying Xu and Donald Lien (2013) investigate the prediction of volatility in crude oil and
gas assets by analyzing three distinct models: GAS (Generalized Autoregressive Score),
GARCH (Generalized Autoregressive Conditional Heteroskedasticity), and EGARCH
(Exponential GARCH). The research assesses the performance of these models in forecasting

volatility within the context of the energy market through an empirical analysis.

Ahmed and Shabri's (2017) study enhances comprehension of the dynamics of crude oil
prices by applying GARCH models to spot price data. The research delivers insights into the
patterns and features of volatility in crude oil prices. The results emphasize the significance
of utilizing suitable econometric models to capture precisely the complexities of crude oil

price tendencies.

Furthermore, Kang and Yoon (2009) conclude that the asymmetric CGARCH and FIGARCH
models are suitable for forecasting crude oil price volatility. Whereas Dritsaki (2018) found

that the hybrid ARIMA-GARCH models provide optimal forecasting results.
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Given these considerations, it becomes evident why methods for forecasting oil returns have
not just evolved but have experienced rapid advancements in recent years. The data generated
from these crude oil returns forecasts holds significant importance, particularly in informing
governments and businesses' strategic decision-making and resource allocation. For instance,
the European Central Bank (ECB) utilizes futures price data to forecast oil prices, a practice
that significantly impacts inflation-related indicators (ECB, 2015). Similarly, global
organizations such as the International Monetary Fund (IMF) and the Federal Reserve Board,

at the forefront of innovation, rely on futures prices.

CHAPTER 4: FUNDAMENTAL CONCEPTS AND CHARACTERISTICS

4.1 DESCRIPTIVE STATISTICS OF THE DATA

The current stage represents the descriptive statistic characteristics used to process the data in
the selected sample of the current research. Subsequently, various visual aids such as charts,
graphs, and tables facilitate the presentation of statistical data. The tools employed in this
process include statistical tables and formulas, which provide a comprehensive description of

the essential characteristics of the data (Hatjinikolou, 2002).

The arithmetic mean is the quotient of the variable's set of values divided by the number of

observations.

The median is the variable's value, which divides the population in half.

The predominant value is the value that exhibits the highest frequency within the sample.

The range is the difference between the maximum and minimum values.
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Variance represents the mean of the squared differences between the values of our variable
and their arithmetic mean. Variance is measured in squares and not in the same units as our

variable:

0% = ~ 3N, (X; — 1)? (1)

Standard deviation is the most critical measure of the distribution, i.e., the positive square
root of the variance, with the difference being that it is estimated in the same measurement

units as our variable.
Skewness quantifies the degree of asymmetry in the series distribution relative to its mean.

_ NS iew?

as o3 (2)
Kurtosis is a metric that evaluates the curve's steepness in the distribution.
1k Y
oy M (3)

0-4
Jarque-Bera is a statistical test which checks whether the series is normally distributed. It

measures the difference between the skewness and kurtosis of the series and those from the

normal distribution. Calculated as:

(ay—3)2
4

(4)

Jarque — Bera = %(0@2 +

4.2 TIME SERIES CHARACTERISTICS

Past experiences and predictions of forthcoming events typically inform an entity's economic
functions. The significance of forecasting as a framework for making knowledgeable
judgments in planning actions has been widely acknowledged. Future predictions rely heavily

on historical statistical data. Time Series Analysis, a statistical methodology, gathers past data
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to forecast future trends. A time series represents a sequence of values of a variable observed

over time, typically at regular intervals (Karageorgios et al., 1997).

Continues and Discrete Intertemporal Changes

The observations within a time series form an intertemporal variable, which can be either
continuous or discrete. However, categorising a variable as discrete does not inherently imply
temporal discontinuity. For instance, a country's population, categorised as a discrete variable,
is recorded at all time points, thus generating a continuous variable over time. Conversely, a
continuous variable may not always exhibit continuity about time. For instance, the quantity of
a commodity, considered a continuous variable, becomes temporally discontinuous when the

market is closed and prices are not recorded (Karageorgios et al., 1997).
Time Series Components

Continuous monitoring of time series data reveals that four components contribute to forming
variable values. The first component is technological advancements, typically leading to
increased output or population growth. Technological advancements are forces that also
influence the trend of a time series. The second component is cyclical variation, inherent in all
economic activities. Systematic and seasonal fluctuations around the trend line necessitate the
observation of monthly, quarterly, weekly, and even daily data for analysis and inference.
Finally, another component is random movement, characterised by unpredictable events or

unknown factors, lacking any discernible pattern (Karageorgios et al., 1997).
Stationarity

A fundamental concept in time series analysis involves distinguishing between stationary and
non-stationary data. This distinction is not just a technicality but a crucial factor that can
significantly impact the accuracy and reliability of our analysis. Stationary data refer to those

with a consistent average level over time, while non-stationary data exhibit variability over
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time. Autocorrelation signifies the coefficient measuring the correlation between two time
series elements at different time intervals. However, autocorrelation is meaningful only within

the context of stationary time series (Box et al., 2008).

4.3 FORECAST

All companies need forecasts to reduce risk and uncertainty about the future. Returns
forecasting is a process used to make predictions based on past and present data. Forecasts
are never accurate, and thus, short-term forecasting is preferred because we cannot accurately
calculate the variables that affect returns in the long term. Long-term forecasts are affected by

random factors, such as the recent pandemic.

There are two forecasting methods: quantitative and qualitative methods. The qualitative

method deals with estimation using expert judgment.

On the other hand, the quantitative method uses numerical analysis. This method gets
information from various consultants and experts about future results. In contrast, the
quantitative forecasting method collects and analyses historical data to infer future trends. In

this thesis, we are more interested in the quantitative method.

4.3.1 QUANTITATIVE METHODS OF FORECASTS
Quantitative methods necessitate the fulfilment of the following three conditions:

1. They rely on information retrievable from past data.
2. The information must be amenable to numerical representation.

3. It assumes that the underlying data pattern will persist into the future.

Two primary types of models are employed in quantitative methods: explanatory models,

which seek to establish relationships between multiple variables, and time series models,
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which utilize historical trends to forecast future outcomes (Hyndman, 1998). This thesis

focuses on analyzing forecasts derived from time series models.

4.3.2 BASIC STEPS IN THE FORECAST PROCESS

According to Hyndman (1998) and Hymans (2020), there are six basic procedures we follow

for forecasting.

1. Identification of the problem: Problem identification involves determining the
recipients of this service, its potential utility, and the specific manner in which the
process can be beneficial.

2. Gathering information: Information gathering entails acquiring numerical data from
historical records to facilitate prediction. It also involves incorporating human
judgment as a valuable component.

3. Preliminary information analysis: Preliminary information analysis involves
examining the data collected using tools such as graphs and statistical indicators like
the mean and dispersion. These techniques assess the stability of observed patterns
and identify outliers. This process is crucial as it informs the subsequent stage of
model selection.

4. Selection of forecast model: Based on the findings identified in stage three, we
determine the most suitable model for the analysis.

5. Analysis of the information: Our data analysis involves examining the data through
the model chosen at a prior stage.

6. Model evaluation and efficiency assessment: Upon completion of the preceding
stages, this phase involves comparing the obtained values with the actual data to
identify potential adjustments to the model in instances where significant disparities

are observed.
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4.3.3 EVALUATION OF FORECASTS

According to Howrey et al. (1991), researchers highlight the importance of selecting a
suitable model for enhancing the accuracy of forecasts. Various methods are available to
assess the performance of a model. Initially, we will address the prediction error, which can

be expressed mathematically as follows:

& =Y — ?t (5)

Where . estimated error in time t
Y,: observed value at time t
.. estimated price in time t

Measuring Forecast Accuracy

The prevalent measures include:

Mean absolute error: MAE = - (6)
Yr=alEdl (7)
Root mean square error: RMSE = /% (8)

The mean absolute error (MAE) is relatively straightforward to comprehend; however, it fails
to account for extreme errors and does not provide information regarding the direction of the
errors. MAE represents the average absolute difference between actual and estimated values.
Conversely, the mean squared error (MSE) is commonly used in estimations despite being more
challenging to interpret. Root mean squared error (RMSE) quantifies the magnitude of the
error, calculated as the square root of the average of the squared differences between actual and

estimated values.
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MAE and RMSE differences

The mean absolute error (MAE) is relatively straightforward to comprehend; however, it fails
to account for extreme errors and does not provide information regarding the direction of the
errors. MAE illustrates the average absolute difference between actual and estimated values.
Conversely, the mean squared error (MSE) is commonly used in estimations despite being
more challenging to interpret. Root mean squared error (RMSE) quantifies the magnitude of
the error, calculated as the square root of the average of the squared differences between

actual and estimated values.

Percentage Error

The percentage error serves as a metric for evaluating the predictive performance across the
dataset.

n
Mean absolute percentage error: MAPE = % E |%| 100% 9
t=1't

The Mean Absolute Percentage Error (MAPE) represents the average absolute error
expressed as a percentage. Like the previously mentioned methods, MAPE does not indicate

the approach of errors. This method is independent of the scale of the data.
Scaling Errors

This approach, introduced by statisticians Rob J. Hyndman and Anne B. Koehler in 2006,
offers an alternative to the MAPE method for evaluating the precision of forecasts in a series.
It encloses two variants: one applicable to time series indicating seasonality and the other

suitable for those devoid of seasonality. The term expresses the data's independent scale.

The term ¢; denotes the data’s independent scale.
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Absence of seasonality: & =—T—f By (10)
T or=2lYT=y7-1l

Existence of seasonality: e (11)
7o or=m+1YT=Y7-Ml

The mean absolute standard error is:

MASE = mean(|g]) (12)

This metric offers forecasting accuracy without the limitations observed in other metrics. It is
preferred over the aforementioned methods due to its independence from the data scale,
symmetry in handling negative and positive forecast errors, and alignment with the Diebold-
Mariano (DM) method. The DM method aids in selecting the optimal prediction method and
identifying the most minor measurement error. Specifically, it facilitates a more profound

analysis by assessing the significance of numerical differences.

Theil index

RMSE

U = 1 1
[EEmaoor 2y, ey

(13)

The Theil index is a statistical tool for assessing whether a time series of estimated values
aligns with a time series of observed values. When the resulting numerical value "U" is closer
to 0, it indicates higher prediction accuracy, whereas if it is approaching 1, it signifies greater

prediction inaccuracy.

CHAPTER 5: INTERPRTATIVE METHODOLOGY

Econometric Software: Eviews 9

The econometric analysis in this study utilized the statistical software Eviews 9. Eviews is a
well-known tool for analyzing time series data. Eviews 9 offers a comprehensive array of tools

for both basic statistical analysis and advanced econometric modelling. Moreover, it enables
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the creation of econometric models and facilitates forecasting without complex commands,

requiring only familiarity with the analytical procedures for conducting our analysis.

This chapter is dedicated to enlightening the key concepts crucial for understanding the
modelling and forecasting of stochastic time series. Stochastic processes delineate the
arrangement of observations within a sequence through a model. Specifically, we employ
stochastic models grounded in the attributes of white noise, assuming that the time series under

examination originates from independent residuals.

After that, the Box-Jenkins methodology, renowned for its effectiveness in identifying and
constructing suitable models for modelling and forecasting time series, is outlined below. A
significant aspect of model development involves the assumption of stationarity regarding the

time series under scrutiny.

Unit Root Test

Verifying whether the time series exhibits stationarity is compulsory before investigating
regression or forecasting models in time series analysis. There are two primary methods for
diagnosing stationarity. The first involves subjective judgment, while the second utilizes

statistical tests to detect the presence of a unit root.

Statistically, a time series is deemed stationary when its key descriptors—such as mean,
variance, covariance, and standard deviation—remain constant over time. Should a time
series lack stationarity, regression outcomes become unreliable and nonsensical. Thus, it

becomes essential to explore potential transformations that induce stationarity.

One of the most well-known tests for identifying the presence of a unit root is the Dickey-
Fuller (DF) test, along with its augmented counterpart (ADF). ADF holds greater power as it

can handle more intricate models than DF. Another test based on DF is the Phillips-Perron
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test, which employs a similar estimation approach but adjusts for autocorrelation and

dynamic heteroscedasticity in statistical behaviour.

The ADF test was employed in the paper's econometric analysis. Dickey and Fuller, in their

Monte Carlo experiments, identified a suitable skewed distribution for testing the hypothesis

Ho : p = 1. While the DF test employs the t-student distribution, accepting or rejecting fo is
assessed using MacKinnon's critical values. The MacKinnon method has been integrated into

Eviews 9 software (MacKinnon, 2002).
The following assumptions make the Dickey-Fuller tests for unit root:
H,: the time series is not stationary(epresence of a unit root)
H,:the time series is stationaty (absence of a unit root)

Once the test results are obtained, it is crucial to examine both the t-statistics and p-values. If
the t-statistics value falls below the critical values at the chosen significance levels, and the
significance levels surpass the p-value, we reject the null hypothesis (H,) and accept the
alternative hypothesis (H,) that the time series is stationary. Conversely, if the p-value

exceeds the significance levels, the time series contains a unit root, indicating instability.
Identification

After conducting the stationary test for the time series, the initial step of the Box-Jenkins
methodology ensues. This step involves identifying an integrated autoregressive moving

average model, denoted as ARIMA(p,d,q) (Johnston, 1997).

d = the number of times the raw observations are differenced to allow the time series to

become stationary.

p = the number of lag observations in the model
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g = the order of the moving average

The parameter d typically assumes values of 0, 1, or, in uncommon instances, 2. In this study,
d is set to O as the time series is confirmed to be stationary. Once stationarity is established, it
becomes imperative to investigate trends and seasonality by examining autocorrelation and
partial autocorrelation. Each ARMA(p,q) model is associated with a distinct pair of
autocorrelation function (ACF) and partial autocorrelation function (PACF) that determine
the model's order. Searching for appropriate values of p and g involves a three-step process,
as Anderson (1977) outlined, defining our ARIMA model. Presented below is an analysis of

fundamental stationary processes.
Autoregressive models AR(p)
Ye=U+a1Ye1 @yt F apyep + U (14)

The autoregressive process AR(p) is a statistical model that predicts future values based on
past values. Autoregressive models acknowledge the influence of past values on present ones,
making this statistical method widely used to analyse dynamic phenomena in natural,
economic, and other temporal processes. Within the AR(p) model, the terms exhibit a
consistent variance and a zero mean. The parameter p signifies the order of the autoregressive
process, dictating the duration of the lag, with y,_; ,y;_,,...,y.—, representing the lagged

values of the time series.
Moving Average MA(Q)
The Moving Average processes take the following format:
Ve =+ us — 01U — Oup_5 — - — Ogu_q (15)

Determining the moving average of a commaodity assists in stabilizing the return data by

establishing an ongoing average return. Consequently, this reduces the influence of random,
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short-term fluctuations on the returns within a designated timeframe. Here, the variable y, is
contingent on q lags of u,. The Moving Average Process maintains its stationarity as it's
defined as the finite summation of white noise terms. White noise represents a time series

comprising independent random variables.

Autoregressive Integrated Moving Average Prediction Model ARIMA(p,d,q)

An autoregressive integrated moving average model functions as a regression analysis
technique aimed at assessing the relationship between a dependent variable and other
fluctuating variables. Its objective is to forecast future movements in securities or financial
markets by scrutinizing the variances within the series rather than focusing solely on the

actual values.

Estimation

The second phase of the Box-Jenkins methodology entails the estimation of parameters for
the autoregressive (AR) and moving average (MA) models. The prevailing techniques for
parameter estimation are least squares and maximum likelihood methods, both relying on the
examination of autocorrelation and partial autocorrelation functions within the series. In
evaluating the estimation outcomes, it is crucial to consider the R-squared value, indicating

the proportion of estimated values dependent on the analyzed time series.

Diagnostic verification

Considering the accuracy limitations of the models, it is crucial to emphasise the significance
of utilising diagnostic tests to validate the suitability of specimens for analysis. Following the
identification and estimation processes, an estimated ARMA model is generated, and the next
step is the diagnostic test of the equation obtained from the previous steps. Consequently,

aggregate assessments are administered to scrutinise the coefficients of the model. These
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assessments evaluate the statistical significance and stability of the coefficients, examining

the residuals’ properties and assessing the model's predictive efficacy.
Autocorrelation Test

Johnston and DiNardo (1997) claim that the tests aim to estimate the extent to which the
residuals exhibit some autocorrelation. Autocorrelation refers to a similarity between a
specific time series and a delayed iteration of itself across consecutive periods. It quantifies
the association between a variable's present value and its prior values. Analysts utilize
autocorrelation to assess the extent to which historical returns fluctuations influence
forthcoming returns dynamics, providing investors with insights to anticipate future returns

trends.
The Box-Pierce-Ljung autocorrelation test

The Ljung-Box test is a method for determining the presence of serial autocorrelation up to a
designated lag. This test relies on the squares residuals and aims to prove whether the
residuals are independent and identically distributed, akin to white noise. Fundamentally, it
measures model adequacy: minimal autocorrelation in the residuals suggests a 'lack of

significant fit'.

In the analysis conducted using the statistical software Eviews 9, the diagnostic procedure
incorporates the Ljung-Box test. The Box-Pierce-Ljung autocorrelation test evaluates the

following hypotheses:

Hy: absence of autocorrelation

Hi:existance of autocorrelation
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In the results, we observe the Q-statistic and p-value values at the level of significance we are
interested in. If the p-value is less than the level of significance, the null hypothesis H, is

rejected, and the hypothesis H, is accepted; therefore, the sample shows autocorrelation.

Normality Test

Numerous methods exist to evaluate a distribution's normality, including the Jarque-Bera test,
which is commonly employed to verify normality. This test assesses the conformity of the
data's skewness and kurtosis to those of a normal distribution, which has a skewness of zero

and a kurtosis of three.

Heteroskedasticity Test

According to Johnston and DiNardo (1997), testing for heteroscedasticity becomes desirable
when least squares estimators are no longer efficient. Heteroskedasticity specifies nonconstant
volatility related to the prior period's volatility. This violates the assumptions for linear

regression modelling and can impact the validity of econometric analysis.

The ARCH—LM heteroscedasticity control of the ARCH family has been analyzed to detect

the presence of dynamic heteroscedasticity in the existing analysis.

The ARCH — LM test defines as:

H, = absence of heteroskedasiticy (homoskedastic residuals)

H; = existance of heteroskedasticity
Within the findings, we discern the F-statistic and Obs*R-squared figures. Should the p-value
fall below the predetermined significance level, the null hypothesis H, is rejected, leading to
the acceptance of the alternate hypothesis H, , Which

indicates heteroscedasticity within the sample. Consequently, it necessitates identifying,
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estimating, and diagnosing procedures to ascertain the suitable model within the ARCH family

(Autoregressive Conditional Heteroscedasticity Model).

GARCH (p,q) Model

The Generalized ARCH (p,q) model is of the form:

Ve=pt & (16)
g | I._1~ D(0,02) (17)

Where, 6 = w + ayef-1 + ayefp + -+ agefog + P10ty + Br0f—y + -+ Bpoi, (18)

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) represents a statistical
modelling approach employed in forecasting the volatility of returns concerning financial
assets or commodities. It scrutinizes time series data in which the variance error is suspected
to exhibit serial autocorrelation. This means that the variance of the error term is not constant,
signifying dynamic heteroskedasticity. This term delineates the unpredictable variation in an
error term or variable within a statistical model. A variant of the GARCH model is the

EGARCH (p,q).

EGARCH (p,q) Model

The exponential general autoregressive conditional heteroskedastic (EGARCH) model
presents an alternative variation of the GARCH framework. Introduced by Nelson (1991), the
EGARCH model addresses a limitation in GARCH's treatment of financial time series,
explicitly aiming to accommodate asymmetric effects evident between positive and negative
asset returns. A notable advantage of the EGARCH model lies in its capability to capture the
differential impact of positive and negative changes within the series on volatility, a feature

absent in the traditional GARCH model. Unlike the GARCH model, which illustrates the
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conditional variance solely as a function of the squared values of past innovations, the

EGARCH model allows for considering both positive and negative changes.

T-GARCH (p,q) Model

The threshold GARCH (TGARCH) model is a volatility model frequently employed to
address leverage effects. This model characterizes the conditional variance through a linear
function operating across distinct intervals or sets. TGARCH is predicated on the assumption
of independent and identically distributed (I11D) innovations and examines how negative and

positive returns influence the dynamics of conditional volatility.

APGARCH (p,q) Model

The APARCH or APGARCH(p,q) model is an adaptation of the T-GARCH model,
incorporating asymmetry in return volatility. It demonstrates that volatility tends to escalate
to a greater extent in response to negative returns compared to positive returns of equivalent
magnitude. Similar to the GARCH model, the APARCH model encapsulates stylised facts
observed in time series, such as volatility clustering, where high volatility at time t is more
probable if it was also high at time t—1.

Following the estimation of the GARCH family of models, the subsequent phase involves
model selection for forecasting purposes. Two widely utilized criteria for evaluating models
are the Akaike Information Criteria (AIC) and the Schwarz Information Criteria (SIC). The
selection of the most appropriate model entails a comparison of these criteria, with preference
given to the model exhibiting the most minor indices. Additionally, it is imperative to conduct
checks for dynamic heteroscedasticity. These checks serve to confirm the absence of
autocorrelation and dynamic heteroscedasticity, thereby facilitating accurate forecasts.
Furthermore, the three phases of the Box-Jenkins methodology have been executed, along
with the development of four hybrid models, namely ARMA-GARCH and ARMA-
EGARCH, as well as ARMA-T-GARCH and ARMA-APGARCH models.
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Forecasting

Forecasting entails utilizing historical data as inputs to formulate informed estimations, which
serve as predictive tools for discerning future trends. Following the assessment and selection
of the most suitable model, the prediction of future values for the time series ensues. The
forecasting process was executed by utilizing observations from the in-sample period. The
comprehensive forecasting output provided by Eviews 9.0 includes graphical representations
of returns and variance forecasts and a reliability assessment of the model's predictive
capacity. Notably, key performance indicators such as the mean absolute error (MAE), root
mean squared error (RMSE), mean absolute percentage error (MAPE), and the Theil
inequality coefficient serve as crucial metrics for evaluating forecasting accuracy, The

aforementioned indicators were elaborated in greater detail in the preceding section.

CHAPTER 6: ECONOMETRIC ANALYSIS

6.1 DATAAND DESCRIPTIVE STATISTICS

The analysis includes weekly Brent crude oil prices, retrieved from the Federal Reserve Bank
of St. Louis (FRED). U.S. Energy Information Administration (EIA) calculated weekly prices
from daily data by taking the average of the daily closing prices for a given comodity over
the specified time. On a separate note, the missing values of the sample have been treated
with the "End of Period Aggregation Method". When converting from daily to weekly values,
there might be a missing value due to public holidays; the end-of-period aggregation method
will use the value of the day before and repeat it for the day with the missing value. If both
Thursday and Friday had missing values, the end-of-period aggregation method would use

the value from Wednesday.
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More specifically, the data belong to 29/12/2014 — 31/12/2019 and have been divided into
two sections. The first part belongs to the period 29/12/2014 - 31/12/2018, is called the in-
sample period and serves the estimation process of the model, while the second part belongs
to the period 01/01/2019 - 31/12/2019 is called -the of-sample period and serves to forecast

oil returns. In total, the sample consists of 262 observations.

The data range has been chosen based on the fact that forecasts inherently entail uncertainty,
as unforeseen events may transpire. A recent example is the unforeseen onset of the
coronavirus pandemic, which exerted unprecedented effects on various sectors, notably
leading to a significant decline in Brent crude oil returns. Such events underscore the inherent
limitations of forecasting accuracy. Moreover, the pandemic-induced shock in demand
significantly impacted crude oil markets. In light of this the chosen data sample stops 31
December 2019 as a safeguard to avoid misspecification of the model when we ignore the

presence of this type of data.

The following results have been calculated with the help of the statistical program Eviews

9.0.
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Figure 1: Graph of the weekly Brent Crude Oil spot prices 31/12/2014 - 31/12/2018
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The data used is from 01 January 2015 until 31 December 2018. Looking at the chart above,
we see a wide range of fluctuations in oil prices. Between mid-2014 and early 2016, the

global economy faced one of modern history's most significant oil price declines.

The initial drop in oil prices from mid-2014 to early 2015 was driven by supply factors,
including booming U.S. oil production, receding geopolitical concerns, and shifting OPEC
policies. However, declining demand also played a noteworthy role from 2015 until the first
months of 2016. Rather than raising global growth, the oil price drop was accompanied by a
deceleration in 2015 and 2016. A sharp downshift in oil-exporting economies dragged global

economic activity down (World Oil Market Chronology From 2003, 2023).

According to the Global Economic prospect performed by the World Bank Group, in
December 2015, Brent crude oil fell as low as $36.35 a barrel, the lowest price since summer
2004. OPEC countries met on November 30 and agreed to limit crude oil output for the first
time since 2008. As a result, Brent crude oil went over $50, the highest in a month. Behind a
similar agreement to limit production between Russia and other countries not part of OPEC,
Brent crude oil prices increased. Despite other countries' promises of lower output, evidence
of changes still needed to be seen. As a result, Brent crude oil prices fluctuated around the
same levels until January 2017. Brent crude oil prices rose 40% from June to October 2017 as
oil producers were expected to continue lower production, with an increase of 20% in the
third quarter. The increase would have been more, but Turkey did not act on a thread against

Kurdistan's vote for independence (World Oil Market Chronology From 2003, 2023).

During the last week of 2017, Brent crude oil prices passed $67 for the first time since May
2015 due to pipeline problems in Libya and the North Sea, which led to production cuts by
OPEC and Russia. In January 2018, U.S. production increased, and demand was predicted to

go down when winter was over. During 2018, Brent crude oil prices were also affected by
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threats to supply from Libya and proposed sanctions on countries importing oil from Iran. At
the end of 2018, higher U.S. interest rates, more active U.S. oil rigs, higher U.S. crude
production, and lower expected worldwide demand did not cancel out proposed production

cuts by OPEC nations; therefore, Brent crude oil prices went down 20 per cent
(Global Economic Prospects, January 2018: Broad-Based Upturn, but for How Long?, 2017)

The modelling process requires the calculation of excess returns of Brent crude oil spot

prices. The computation is given below:

return; = (log (price;) — (log (price;—1))) * 100 (29)
Where price,_ is the stock price of the previous period, and price; is the stock price of the
current period. The equation log (price;) — (log (price;_,)) defines the percentage price
change. Thus, return, is the percentage return. The econometric analysis of this thesis is

based on the percentage returns of the weekly Brent crude oil prices.
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Figure 2: Graph of the weekly Brent Crude Oil returns 31/12/2014 - 31/12/2018

Figure 2 shows the graph of the percentage returns of the weekly prices of Brent crude oil for

the period 1 January 2015 to 31 December 2018.
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Mean 0.000973
Median 0.006713
Maximum 7.037997
Minimum -6.538120
Std. Dev. 2.157921
Skewness -0.120534
Kurtosis 3.764995
Jarque-Bera 5.602341
Probability 0.060739
Sum 0.203417
Sum Sq. Dev. 968.5779
Observations 209

Table 1: Descriptive Statistics

Table 1 presents the descriptive statistics of the return time series of the weekly returns of
Brent crude oil. Based on these statistics, the mean and median are close in value, which
suggests the data is roughly symmetric. The skewness is slightly negative (-0.1205),
indicating a slight left skew. The kurtosis is higher than 3 (3.765), indicating slightly heavier
tails compared to a normal distribution. Then, we interpret the value of the standard
deviation. Standard deviation compares each data point to the mean of all data points,
describing whether the data points are nearby or spread out. Outliers have a heavier impact on
standard deviation. Any standard deviation above or equal to 2 can be considered high, which
means that in this analysis, the time series data are spread out. While the skewness and
kurtosis are not far from zero and three, respectively, suggesting some deviation from
normality, it's important to remember that normality is a matter of degree. Depending on your
specific context and requirements, this distribution may be considered approximately normal
for many practical purposes, especially if the deviations are not extreme. However, for

rigorous statistical analysis, it's often advisable to conduct formal normality tests.
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Therefore, to assess whether the series is normally distributed, we can utilize the Jarque-Bera
test, which is a test of the null hypothesis that the data follows a normal distribution based on

skewness and kurtosis. The test statistic Jarque-Bera and its associated p-value are provided:

Jarque-Bera: 5.602341

Probability (p-value): 0.060739

Typically, if the p-value is less than a chosen significance level (e.g., 0.05), we reject the null

hypothesis, indicating that the data significantly deviates from a normal distribution.

In this case, the p-value is approximately 0.0607, which is greater than the typical
significance level of 0.05. Therefore, we fail to reject the null hypothesis at the 0.05
significance level. This suggests that, based on the Jarque-Bera test, there is not strong

evidence to conclude that the series significantly deviates from a normal distribution.

Next follows the Box—Jenkins methodology through which we will develop an ARIMA

model. The method is carried out based on the following steps:

First step: Identification

Before the modelling process begins, the unit root test is executed by performing the
Augmented Dickey-Fuller (ADF) test to determine whether a unit root exists in the time

series of the analysis.

41



Mull Hypothesis: DCOILBRENTEU has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=15)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.629663 0.4660
Test cntical values: 1% level -3.455289

5% level -2.872413

10% level -2572638

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D{DCOILBERENTEU)
Method: Least Squares

Date: 05/14/24 Time: 19:49

Sample (adjusted): 1/11/2015 1/05/2020
Included observations: 261 after adjustments

Vanable Coefficient Std. Error t-Statistic Prob.
DCOILBRENTEU(-1)  -0.022162 0013599 -1.629663 0.1044
[ 1.318580 0.792346 1.664147 0.0973
R-squared 0.010150 Mean dependent var 0.052490
Adjusted R-squared 0.006328 S.D.dependent var 2522973
S E. of regression 2514977  Akake info criterion 46900338
Sum squared resid 1638.204 Schwarz cnterion 4717352
Log likelihood -610.0499 Hannan-Quinn criter. 4701017
F-statistic 2655803 Durbin-Watson stat 1.796343
Prob(F-statistic) 0.104388

Table 2: Augmented Dickey-Fuller Stationarity test performed for Brent crude oil prices

Mull Hypothesis: DCOILBRENTEL LOGRETURN has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=14)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -13.02731 0.0000
Test critical values: 1% level -3.461783

5% level -2 875262

10% level -2 574161

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Yariable: D{DCOILBERENTEU LOGRETURNY)
Method: Least Squares

Date: 02/023/24 Time: 17:35

Sample (adjusted): /122015 1273172018

Included cbservations: 208 after adjustments

Vanable Coefficient Std. Error t-Statistic Prob.

DCOILBRENTEU LOGRETURMN(-1) -0.889710 0.068296 -13.02731 0.0000

C 0.034504 0.146061 0236227 0.8135
R-squarad 0451706 Mean dependent var 0.051382
Adjusted R-squarad 0.449044 5.D. dependent var 2.837860
S.E. of regression 2.106441  Akaike info cnterion 4.337445
Sum squared resid 914 0412 Schwarz criterion 4369537
Log likelihood -449.0943 Hannan-Quinn criter. 4350422
F-statistic 1697107  Durbin-Watson stat 1.956368
Prob(F-statistic) 0.000000

Table 3: Augmented Dickey-Fuller Stationarity test performed for Brent crude oil returns
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In accordance with the Box-Jenkins process, we should focus on testing the stationarity of the
time series we intend to model. We will begin by testing whether the time series of prices is
stationary. Table 2 represents the first attempt at the Augmented Dickey-Fuller Stationarity
test performed for Brent crude oil prices. Based on the results, we identify the existence of
the unit root in the time series of Brent crude oil prices. This non-stationarity is often due to

inflation or other structural breaks.

Consequently, we need to convert the data to fulfil the stationarity criterion. A common
transformation is differencing the prices and generating the returns of the commodity tested.
Therefore, in Table 3, we examine the stationarity of the time series of Brent crude oil
returns. Upon the testing, we determined that the null hypothesis, denoted as H, , which
posits the existence of stagnation, is rejected at the 5% significance level. Specifically, the
probability value (0.0000), being lower than the 0.05 significance level, coupled with the t-
statistic value (-13.02731), falling below the Test Critical Values corresponding to the 1%,
5% and 10% significance levels, leads to the conclusion that the time series can be deemed

stationary at significance levels of 1%, 5%, and 10%.

With the attainment and validation of time series stationarity, we are poised to ascertain the p,
d, q values essential for defining the ARMA model. Initially, leveraging Figure 3, we will
discern the value of p, signifying the autoregressive (AR) process order, by scrutinizing the
autocorrelation function (ACF) values. Subsequently, we will reduce the value of g,
representing the moving average (MA) process order, through examination of the partial

autocorrelation function (PAC) values.
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Date: 0200324 Time: 18:38
Sample: 1220/2014 127312018
Included obsarvations: 209

Autocomelation Partial Comelation AC PAC

Q-Stat Prob

i 0102 0.i08
2 -0.062 -0.074
3 -0.038 -0.023
4 -0.000 0.002
5 -0.001 -D.00G
& 0.032 0.032
T
a
a

10

-0.027 -0.036
0.045 D.057
0.011 -0.003
-0.031 -D.028
11 D.OD5 0.016
12 -0.027 -0.036
13 -0.088 -0.000
14 -0.050 -0.037
15 D.032 0.038
-0.080 -0.083
D.080 O.009
-0.01& -0.040
-0.004 0.014
-0.010 -0.010
1 -0.070 -0.070
D.020 0.052
D.0gE D.062
0.015 0.002
-0.005 -0.005
25 -0.025 -D.034
27 -D.08E -D.0G60
28 -0.005 -0.000
20 -0.029 -D.043
a0 0.012 D.028
31 -0.085 -D.101
32 0.0g9 D117
33 D0.014 -D.0DG
34 0.082 D.OFD
35 -0.072 -0D.079
35 -0.120 -D.0OB1
37 -D.046 -D.024
32 0.035 D.01@
39 -0.07E -0.001
40 D.042 D.0O35

oMo o--oZ----

a

e e s
ey~ o Pt~ " o s
[ s ] [
l'.'l‘-hb-'lﬁ [=Ri=g:- R

24815 0D.115
3.2874 0D.193
3.5086 0.308
3.5086 0463
3.5088 0.808
38182 0.7
3.8818 0.782
44214 0817
44491 087D
46578 0
46625 0
48231 0.
8.9788 0.
7.5417 0O
T.ETE2 0O
a.&050 0O
10.155 0.897
10213 0825
10218 0947
10.241 D054
11382 0.956
11483 0,967
13783 0933
12.837 0.950
13.842 0.954
14001 0873
15.050 0D.0G0
15.057 0.978
15266 0.983
15308 0.088
17.112 D879
19.577 0.958
18,628 0.088
21318 0D.956
22,868 0.943
26516 0.B7E
27066 0.B85
27.384 0.890
28823 0.882
20350 0.893

Matrix 1:Graphical representation of ACF and PAC) of the time series

After conducting an exploratory analysis, during which alternative models were evaluated, it
has been determined that the ARMA (36,0) and ARMA (0,1) models are the most effective.

To substantiate this conclusion, the subsequent step in the Box Jenkins methodology, namely

Estimation, is pursued.

Second step: Estimation

This step will estimate the p parameters of the autoregressive model and the g parameters of

the moving average model. With the help of the EViews 9.0 statistical program, we have

estimated two models and got the following results:
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[Diependent Variable: RETURNS
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 030224 Time: 13:10
Sample: 1/05/2015 12/31/2018
Included observations: 209
Convergence achieved after 4 iterations
Coefficient covariance computed using outer product of gradients
Variable Coefficient Std. Error t-Statistic Prol.
C -0.000478 0169135  -0.002827 0.9977
MA[T) 0.131885 0.075741 1.741261 0.0831
SIGMASQ 4 567421 0.392406 11.63952 0.0000
R-squared 0.014441 Mean dependent var 0.000973
Adjusted R-squared 0.004572 S.D. dependent var 215791
5.E. of regression 2.152658  Akaike info criterion 4.385618
Sum squared resid 054 5909 Schwarz criterion 4 433594
Log likelihood -455.2971 Hannan-Quinn criter. 4.4035015
F-statistic 1.509185 Durbin-VWatson stat 1.9614E62
FProbiF-statistic) 0.223524
Inverted MA Roots =13

Table 4: Estimation Equation MA(1) model

Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 03/02/24 Time: 13:07
Sample: 1/05/2015 12/31/2018
Included observations: 209
Convergence achieved after 6 iterations
Coefficient covariance computed using outer product of gradients
Variable Coefficient Std. Error t-Statistic Prob.
C 0.014599 0132117 0.110497 09121
AR(36) -0.153041 0.075785  -2.019400 0.0447
SIGMASQ 4 530784 0.384455 11.78494 0.0000
R-squared 0022346 Mean dependent var 0.000973
Adjusted R-squared 0012854 S.D.dependent var 2157921
S_E. of regression 2144007  Akaike info criterion 4381563
Sum squared resid 946.9339 Schwarz criterion 4429539
Log likelihood -454 8733 Hannan-Quinn criter. 4400960
F-statistic 2354260 Durbin-Watson stat 1.752281
Prob(F-statistic) 0097514
Inverted AR Roots 95+ 08 95-08i 92+ 251 92-25i
86-.40i B6+ 40i 7B+ 54 78-54i
67-67i 67+ 67i 54-78i 54+ 78I
40-.861 A0+ 861 25+ 92 25-92i
08+ 95i 08-.95i -.08-.95i -.08+.95i
-25+ 92 -.25-92i - 40-.86i1 - 40+ 86i
- 54-78i -4+ 781  -67+671 -67+86T7i
- 78-541 - 78+ 541  -86-40i -.86+ 400
- 92+ 25i -92- 251 - 95+ 080 -95-08i

Table 5: Estimation Equation AR(36) model

The estimation outputs of the MA(1) and AR(36) models are sequentially presented,
revealing that, with the exception of the constant coefficient c, all other parameters exhibit

statistical significance at significance levels of 10% and 5%, respectively, leading to rejection

45



of the null hypothesis. Subsequently, the models are compared utilizing three information
criteria: Akaike, Hannan-Quinn, and Schwartz. Based on the aforementioned results, the
model with the minimal value across these criteria in Tables 4 and 5 is selected. It is noted

that all three criteria consistently advocate for the AR(36) model.

Following the model estimation, the analysis proceeds with the final phase of the Box-

Jenkins methodology.
Third step: Diagnostic verification

In this phase, we assess the appropriateness of the model for our dataset. Specifically, we
conduct a diagnostic check to ascertain the presence of autocorrelation in the residuals and to
evaluate whether they adhere to a white noise process. This evaluation is facilitated through
the application of the Ljung-Box test, which examines the presence of autocorrelation (serial
correlation) across the entire set of autocorrelations in the sample. Here, the null hypothesis
H, posits the absence of autocorrelation, while the alternative hypothesis H; suggests the

presence of autocorrelation.
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Date: 02/11/24 Time: 20:03
Sample: 12/28/2014 12312018
Included observations: 208

Autocorrelation Partial Comrelation AC PAC

Q-5tat

Prob

1 1 -0414 -D414
! -0.042 -D.258
! -0.038 -0.212
1 0.034 0123
! -0.032 -0.124
1 0.061 -0.022
1 -0.085 -0.102
! 0.050 0.043
! o.00z2 -0.018
1 -0.03& -0.062
! 11 0.042 0.002
1 12 0015 0.030
! 12 -0.062 D038
! 14 -0.022 0.002
1 15 0.102 0048
1 16 -0.148 0128
! 17 0,147 0.0389
1 18 -0.072 -0.014
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
U
1
1

Do @ bW

19 0002 0015
20 0.032 D.041
21 -0.08& -0.087
22 0.024 -D.047
23 0.084 -D.004
24 -0.015 0.030
25 -0.007 0.032
26 0015 0034
27 -0.07D -D.047
28 0.056 -0.004
20 -0.044 D088
30 0072 0038

3 -0.150 0134
32 0.154 0.0D@
32 -0.076 -0.007
34 0,122 0.000
35 -DO7e 0050
36 -0.048 -0.020

36201
36.584
36.856
arim
37330
38.138
0733
40.283
40.285
40.565
40965
41012
41014
421032
44732
40.766
54882
55.880
55.808
56.121
57.851
57882
568840
58002
50.004
50,057
60254
61.017
61.480
62.804
88337
74250
75.701
70.520
81.081
81.847

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Matrix 2:Graphical Representation (Correlogram) of ACF and PACF

The purpose at this stage is to decide whether the model we have estimated is finally suitable.
If not, then we need to suggest modifications to the template. The decision on the
appropriateness of the model is made after considering the autocorrelation function of the
residuals, as well as some cross-correlation functions between the white noise process and the
residuals. When autocorrelation is observed in the residuals, a wrong model choice has been
made. However, a correct choice is made when we observe the convergence of the estimates

with the actual values in the population, resulting in the residuals approaching the random

errors of white noise.

With the help of the following Ljung-Box test, we will conclude whether there is

autocorrelation in the estimated model.
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Carrying out the assessment of the following cases:

H, = there is no autocorrelation
H, = there is autocorrelation

In Figure 4, we notice that the residuals of the first differences of the autocorrelations (ACF)
and partial autocorrelations (PACF) time series move at low values and close to zero.
Nevertheless, looking at the Q-Statistic and p-value values, we see that the p-value results are
all zero (p-value < 0.05), so the null hypothesis H, (no autocorrelation) is rejected at the 5%
significance level, and the alternative hypothesis H, is accepted which defines the existence of

autocorrelation in the residuals of the sample.

To summarise the Box-Jenkins process, the model was identified as an AR(36) model,
transforming the time series to stationary. Then, the estimation of the model was carried out,
from which it was shown that the parameter AR(p) is significant and that the estimated values
have a moderate dependence on the time series we are considering. Finally, a diagnostic check
was carried out on the model, which shows that there is autocorrelation between the residuals
and that they do not behave as a white noise process. Consequently, more than this model is

needed as a predictive tool.

Overall, the AR (36) model is unsuitable for forecasting the weekly Brent crude oil returns

returns; therefore, we should continue to build a suitable model for this time series.

Heteroskedasticity Test

The completion of the Box-Jenkins methodology analysis involves the examination of dynamic

heteroskedasticity within the sample residuals.

This method is employed to identify serial autocorrelation of any magnitude and does not

presume the absence of time lags in the dependent variable, as with explanatory variables.
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The ARCH — LM test defines the following hypothesis:

Hy = Lack of Heteroskedasticity (homoskedastic residuals)
H, = Existance of Heteroskedasticity

Via the statistical software employed in this analysis, we interpreted the subsequent findings:

Heteroskedasticity Test: ARCH

F-statistic 0.108745 Prob. F{3,202) 0.8543
Obs"R-sguared 0.335207 Prob. Chi-Square{3) 0.8533
Test Equation:

Dependent Vanable: RESICH2

Method: Least Squares

Date: 030224 Time: 15:03

Sample (adjusted): 1/26/2015 12/31/2018
Included observations: 208 after adjustments

Variable Coefficient  Std. Ermor §-Sitatistic Prob.
C 4457261 0.724373 8.153268  0.000D
RESIC"2(-1) -0.002528 0070863 -D134457  0.8032
RESID"2(-2) D.024202  0.070838 0341651 0.7330
RESID2(-3) -0.022390 0087185 -D437577  0.G622
R-sguared 0.001827 Mean dependent var 4.300898
Adjusted R-squared 0.013200 5.0. dependent var T7.072778
5.E. of regression 7.119306 Akaike info criterion 6.782724
Sum sguared resid 10238.27 Schwarz criterion 6.247343
Log likelihood -84 6208 Hannan-Quinn criter. G.808858
F-statistic 0.108745 Dwurbin-V¥atson stat 1.866408
Prot(F-statistic) 0.854334

Table 6: Dynamic Heteroskedasticity test (ARCH-LM test) of ARMA model (36,0,0) with three (3) lags

The F statistic assesses the collective statistical significance of the temporal lags in the
residuals (omitted variables test). Should the probability value (Prob(obs-R”2)) exceed 0.01
or 0.05, we fail to reject the null hypothesis indicating the absence of autocorrelation.
Regardless of the chosen level of statistical significance, we are unable to reject the null
hypothesis that there is no serial autocorrelation in the residuals up to the second temporal

lag.
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[Heteroskedasticity Test: ARCH

F-statistic 5573880 Prob. F(4,200) 0.0003
Obs*R-squared 20.56084  Prob. Chi-Square(4) 0.0004

Test Equation:

Dependent Variable: RESID"2

Method: Least Squares

Date: 03/02/24 Time: 1526

Sample (adjusted): 2/02/2015 12/31/2018
Included observations: 205 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 3.029446 0.754308 4016193 0.0001
RESID”2(-1) 0.000150 0.067643 0.002224 0.9982
RESID"2(-2) 0.026526 0.067592 0.392441 0.6951
RESID"2(-3) -0.013831 0.068511 -0.201877 0.8402
RESID*2(-4) 0.301185 0.064102 4 698546 0.0000
R-squared 0.100297 Mean dependent var 4. 409630
Adjusted R-squared 0.082303 S.D. dependent var 7.084967
S.E. of regression 6787152  Akaike info criterion 6.692028
Sum squared resid 9213.085 Schwarz criterion 6.773077
Log likelihood -680.9328 Hannan-Quinn criter. 6.724810
F-statistic 5573880 Durbin-Watson stat 1.904701
Prob(F-statistic) 0.0002383

Table 7: Dynamic Heteroskedasticity test (ARCH-LM test) of ARMA model (36,0,0) with four (4) lags

Thus, we revisit the initial hypothesis concerning the absence of ARCH-type dynamic
heteroscedasticity in the residuals up to the i-th temporal lag. We specify the desired number
of time lags, denoted as i. Given that the probability value (Prob(obs-R”2)) in the 4™ lag does
not exceed 0.01 or 0.05, we fail to accept the null hypothesis of no dynamic
heteroscedasticity. Consequently, at the 5% level of statistical significance, we reject the null

hypothesis positing the absence of dynamic heteroscedasticity in the residuals.

The above results lead us to the conclusion that there is an indication of dynamic
heteroscedasticity in the time series, so we should continue the modelling process with a

model of the ARCH (Autopalindromic Bound Heteroscedasticity Model) family.

ARCH-GARCH models capture volatility clustering but not the leverage effect. They assume
that future values of 4,2 depend only on the magnitude and not the sign (positive or negative)
of u,. Stationary conditions and positivity constraints can cause difficulties during the model

estimation process.
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6.2 GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

In the preceding section, the presence of dynamic heteroskedasticity was observed in the time
series under examination, attributed to volatility in the returns of the weekly spot price
returns of Brent crude oil. Subsequently, an endeavour is made to characterize the volatility
of the time series utilizing models from the ARCH (Autoregressive Conditional

Heteroskedasticity) family.

At first, the models will undergo evaluation. Subsequently, the most appropriate one will be
selected based on the AIC (Akaike's Information Criterion) and SIC (Schwarz's Information
Criterion) model selection criteria. Specifically, the estimation will be performed for the
hybrid ARMA-GARCH, ARMA-T-GARCH, and ARMA-APARCH models. Following the
model estimation outcomes analysis, a comparison of the AIC and SIC indices will be
conducted to determine the most suitable model for progression to the subsequent prediction

phase.
6.2.1 ESTIMATION
Estimation of ARMA-GARCH model

We determine the order of the GARCH (p,q). The selection of the ARCH order corresponds
to the value of g, while the GARCH order corresponds to the value of p. Using the EViews

9.0 statistical software, we have estimated two models and obtained the subsequent results:
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[Pependent WVariable: RETURNS

Method: ML ARCH - Mormal distibution (OPG - BHHH ! Marguardt steps)
Date: 05/14/24 Time: 20:21

Sample (adjusted): 1/05/2015 12731/2018

Inciuded observations: 208 after adjustments

Convergence achieved after 27 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

GARCH = C[(3) + C(4)"RESIDJ-1)*2 + C({5)"GARCHI-1)

ariable Coefficient Std. Ermor z-Statistic Prob.
H 0.080383 0.128360 0.898787 0.4847
AR(38) -0.154555 0.088830 -2242214 0.0249

ariance Equation

c 0472305 0.340829 1.385752 0.1858
RESID(-1)*2 0.0E836E5 0.0508550 1404881 0.1800
GARCH(-1) 0504307 0.106117 7578438 0.0000

R-squared 0.020854  Mean dependent var 0.000873
Adjusted R-squarsd 0.016123 5.0 dependent var 2157821
3.E. of regression 214454 Akaike info criterion 4344089
Sum squared resid 8483796 Schwarz criterion 4424059
Log likelihood -448.8583 Hannan-Quinn criter. 4 376427
Durbin-Watson stat 1. 748780
Inverted AR Roats B5-_08i A5+ DEi JB2- 25 02+ 25
A6+ 40i BE-.40i Ta+ 54 .T78-.54i
AB7-87i BT+.ETi A4 TE 54+ T
AD-_86i Al BEi 25-83 25+ 03
08- 95i D8+ 05  -DB+05 - DB- 05
- 25+ 82 -.25-82 -40- B - 40+ B8i
-.54-T8i -84+ 78 - 67-6T7i - 87+ 870
- 78-.54i -78+54i  -56-40i -6+ 40
- 92+ 250 -2- 25 -85+08i -95-08i

Table 8: Parameter Estimation, ARIMA-GARCH (1,1)

Dependent Variable: RETURNS

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 03/0224 Time: 16:11

Sample (adjusted): 1/05/2015 12/31/2018

Included obsarvations: 209 after adjustments

Convergence achieved after 55 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C{4)*RESID{-1)*2 + C(5)*GARCH(-1) + C(B)*GARCH(

-2)
Vanable Coefficient  Std. Ermor  z-Statistic Prob.
C 0.110594  0.135598 0815603 04147
AR(36) -0.187817 0070928 -2648008  0.0081
WVariance Equation
C 0.136474  0.030164 4524337  0.0000
RESID{-1)~2 0.0288858  0.013494  2.140841 0.0323
GARCH(-1) 1.802347 0041715  43.20651 0.0000
GARCH(-2) -0.858900 0032779 -26.20240  0.0000
R-squared 0.020942 Mean dependent var 0.000973
Adjusted R-squared 0.016213 S.D. dependent var 2157921
S.E. of regression 2140357  Akaike info criterion 4.305600
Sum squarad resid 948.2935 Schwarz crterion 4401552
Log likelihood -443.9352 Hannan-Quinn criter. 4344394
Durbin-Watson stat 1.755601
Inverted AR Roots 95+ 08i 95-08i 92- 25i 92+ 25
B7-40i B7+.40i T8+.55i .78-55i
68+ 68i 68-68i 55-T8i BE+T78i
A0-8T A0+.87i 25-92i 25+ 92
08+ .95 08-95i -08-951  -08+.95
-25-92i -25+92i  -40-BTi  -40+ 87
- 55+ 78i -E5-T8i  -68-68i  -68+.68i
- 78+55i -78-55i  -B87-40i  -87+40i
-92+ 25i -92-251 -95-08i  -95+.08i

Table 9: Parameter Estimation, ARIMA-GARCH (1,2)
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Dependent Variable: RETURNS

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 03/02/24 Time: 16:12

Sample (adjusted): 1/05/2015 12/31/2018

Included observations: 209 after adjustments

Failure to improve likelihood (non-zero gradients) after 87 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4y'RESID{-1)*2 + C(B)*GARCH(-1) + C(6y*GARCH(
-2} + C{TVGARCH(-3)

Variable Coefficient Std. Error  z-Statistic Prob.
c 0.154834 0.110820 1.397166 0.1624
AR(36) -0.260555 0066548  -3.76R017 0.0002

Variance Equation

c 0.040817 0.009255 4.410032 0.0000
RESID(-1)"2 0.010634 0.002307 4609513 0.0000
GARCH(-1) 2 609877 0.004302 6066094 0.0000
GARCH(-2) -2.325024 0000954  -2437 267 0.0000
GARCH(-3) 0.696759 0.002768 251.6768 0.0000

R-squared 0.016162 Mean dependent var 0.000973
Adjusted R-squared 0.011410 S.D. dependent var 2157921
S.E. of regrassion 2145575 Akaike info criterion 4.293040
Sum squared resid 9529233 Schwarz criterion 4. 404985
Log likelihood -441 6227  Hannan-Quinn criter. 4.338300
Durbin-Watson stat 1.764940
Inverted AR Roots 96+.08i 96-.08i 93+ 250 93-25i
A7-41i BT+41 79+ 55i 79-55i
68-.68i 68+.68i b5 T79i BB+ 79
A1-87i A1+.871 25+ 93 25-93i
08+.96i 08-_96i -08- 961 -.08+96i
-.26+.93) -25-9%1 -41-8N1 - 41+87
-B5+.T79i -B5- 79  -68+68i -.68+68i
- 79-55i - 79+ 551 -B87-411 -BT7+41i
-93+.25i -93-25i  -96+08i -96-08i

Table 10: Parameter Estimation, ARIMA-GARCH (1,3)
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Dependent Variable: RETURNS
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 03/02/24 Time: 16:13
Sample (adjusted): 1/05/2015 12/31/2018
Included observations: 209 after adjustments
Convergence achieved after 79 iterations
Coefficient covariance computad using outer product of gradients
Presample vanance: backcast (parameter = 0.7)
GARCH = C(3) + C{4)*RESID{-1)%2 + C(5)*GARCH(-1) + C({6)*GARCH(
-2} + C{T*GARCH(-3) + C{B)*GARCH(-4)

Variable Coefficient Std. Error  z-Statistic Prob.
C 0.150496 0.119686 1257417 0.2086
AR(36) -0.168978 0068753  -2.457755 0.0140
Vanance Equation
C 0.383847 0.083300  4.608027 0.0000
RESID(-1)42 0.084168 0.025664 3.279629 0.0010
GARCH(-1) 0.853711 0.040471 21.09441 0.0000
GARCH(-2) -0.207406 0012714  -16.31349 0.0000
GARCH(-3) 1.036707 0.022656 4596248 0.0000
GARCH(-4) -0.852060 0.040258 -21.16475 0.0000
R-squared 0.017955 Mean dependent var 0.000973
Adjusted R-squared 0.012211  S.D. dependent var 2157921
S.E. of regression 2143620 Akaike info criterion 4 267942
Sum squared resid 951.1870 Schwarz crterion 4395878
Log likelihood -437 9999 Hannan-Quinn criter. 4319667
Durbin-Watson stat 1.746721
Inverted AR Roots 95+ 08i 95-08i 92+ 25i 92- 25
.86-40 JBE+.40i T8+ 55j .78-.55i
B7-67i BT+67i b5 T8I BB+ 78
A0-86i AQ+.86i 25+ .92 25-92i
08+.95i 08-95i -08-95i  -.08+95
-.26+.921 -25-921  -40-861  -40+.861
- R5-T8i -B5+ 7B -BT7T+67i -BT7+6Ti
- 78-55i -T8+ 5651 -86-40i  -86+.40i
-.92+ 25) -92-251  -95+08i -.95-.08i

Table 11: Parameter Estimation, ARIMA-GARCH (1,4)
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Dependent Varable: RETURMS

Method: ML ARCH - Normal distribution (BFGS / Mamuardt steps)

Pate: 03/02/24  Time: 16:12

Sample (adjusted): 1/05/2015 127312018

Included observations: 208 after adjustments

Convergence achieved after 87 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7}

GARCH = C(3) + C(4)"RESID{-1}*2 + C{S"RESID{-2¥2 + C(E)
"GARCHI-1) + C(T)"GARCHI-2)

‘Variable Coefficient Sitd. Ermor z-Statistic Prob.
C 0.058087 0.126028 0445035 0.85683
ARI38) -0.134193 0.057702 -2.325614 0.0200

Variance Eguation

c 0.387833 0137228 2.828228 0.0047
RESID{-1}*2 -0.072478 0035283  -1.997058 0.0458
RESID-2}*2 0.1565403 0.053880 3080681 0.0021
GARCH(-1) 1487848 0128807 11.62704 0.0000
GARCH(-2) 0675620 0.120540  -5.804084 0.0000

R-squared 0.020842 Mean dependent var 0.000973
Adjusted R-squared 0.015811 5.D. dependent var 2157921
5S.E. of regression 2140885 Akaike info criterion 4312824
Sum sguared resid 048 58458 Schwarz criterion 4.4 245688
Log likelihood 443 6692 Hannam-Cuinn criter. 4 157884
Dwrbin-W atson stat 1. 747260
Inverted AR Roots B4+.08i B4-05 JB1-240 B+ 240
86— 40i JBE+ 401 TT+.540 TT7-541
BT+.6Ti B7-87i B4-TTI B4+ 7Ti
AD-_86i A0+ 86 24-81 24+ 810
DE+.04 0&8-84 -.08- 54 - 0B+ D4i
-.24-91i -24+0811  -40-86i - 40+ .88i
-54-TT B4+ 77 -BT7-8T7i - BT+ 6Ti
=TT+ 540 - 77-54i -.B6-40i - 88+ 40§
- 21+ 240 -81-24i -84 08i - 84+ D8i

Table 12: Parameter Estimation, ARMA-GARCH (2,2)

The estimation outputs of the ARMA-GARCH(1,1), ARMA-GARCH(1,2), ARMA-
GARCH(1,3), ARMA-GARCH(1,4),and ARMA-GARCH(2,2), models are sequentially
presented, revealing that, with the exception of the ARMA-GARCH (1,1) and the constant
coefficient c, all other parameters exhibit statistical significance at significance levels of 10%
and 5%, respectively, leading to rejection of the null hypothesis. Subsequently, the models are
compared utilizing three information criteria: Akaike, Hannan-Quinn, and Schwartz. Based
on the aforementioned results, the model with the minimal value across these criteria in
Tables 8 -12 is selected. It is noted that all three criteria consistently advocate for the ARMA-

GARCH(1,4) model.
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6.2.2 RESIDUAL DIAGNOSTICS/ARCH LM TEST

Heteroskedasticity Test: ARCH

F-statistic 1425853 Prob. F{4,200) 02267
Obs*R-squared 5.683910 Prob. Chi-Square({4) 0.2240
Test Equation:

Dependent Variable: WGT_RESID”2
Method: Least Squares

Date: 030224 Time: 16:21

Sample {adjusted): 2/02/2015 12/31/2018
Included observations: 205 after adjustments

‘Variable Coefficient Std. Error t-Statistic Prot.

C 1.159148 0.132828 6.340112 00000
WGT_RESID™2(-1) -0.105910 0.070478  -1.502729 0.1345
WGT_RESID™2{-2) -0.050793 0070520 -0.720270 04722
WGT_RESID*2(-3) -0.083328 0070925 1174870 02414
WGT_RESID*2{-4) 00806491 0.070617 1.142659 02545

R-squared 0.027726 Mean dependent var 1.001729
Adjusted R-squared 0.008281 5.D. dependent var 1.348303
5.E. of regression 1.342709 Akaike info criterion 3451343
Sum squared resid 3605735 Schwarz criterion 3.532392
Log likelinood -348.7627 Hannan-Quinn criter. 3.484126
F-statistic 1.425853 Durbin-Watson stat 1.966556
Prob{F-statistic) 0226723

Table 13: Dynamic Heteroskedasticity test (ARCH-LM test) of ARMA-GARCH (1,4) model
The null hypothesis of homoscedasticity of the residuals cannot be rejected at the 5% level of
statistical significance.

6.3 THRESHOLD GARCH:

6.3.1 ESTIMATION

A Threshold GARCH model comprises a threshold component that helps compute
asymmetries regarding negative and positive shocks. This means that the models treat the

good news and bad news asymmetrically.

After conducting an exploratory analysis, during which alternative models were evaluated, it

has been determined that the ARMA -T- GARCH (1,1) model is the most effective.
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Date: 030224 Time: 1747

+ ClB)"GARCH(-1)

Dependent Vanable: RETURNS
Method: ML ARCH - Normal distribution (BFGS / Marguardt steps)

Sample (adjusted): /062015 12731/2018
Included observations: 208 after adjustments
Convergence achieved after 46 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + CI4)"RESID({-1}*2 + C{5/"RESIDI- 12 RESID{-1)=0}

Variable Coefficient Std. Ermor z-Gitatistic Frob.
c 0.112881 0.108630 1.084185 02738
AR{36) -0. 148777 0047562 -3.148705 o.oo18
Variance Equation
c 0.272186 0.073150 3.818380 0.0001
RESID{-1}*2 -0. 184331 0.040483 4800268 0.0000
RESID{(-1P2*(RESID{-1=0} 0.374087 0.083548 4477619 0.0000
GARCH(-1) 0.82T8GE8 0.032884 25321926 Q.00oD
R-squared 0.019180 Mean dependent var 0.0004973
Adjusted R-squared 0.014452 5.D. dependent var 2157821
5.E. of regression 2142271 Akaike info criterion 4. 186505
Sum sguared resid 840 8804  Schwarz criterion 4282457
Log likelihood -431.4897 Hanman-Quinn criter. 4 2252090
Durbin-Watson stat 1. 748210
Inverted AR Roots JB5+ DiBi JB5- 08 JB2-.25i B2+ 25
.86 40i JBE+.40i T8+.54i T8-.54i
JBT+.BTi B7-87i B4-T8i B4+ T8I
A0-_88i A0+ 86i 2582 25+.82
D8+ 950 JD8-.85i -.0B-_B5i - 0B+ 850
-.25-93 -25+8%  -40-_856i - 40+ BBi
-54-78i -5+ T - BT-6Ti - BT+ 670
- 78+ 540 - 7B-54i - BE+40i  -.86-40i
- B2+ 25 - 92— 25 - B5- 08i - 05+ 108i

Table 14:Parameter Estimation, ARMA-T-GARCH (1,1)

Table 14 displays the outcomes of the mean equation in the upper section, the variance
equation in the middle segment, and the principal statistical findings of the regression
utilizing the residuals from the mean equation. Upon examination of the analysis of variance
results, it is observed that the coefficient C(5) holds a positive value. Furthermore, the p-
value associated with the parameter coefficient is zero, indicating the significance of the
coefficient at a 5% significance level and its positive correlation. These findings suggest the
presence of a leverage effect, wherein negative returns from past prices exert a more

pronounced influence on the future volatility of the time series under investigation compared

to positive returns from past prices.
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6.3.2 RESIDUAL DIAGNOSTICS/ARCH LM TEST

Heteroskedasticity Test: ARCH

F-statistic 0.051645 Prob. F{1,206) 0.8205
Obs*R-squarad 0.052133  Prob. Chi-Square(1) 0.8194

Test Equation:

Dependent Variable: WGT_RESID2
Method: Least Squares

Date: 03/02/24 Time: 17:49

Sample (adjusted): 1/12/2015 12/31/2018
Included observations: 208 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.976306  0.108089  9.032450  0.0000
WGT_RESID"2(-1)  -0.015740  0.069260 -0.227254  0.8205

R-squared 0.000251 Mean dependent var 0.961053
Adjusted R-squared -0.004603 S.D. dependent var 1.219097
S.E. of regrassion 1.221899  Akaike info criterion 3.248259
Sum squared resid 307.5658 Schwarz cnterion 3.280351
Log likelihood -335.8189 Hannan-Quinn criter. 3.261235
F-statistic 0.051645 Durbin-Watson stat 1.985025
Prob(F-statistic) 0.820451

Table 15: Dynamic Heteroskedasticity test (ARCH-LM test) for ARIMA-
TGARCH (1,1) model

The null hypothesis of homoscedasticity of the residuals cannot be rejected at the 5% level of

statistical significance.

6.4 ASYMMETRIC POWER GARCH:

6.4.1 ESTIMATION

The Asymmetric Power GARCH (APGARCH) model is a type of Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) model that allows for asymmetric
volatility responses to shocks in financial time series data. In traditional GARCH models,
volatility responds symmetrically to positive and negative shocks. However, in APGARCH
models, the response of volatility to negative shocks can be different from the response to
positive shocks, capturing asymmetry in volatility dynamics. They allow for a more flexible

and realistic representation of volatility dynamics compared to symmetric GARCH models.
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Dependent Variable: RETURNS

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Pate: 03/02/24 Time: 18:36

Sample (adjusted): 1/05/2015 12/31/2018

Included observations: 209 after adjustments

Failure to improve likelihood (non-zero gradients) after 86 iterations

Coefficient covanance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

@SART(GARCH)MC(9) = C(3) + C(4)(ABS{RESID({-1)) - C{5Y'RESID({
-IWAC(9) + CE)" @SART(GARCH(-1))C(9) + C(T)
*@SART(GARCH(-2))~C(9) + C(8)"@SQART(GARCH(-3))~C(9)

Variable Coefficient Std. Emmor  z-Statistic Prob.
C 0.026822 0.118676 0.226008 0.86212
AR(36) -0.164673 0045185 -3.644399 0.0003

Variance Equation

C(3) 0.101598 0.047451 2141111 0.0323
C(4) 0.059370 0.030894 1.921767 0.0546
C(5) 0.994278 0.125911 7.896684 0.0000
C(6) 0.710095 0.118923 5971060 0.0000
C(T) 0.909564 0.045678 19.91265 0.0000
c(8) -0.724153 0.119248 -6.072670 0.0000
C(9) 0.622300 0.405655 1.534059 0.1250
R-squared 0.022842 Mean dependent var 0.000973
Adjusted R-squared 0.018122 S.D. dependent var 2157921
S.E. of regression 2138279  Akaike info criterion 4249932
Sum squared resid 946.4534  Schwarz crterion 4.393860
Log likelihood -435.1179  Hannan-Quinn criter. 4308123
Durbin-Watson stat 1.754806
Inverted AR Roots 95+ 08i 95-08i 92+ 25i 92- 25
.86-40 86+ 40 T8+ .55i .78-.55i
BT7-6Ti BT+.6Ti RE-T8i b5+ 78i
A0-86i AD+.86i 25+ .92 25-92i
08+.95i 08-95i -08+951  -.08-95i
-.26+.921 -25-921  -40-861  -40+.861
- h5-T8i -B5+ 7B -BT+67i -BT7+6TI
-.78-55i -T8+ 5651 -86-40i  -86+.40i
-92+ 251 -92-251  -95+08i -.95-.08i

Table 16: Parameter Estimation, ARIMA-APGARCH (1,1)

Table 17 displays the outcomes of the mean equation in the upper section, the variance
equation in the middle segment, and the principal statistical findings of the regression
utilizing the residuals from the mean equation. Upon examination of the analysis of variance
results, it is observed that the coefficient C(6) holds a positive value. Furthermore, the p-
value associated with the parameter coefficient is zero, indicating the significance of the
coefficient at a 5% significance level and its positive correlation. These findings suggest the
presence of a leverage effect, wherein negative returns from past prices exert a more

pronounced influence on the future volatility of the time series under investigation compared

to positive returns from past prices.
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6.4.2 RESIDUAL DIAGNOSTICS/ARCH LM TEST

Heteroskedasticity Test: ARCH

F-statistic 1.362914  Prob. F{4,200) 02482
Obs*R-squared 5439673 Prob. Chi-Square(4) 02451

Test Equation:

Dependent Varable: WGT_RESID*2
Method: Least Squares

Date: 0302724 Time: 18:43

Sample {adjusted): 2/02/2015 12/31/2018
Included observations: 205 after adjustments

Variable Coefficient Std. Error t-Statistic Prol.

C 1.243304 0184772 6.728857 00000
WGT_RESID*2{-1) -0.1035895 0.070540  -1.472852 01424
WGT_RESID*2(-2) -0.092314 0.070610  -1.307373 01926
WGT_RESID™Z(-3) -0.084174 0.070%62  -1.192918 0.2343
WGT_RESID®Z{-4) 0047372 0.070288 0.673972 05011

R-squared 0.026535 Mean dependent var 1.010374
Adjusted R-squared 0.007068 S.D. dependent var 1.307510
5.E. of regression 1.302882 Akaike info criterion 3391123
Sum squared resid 3395005 Schwarz criterion 3472172
Log likelihood -342.5901 Hannan-Quinn criter. 3.423905
F-statistic 1.362914  Durbin-Watson stat 1931183
Prob{F-astatistic) 0248167

Table 17: Dynamic Heteroskedasticity test (ARCH-LM test), ARIMA-APGARCH (1,3)
model

The null hypothesis of homoscedasticity of the residuals cannot be rejected at the 5% level of
statistical significance.

6.5 MODEL SELECTION

After assessing the above models and analysing their results, the most appropriate model will
be selected by comparing the AIC and SIC criteria indices. The most suitable model will be

the one with the lowest indicators.

Criteria GARCH (1,4) T-GARCH (1,1) APGARCH (1,3)
AIC 4,2679 4.1865 4.2499
siC 4.3958 4.2824 4.3938

Table 18 :Indices of Criteria AIC and SIC per GARCH model

Upon examination of the information criteria, we ascertain that the ARMA-T-ARCH (1,1)

model is the most suitable choice, as it exhibits the lowest AIC and SIC criteria.
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Consequently, the ARMA-T-ARCH (1,1) model will be employed to forecast the values of

the time series under scrutiny, subject to preliminary diagnostic checks.

Upon selecting the model, a diagnostic assessment becomes imperative to validate its
appropriateness. This procedure involves two sequential steps. The first step involves testing
for autocorrelation in the residuals of the examined time series, followed by a subsequent test
for dynamic heteroscedasticity. The diagnostic check aims to confirm the absence of the
aforementioned characteristics, enabling the progression to the prediction of the returns of the
weekly returns of Brent crude oil. Below, the assessment for autocorrelation is conducted by
visually inspecting the standardized squared residuals using the statistical software EViews

9.0.

Date: 03/02/24 Time: 19:03

Sample: 12/29/2014 12/31/2018

Included observations: 209

Q-statistic probabiliies adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC PAC Q-5tat Prob*

I 0.035 0.035 02549

0.025 0.024 0.3889 0.533
D.025 0.02F7 0.5818 0.735
0.010 0.008 0.5833 0.900
0.005 0.003 0.58%2 0.964
0.023 0.021 0.7030 0.833
-0.016 -0.018 0.7594 0993
0.015 0.018 0.8285 0.997
-0.034 -0.035 1.0766 0998
10 -0.081 -0.079 2.5280 0.980
11 0.026 0.033 2.6830 0.988
12 0.025 -0.022 28235 0.993
13 -0.074 -0.069 4.06805 0.982
14 -0.016 -0.011 41173 0.530
15 0.019 0.027 4.2024 0594
16 0,108 -0.105 6.8733 0.961
17 0121 0130 10.231 0.833
18 -0.066 -0.071 11.264 0.843
19 0.087 0.092 13.000 0.792
20 0047 -0.066 13.513 0.811
21 -0.099 -0.093 15832 0.727
22 0005 -0.004 15846 0.778
23 0.038 0.025 16.179 0.807
24 0.005 0.024 16.193 0.847

D=l ok =

e'+

*Probabilities may not be valid for this equation specification.

Matrix 3: Correlogram of standardized residuals squared, ARIMA-T-
GARCH (1,1)
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In Matrix 3, we observe the graphical representation of the autocorrelations (ACF) and the
partial autocorrelations (PACF) of the residuals, whose values approach zero. Also, observing
the Q-Statistic and p-value values, we see that the outcomes of the p-value values are more
significant than the 5% significance level; therefore, the null hypothesis Ho is accepted,
which means that there is no evidence of autocorrelation in the time series examination at the

5% significance level.

Subsequently, the examination proceeds with the test for dynamic heteroskedasticity. Upon
scrutinizing Table 19, we discern the values of the F-Statistic and Obs*R-squared alongside

their respective probabilities at the 5% significance level.

Heteroskedasticity Test: ARCH

F-statistic 0.051645 Prob. F{1,206) 0.8205
Obs*R-squared 0.052132 Prob. Chi-Square(1) 0.5194
Test Equation:

Dependent Variable: WGT_RESID”2
Method: Least Squares

Date: 030224 Time: 17:49

Sample (adjusted): 141242015 12/31/2018
Included observations: 208 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 0976306 0.1080549 9.032450 0.0000
WGT_RESID™2(-1) -0.015740 0.069260 -0.227254 0.8205
R-squared 0.000251 Mean dependent var 0.961053
Adjusted R-squared -0.004603 5.D. dependent var 1.2190587
S.E. of regression 1.221899  Akaike info eriterion 3.248259
Sum squared resid 307 5658 Schwarz criterion 3280351
Log likelihood -335.8189 Hannan-Ouinn criter. 3.261235
F-statistic 0.051645 Durbin-Watson stat 1.985025
Prob( F-statistic) 0.520451

Table 19: Dynamic Heteroskedasticity test (ARCH-LM test), ARIMA-TGARCH (1,1)
model

Notably, the computed p-values surpass the predetermined significance threshold, leading to

the acceptance of the null hypothesis (Ho).
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If the residuals in a time series of Brent Crude oil returns are homoskedastic, it suggests that
the variance of the residuals is constant over time. In other words, there is no systematic

pattern of variability in the residuals as the time series progresses.

Homoskedasticity in the residuals is a desirable property in many statistical models, including
regression models and time series models, because it implies that the model's errors have a
consistent level of variability and do not exhibit patterns of increasing or decreasing variance

over time.

In the context of financial time series like Brent Crude oil returns, homoskedasticity in the
residuals indicates that there is no evidence of changing volatility or clustering of volatility in
the data. This can make the modeling and forecasting process more straightforward and

reliable, as assumptions about the constant variance of the residuals are met.

This outcome suggests the absence of dynamic heteroscedasticity within the scrutinized time
series at the 5% significance level. With the diagnostic test concluded, we deduce that the
ARMA-T-GARCH (1,1) model remains suitable for progression to the forecasting stage,
given the absence of autocorrelation and dynamic heteroscedasticity within the time series

data.

6.7 FORECASTING — FORECASTING EVALUATION

In this section, we will conduct the forecasting for the returns of weekly Brent crude during
the out-of-sample period (01/01/2019 — 31/12/2019) utilizing the ARMA-T-GARCH model

(1,1) with the assistance of the statistical software Eviews 9.0.
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Figure 3:Prediction of percentage returns from 01/01/2019 -
31/12/2019
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Figure 4: Prediction of variance (forecast period 01/01/2019
-31/12/2019)

Figure 3 delineates the comprehensive outcomes of the prediction procedure. Initially, the
forecast of the percentage returns graph is presented, where the blue line depicts the forecasts.
In contrast, the red lines delineate the forecast values and the associated error margin. It is
observed that the output values spanning the period from 01/01/2019 to 12/31/2019 fluctuate
within the range of -0.5 to 0.5. Subsequently, the volatility forecast chart (Figure 4) is
displayed, wherein the blue line illustrates the forecasted volatility across the considered
timeframe. Notably, a discernible downward trend in the variance value is apparent,

commencing from value 14 and concluding at value 4.
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Preliminary information analysis

Preliminary information analysis involves examining the data collected using graphs and
statistical indicators like the mean and dispersion. These techniques assess the models' ability
to forecast future return volatility, observe patterns, and identify outliers. This process is

crucial as it informs the subsequent stage of model selection.

The current forecast evaluation comprises the following indicators: Root Mean Square Error,

Mean Absolute Error, Mean Absolute Percentage Error (MAPE), and Theil’s inequality index.

Tables 20 - 22 represent the forecast evaluation values for the GARCH models created in this

analysis.

Real Forecast: Percentage Returns of the weekly Brent Crude Oil Prices

Forecast Sample: 01 January 2019 - 31 December 2019

Hopatypiosg: 52

Indicator  Root Mean | Mean Theil Bias Varianc. Covariance

Mean Absolute | Absolute | Inequality | Proportion | Proportion | Proportion

Squared | Error % Error = Coef.
Error
Total 1.6240 1.2527 98.0909 0.8483  0.0233 0.6275 0.3490

Table 20: Assessing the reliability of the forecasting the ARMA-GARCH (1,4) model
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Real Forcast: Percentage Returns of the weekly Brent Crude Oil Prices

Forecast Sample: 01 January 2019 - 31 December 2019

HMapatnpioeg: 52

Indicator | Root Mean Mean Theil Bias Varianc. Covarianc.
Mean Absolute | Absolute | Inequality = Proportion | Proportion | Proportion
Squared | Error % Error Coef.
Error

Total 15995 1.2214  105.5216 0.8372 0.0024 0.7103 0.2872

Table 21:Assessing the reliability of the forecasting the ARMA-T- GARCH (1,1) model

Real Forcast: Percentage Returns of the weekly Brent Crude Oil Prices

Forecast Sample: 01 January 2019 - 31 December 2019

Hopatypiosg: 52

Indicator Root | Mean Mean Theil Bias Varianc. Covarianc.
Mean Absolute | Absolute | Inequality = Proportion = Proportion | Proportion
Squared ‘ Error % Error | Coef.
Error |

Total 1.6180 1.2445 96.8420 0.8495 0.0180 0.6443 0.3375

Table 22: Assessing the reliability of the forecasting the ARMA-APGARCH (1,3) model

RMS measures the standard deviation of the residuals. Residuals are prediction errors

measuring the distance between the data points from the regression line, influenced by

outliers. Therefore, RMSE is a representation of how spread out these residuals are.

Comparing the RMSE of all three models, we can observe that the value of the specific index
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is relatively low, which indicates the reliability of the model's predictive ability—the lower
our index, the better. The model with the lowest residual spread around the line of best fit is

ARMA - T-GARCH.

The MAE index helps determine forecast accuracy. In particular, the index is the average of
errors in absolute value. This indicator shows the magnitude of errors without considering
whether they are overestimations or underestimations. The smaller the MAE, the better the
model's predictions align with the data. An MAE of 0 would mean a perfect prediction, but in
most cases, achieving such perfection is unlikely, and thus, lower values are better. Unlike
other metrics, MAE is less sensitive to the data's extreme values (outliers). In this analysis, all
models indicate that the mean absolute error is near one (1), which is also low and indicates

the accuracy of the prediction results.

The subsequent metric under consideration is the Mean Absolute Percentage Error (MAPE)
index. MAPE is the average absolute percentage error equal to 98.0909, 105.5216 and
96.8420 (refer to the Tables 20-22 respectively) confirming the forecasts' reliability based on

the time series model where it was followed.

Finally, we will observe the Theil inequality coefficient, which always lies between 0 and

1. When the Theil Inequality Coefficient is close to 1, it indicates a high level of inequality
within the dataset. The Theil coefficient is a measure used to assess inequality within a
distribution. It takes values from 0 to 1. Therefore, a value close to 1 suggests a significant
disparity among the values in the dataset, with some values dominating others, resulting in a
highly unequal distribution. The Theil index breaks up into three ratios of inequality, such
that bias + variance + covariance = 1. Whatever the value of the Theil index, we prefer the
model with a bias indicator close to 0. However, if the variance is large, the actual series has

fluctuated broadly, whereas the forecast has not. This proportion measures unsystematic
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error. The outcomes show that the relative differences among forecasting evaluation criteria
are minor. Thus, the ARMA - T- GARCH maodel is chosen as the most preferred among all
the other models to study the volatility behaviour and the corresponding forecasting of

returns.

Upon concluding the forecasting procedure for the weekly returns of Brent crude oil, the

ARMA-T-GRACH (1,1) model demonstrated reliability in its predictive capacity.

CHAPTER 7: CONCLUSION

This analysis involved applying econometric standards to determine the most suitable
forecasting model. Upon achieving this thesis's objective, a methodical approach was
employed to synthesize the econometric models' results, conclusions, and analyses.
Beginning with the initial phase of the Box Jenkins methodology, namely identification, the
stationarity of the time series was verified through the Augmented Dickey-Fuller (ADF) test.
Subsequently, the diagnostic test was conducted as the third stage of the Box Jenkins
methodology to evaluate the autoregressive models. It was determined that the ARMA model
(36,0) exhibited superior adaptability compared to the alternative ARMA model.

Two conditional generalized constrained dynamic heteroscedasticity models were then
estimated where, again, using appropriate diagnostic tests, we concluded that the most
appropriate model for forecasting Brent Crude oil returns is ARMA-T-GARCH(1,1) to which
we have fitted the autoregressive ARMA model (36,0). T-GARCH consider the tendency of
volatility clustered in time, meaning that periods of high volatility are often followed by
additional periods of high volatility. This is a common phenomenon observed in financial
time series data. T-GARCH can capture the asymmetric response of volatility to positive and

negative shocks, known as leverage effects. This feature is essential for accurately modelling
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the behaviour of financial assets, where adverse shocks often result in higher volatility
compared to positive shocks.

Therefore, forecasting was conducted for the period spanning from 01 January 2019 to 31
December 2019. Moreover, the forecast outcomes were deemed notably satisfactory.
Subsequently, metrics were applied to assess the reliability of the model predictions, utilizing
the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Theil indices. Considering the 52 observations within our
sample, the RMSE index exhibited a relatively low value, indicative of the optimal alignment
of our data. Furthermore, the MAE index, at 1.2214, reflected a negligible disparity between
the forecasted and actual returns, affirming the precision of the prediction results. Notably,
the MAE index serves as an indicator of predictive accuracy. However, the Theil Inequality
Coefficient is close to 1. This means there is a significant disparity among the values in the
dataset, with some values dominating others, resulting in a highly unequal distribution.
Referring to Figure 1, where we identified a wide range of fluctuations and spikes in Brent
crude oil prices, it is highlighted that outliers could lead to a misspecification of the model
when we ignore the presence of this type of data. Despite that, the model's parameters
governing volatility dynamics are biased when we do not consider outliers, regardless of the
trading environment (calm or noisy periods).

As per the literature reviewed in chapter three, forecasting models may be of two types:
symmetric models, including ARCH and GARCH, and asymmetric models, comprised of
EGARCH, T-GARCH, and APGARCH. The difference between these two models is that the
asymmetric models capture leverage effects in the time series.

Upon comparing the outcomes of our analysis with the existing literature, a notable
consensus emerges. Most studies, in line with our findings, assert that asymmetric GARCH

models are well-suited for forecasting returns. This aligns with the study of Ng’ang’a, F. W.,
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& Oleche, M. (2017), which outlines that the IGARCH model is the most suitable model out
of the five asymmetric models of the GARCH family. In addition, Kang and Yoon (2009)
conclude that the CGARCH and FIGARCH models are suitable for forecasting crude oil
price volatility. Dritsaki (2018) found that the hybrid ARIMA-GARCH models provide
optimal forecasting results. Thus, the combination of ARIMA and GARCH family models
provides biased results on handling the volatility of oil returns. This makes hybrid models the
most suitable for analyzing and forecasting time series of commodities.

Having conducted the aforementioned analysis utilizing the statistical software Eviews 9.0, it
becomes evident that this statistical tool is appropriate for modelling and forecasting time
series data.

This thesis delineates the methodology employed in modelling time series and elucidates the
process of forecasting future commodity returns. Mitigating investment risks is imperative for
businesses to attain profitability. Thus, employing predictive models can substantially
mitigate risks and enhance performance. However, it is essential to acknowledge that
forecasts inherently entail uncertainty, as unforeseen events may transpire.

A recent example is the unforeseen onset of the coronavirus pandemic, which exerted
unprecedented effects on various sectors, notably leading to a significant decline in Brent
crude oil returns. Such events underscore the inherent limitations of forecasting accuracy.

Moreover, the pandemic-induced shock in demand significantly impacted crude oil markets.

7.1 SUGGESTIONS FOR FUTURE RESEARCH

This paper focuses its analysis on searching for the most suitable model to estimate and forecast
the volatility and return values of the weekly spot prices of Brent crude oil. Future research
could extend the analysis of this paper and make predictions by applying all the models

developed here to compare and evaluate their results.
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Another suggestion for future research is to compare the forecast results of the weekly returns
of WTI crude oil with the BRENT crude oil counterparts since these two types of crude oil are
used as benchmarks in the oil industry. It would be interesting to analyze the results of this

comparison.

Finally, a suggestion for future research is to compare the forecast results between weekly
returns of Brent-type crude oil and future weekly returns of the same type of oil. We know that
futures price trends in the stock market play an important role in investors' expectations of

future oil prices.
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