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ABSTRACT 

This dissertation was produced as a component of the "Monetary and Finance Economics" 

postgraduate program at the University of Cyprus. Its primary objective is to examine the 

time series data of weekly returns on crude oil prices to forecast their future fluctuations. The 

study proposes a methodology for predicting oil returns movements utilizing the Box-Jenkins 

approach, a widely recognized method in time series analysis. The Box-Jenkins methodology 

involves the identification, estimation, and diagnostic checking of a suitable autoregressive 

integrated moving average model for the time series data. 

In addition to the theoretical framework, the study will also include empirical validation of 

the forecasting model using historical crude oil price data. A theoretical overview is 

presented, elucidating the crude oil concept and its significance within the global market and 

financial domain. Subsequent chapters delve into empirical analysis, employing suitable 

methods to effectively model and forecast crude oil returns. Specifically, autoregressive 

moving average (ARMA) models and hybrid models within the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) family are constructed utilizing the statistical 

software EViews 9. By comparing the forecasted values with actual returns movements, the 

model's performance will be evaluated, thereby contributing to the practical applicability of 

the Box-Jenkins methodology in the context of crude oil returns forecasting. By shedding 

light on the predictability of oil returns and the factors driving their movements, this study 

aims to provide valuable insights that can aid in risk management and strategic planning in 

the energy and financial sectors. 

 

Keywords: Brent crude oil, prices, returns, time-series, Box-Jenkins, Eviews 9, hybrid 

models 
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CHAPTER 1: INTRODUCTION 

1.1 PURPOSE 

Crude oil, a global energy powerhouse, wields a profound influence over the economic 

landscape, drawing the attention of businesses, investors, and governments. In this ever-

shifting environment, companies in the electricity market rely heavily on returns forecasting 

techniques to navigate market volatility. These forecasts, which are not just crucial but often 

the lifeblood of commodity purchases and portfolio management, play a pivotal role in risk 

mitigation and formulation of energy strategy. However, the art of returns forecasting is a 

labyrinth, intricately woven with a myriad of factors such as weather conditions, business 

cycles, and international trade dynamics, all vying for attention. 

This paper aims to employ a range of econometric models drawn from extant literature to 

identify the most suitable model for forecasting weekly returns of Brent crude oil. Following 

the compilation of data about weekly returns on Brent crude oil prices, this time series dataset 

was utilised to construct an Autoregressive Moving Average (ARMA) model using the Box-

Jenkins methodology alongside four hybrid models within the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) family. The objective behind applying these 

econometric models was to identify the model that most accurately captures the 

characteristics of the underlying time series. With the aid of evaluation criteria, the most 

appropriate model was selected, facilitating the generation of oil returns forecasts by utilising 

the statistical software EViews 9.0. Crude oil is a significant player in the global energy 

industry and significantly impacts the economy, attracting the attention of businesses, 

investors, and governments. Electricity market companies rely heavily on forecasting 

techniques to navigate market volatility. These forecasts are crucial for commodity purchases 

and portfolio management and play a key role in risk mitigation and energy strategy 
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formulation. However, forecasting is a complex task, influenced by several factors such as 

weather conditions, business cycles, and international trade dynamics. 

The significance of this paper lies in its quest to identify the most suitable model for 

forecasting weekly returns of Brent crude oil by employing a range of econometric models. 

The dataset of weekly returns on Brent crude oil prices was used to construct different 

models, such as the Autoregressive Moving Average (ARMA) model, and four hybrid models 

within the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family, 

using the Box-Jenkins methodology. The objective of using these econometric models was to 

identify the model that best captures the characteristics of the underlying time series. With the 

help of rigorous evaluation criteria, the most appropriate model was selected, and the 

statistical software EViews 9.0 was used to generate oil returns forecasts. 

1.2 SUBJECT 

Given the aforementioned rationales, this study undertakes an examination of the weekly 

returns of Brent crude oil prices through the application of time series modelling and 

forecasting methods. In particular, academic attention towards forecasting crude oil returns 

has escalated in the preceding decade. Within recent literature, numerous investigations 

regarding return prediction and risk evaluation have shifted emphasis towards methodological 

performance comparisons rather than exploring interrelationships among input variables. 

1.3 BRIEF DESCRIPTION OF THE RESEARCH 

This paper, composed of seven chapters, drafts an approach to forecasting Brent crude oil 

returns utilising the Box–Jenkins methodology, a widely utilised technique in time series 

analysis. The initial chapter delivers a theoretical framework, enclosing the definition of 

Brent crude oil and its key role within the global market and financial aspect. This theoretical 

illustration highlights the significance of crude and its pricing dynamics. Moreover, a 
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historical backwards-looking of critical crises impacting the commodity is detailed, 

examining factors that substantially influence its pricing trends. Furthermore, several 

econometric models are applied based on existing literature. The prior objective of this study 

is to conduct forecasts of Brent crude oil returns within the global market context. 

Following the introductory chapter, Chapter 2 presents a more comprehensive context of 

crude oil, clarifying its economic significance and pervasive effect on everyday life. 

Thereafter, Chapter 3 synthesises relevant elements from prior literature, outlining the models 

and methodologies employed in the modelling and forecasting crude oil returns. The 

subsequent chapters comprise the empirical segment of this study. Chapters 4 and 5 

illuminate the theoretical reinforcements of statistical and econometric components essential 

for modelling. Additionally, fundamental concepts and features of time series are expounded 

upon as the principal forecasting methodologies alongside an evaluation metrics synopsis. 

Moreover, Chapter 6 analyses the examination of stationary and non-stationary processes. 

Together, within the same chapter, a brief overview of the econometric software EViews 9 is 

provided, facilitating the performance of econometric analyses. 

Chapter 7 provides a comprehensive version of the weekly pricing dynamics of crude oil and 

the data sources which support this study. It examines weekly returns transiting a 5-year 

period from 2014 to 2019. This thorough research process forms the bedrock for applying 

specific econometric models, which are instrumental in forecasting the returns of the 

commodities under investigation. The journey includes a strict stationarity test, model 

construction, and heteroscedasticity assessment, culminating in selecting a model 

documented in existing literature. Once the model is developed, we generate and evaluate 

forecasts of crude oil returns. Finally, Chapter 8 encapsulates the conclusions from the 

preceding econometric analysis and outlines avenues for prospective research endeavours. 
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CHAPTER 2: THEORETICAL FRAMEWORK OF CRUDE OIL 

2.1 ORGANIZATION OF PETROLEUM EXPORTING COUNTRIES (OPEC) 

Crude oil has shaped the world economy. By the early 1970s, this important energy 

commodity shifted consumption to nearly 50% of global energy consumption. The current 

daily production, which is approximately 96.3 million barrels (U.S. Energy Information 

Administration, 2017), keeps us informed about the present state of crude oil production. 

At this point, it is essential to refer to the geopolitical importance of crude oil. Since the 

beginning of the oil industry, its strategic importance has been evident, endowing countries 

possessing it with substantial national power on both political and economic fronts. In terms 

of global crude oil production structure, the Organization of the Petroleum Exporting 

Countries (OPEC)member nations collectively hold 81% of the world's reserves, accounting 

for 40% of global oil output (OPEC Annual Statistical Bulletin, 2016). Middle Eastern 

nations such as Saudi Arabia, Iran, Iraq, and the United Arab Emirates control the largest 

share of OPEC production and reserves, thereby consolidating wealth and influence within 

their domain (Hamilton, 2008). 

The OPEC is an international economic consortium that was established in Baghdad in 1960. 

Its main objective is to coordinate policies among member states to ensure equitable and 

stable crude oil prices for producers. Moreover, it strives to achieve efficient, economical, 

and stable crude oil supplies while seeking fair returns on investment capital within the 

industry. As of 2016, OPEC comprises 13 member states, including the five founding 

nations—Iran, Iraq, Kuwait, Saudi Arabia, and Venezuela—and subsequent additions such as 

Algeria, Angola, Ecuador, Gabon, Libya, Nigeria, Qatar, and the United Arab Emirates 

(OPEC, 2012). 
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Although the crude oil market was dominated by multinational oil companies with American 

interests, nowadays, OPEC exercises considerable power over the crude oil market, with 

control over approximately 40% of global oil production and 81% of proven reserves 

worldwide (OPEC Annual Statistical Bulletin, 2016). The establishment of this organization 

marked a climactic shift in the national sovereignty over natural resources.  

In summary, OPEC operates as an entity leveraging its substantial oil reserves to influence 

the global crude oil market by adjusting production quotas in line with its interests. Despite a 

decline in its share of the global oil supply market since the beginning of the 21st century, 

OPEC retains a considerable stake, ensuring that the market will remain susceptible to the 

organization's decisions and interventions. 

2.2 OIL CRISIS 

In recent years, a significant number of researchers have highlighted the correlation between 

oil shocks and the real economy. These studies have established oil shocks not only as key 

factors influencing oil prices but also as noteworthy economic indicators. For instance, 

Hamilton's (1983) analysis during the years 1948 to 1980 reveals a consistent pattern of 

preceding recessions in the American economy; there were typically concurrent increases in 

oil prices. This finding emphasizes the conclusion that substantial fluctuations (or shocks) in 

oil prices have a concrete impact on economic activity. To further illuminate this, a collection 

of the most consequential oil crises in the post-World War II era will be presented, 

highlighting their interconnectedness with fluctuations in crude oil prices. 

The crude oil crisis spread in late 1973, surrounded by escalating geopolitical tensions. This 

disruption was triggered by the Yom Kippur War, a conflict that saw Israel encircled by 

Egypt, Syria, and other Arab nations. In response to the Western support extended to Israel, 

Iran and several Arab exporting nations imposed an oil embargo on nations supporting Israel. 
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This strategic manoeuvre, coupled with OPEC's announcement of a production reduction, 

precipitated a sharp spike in crude oil prices, soaring from $2.50 to $12. The historical 

context of this crisis, marked by geopolitical tensions and strategic moves, adds a layer of 

intrigue to its economic implications. 

Subsequently, the world was rocked by a second crude oil shock in 1979 and 1980 sparked by 

Iran and Iraq. The cessation of oil production in Iran and diminished exports from Iraq 

catalyzed a surge in crude oil prices, overlapping with a global economic downturn. As a 

result, this led to a significant spike in prices, also worsening the economic downturn. Post-

1980, oil prices began a downward course in response to declining demand and a 

simultaneous uptick in production from other nations (U.S. Energy Information 

Administration, Thomson Reuters). 

As the new millennium began in 2000, European nations attempted to diminish their reliance 

on crude oil sourced from Arab nations, seeking alternative energy sources. Nevertheless, 

despite these efforts, oil remained the superior energy resource in Europe by a notable margin 

(Hamilton, 2013). 

Since 2011, oil prices have experienced an upward movement, reaching levels slightly 

exceeding $100 until early 2014. However, in the latter half of 2014, there was a downturn in 

oil prices attributable to the magnified shale oil production in the United States and the 

reduced demand from European countries and China (Hamilton, 2013). 

2.3 DETERMINING FACTORS OF THE PRICE OF OIL 

Crude oil price dynamics are sensitive to various disruptive events, including geopolitical 

crises or significant weather phenomena, which can hamper its distribution. Such events may 

engender uncertainty regarding future demand or supply. Consequently, causing higher 

volatility in crude oil prices. A significant portion of crude oil reserves is situated in regions 
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historically tolerant to political unrest or prostrate to production disruptions due to political 

disruptions. Under these circumstances, the market perpetually evaluates the likelihood of 

future disruptions and their prospective ramifications. Also, it jointly measures the 

availability and capability of remaining producers whose actions are important to mitigate 

potential supply losses (U.S. Energy Information Administration, 2016). 

Supply 

Oil supply is a major determinant of crude oil prices, containing the outputs of both OPEC 

and non-OPEC nations (OPEC, 2016). OPEC's supply holds significant power over crude oil 

price dynamics, underscored by historical evidence. OPEC member countries collectively 

contribute 40% of global crude oil production and account for 60% of global oil trade. The 

organisation actively regulates production levels among its members, establishing quotas and 

demonstrating a correlation between reduced production targets and subsequent oil price 

increases. Additionally, the indicator of OPEC's excess production capacity assumes 

consequences in potential crude oil organisations' crises, as it recalls the market's resilience. 

Conversely, non-OPEC countries contribute 60% of global crude oil production, with 

significant production hubs in North America, the former Soviet Union territories, and the 

North Sea. Unlike OPEC's centralised management structure, non-OPEC nations' production 

activities are predominantly overseen by International Oil Companies (IOCs). IOCs operate 

in decentralised terms of production volumes. A considerable portion of non-OPEC 

production occurs at a higher cost than OPEC counterparts, driving these nations to explore 

frontier areas such as deepwater and unconventional sources like oil sands. 
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Demand 

Similar to supply, the demand for oil stands as a crucial determinant of oil prices, which can 

be categorized into demand from member nations of the Organization for Economic 

Cooperation and Development (OECD) and demand from non-OECD countries. 

The OECD comprises the United States, European nations, and other developed countries, 

collectively accounting for 53% of global oil consumption in 2010 (EIA, Short Term Energy 

Outlook, Thomson Reuters, 2016). The economic structure of each nation variably influences 

the relationship between oil prices and consumption. Developed nations are characterized by 

high levels of per capita vehicle ownership, resulting in the transportation sector's significant 

share of total oil consumption. Moreover, OECD member countries implement policies such 

as increased fuel taxation and the promotion of fuel efficiency and biofuel consumption, 

leading to a decline in oil consumption despite economic growth. 

Conversely, non-OECD countries exhibit a substantial increase (40%) in crude oil 

consumption, spearheaded by China, India, and Saudi Arabia, reflecting their rapid economic 

development. These nations utilize crude oil across various sectors, including construction 

and electricity production, a trend also compounded by population growth. Notably, China's 

recent economic surge has forced it to become the world's largest energy consumer, thereby 

significantly contributing to the global increase in crude oil consumption. 

Inventories 

Inventories are a crucial factor in shaping oil prices. They are functioning as a stabilizing fac-

tor between supply and demand dynamics. During periods of surplus production relative to 

consumption, crude oil can be stored for future utilization. This has been evidenced during 

the 2008 crisis, where a decrease in oil consumption led to the accumulation of record-level 
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inventories in the United States and other Organization for Economic Cooperation and Devel-

opment (OECD) countries. Conversely, when consumption outpaces production rates, exist-

ing reserves are tapped in order to meet the demand for consumption (EIA, Short Term En-

ergy Outlook, Thomson Reuters, 2016). 

Weather 

Like many commodities, crude oil is subject to seasonal fluctuations, resulting in amplified 

demand and consumption during specific periods. For instance, increased heating oil con-

sumption occurs during winter, while greater utilization of diesel is observed in summer due 

to heightened travel activity. Although market participants anticipate high demand and con-

sumption periods, they often overlap with upward price pressures, which tend to normalize 

towards the season's finale. Moreover, extreme weather events can disrupt crude oil produc-

tion facilities, drizzling supply upsets and subsequent price escalations (Breitenfellner et al., 

2009).  

Expectations 

Oil prices are influenced not only by prevailing price levels, demand, and supply dynamics 

but also by global expectations and investor sentiments regarding future trends in these indi-

cators. For instance, between 2005 and 2008, production reports for non-OPEC countries 

consistently revealed lower production levels than forecasted, leading to an unforeseen surge 

in production by OPEC member nations. Consequently, this exerted pressure on their produc-

tion capacity margins, causing upward tension in crude oil prices. The equilibrium between 

current and anticipated future prices constitutes a pivotal linkage between investors and trad-

ing entities engaged in futures contracts (Levin et al., 2014). 
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CHAPTER 3: LITERATURE REVIEW 

Theoretical discussions on the interplay between crude oil prices and crucial economic 

factors also have significant practical implications. Numerous researchers, including 

Hamilton (1983), have argued that oil prices correlate with key economic factors. Hamilton's 

study, for instance, scrutinizes the interaction between WTI crude oil prices and crucial 

indicators of the American economy, such as Gross National Product (US GNP), 

unemployment rates, hourly earnings, and imported product prices. These discussions outline 

the indirect mechanisms through which crude oil prices influence economic activity, 

providing a theoretical framework that can inform real-world economic decisions. 

In recent years, various methodologies have been utilized in research to forecast prices in 

electricity markets. These methodologies encompass a range of econometric models, such as 

Automatic Regressive Integrated Moving Average (ARIMA), Function Transfer, Artificial 

Neural Networks (ANN), Value-at-Risk, and Stochastic Linear Regression models like 

GARCH. The volatility of prices, particularly during specific periods, presents a significant 

challenge for techniques like the Fourier Transform and stochastic modelling (Garcia et al., 

2005). 

Saltik, Degirmen, and Ural (2016) investigated the spot price volatility of crude oil and other 

commodities, employing various formulations of the GARCH model. Specifically, they 

employed the GARCH, IGARCH, GJRGARCH, EGARCH, FIGARCH, and FAPARCH 

models. Their aim was to assess the accuracy of linear and non-linear asymmetric models in 

predicting volatility. The study showed that asymmetric and integrated models outperformed 

during two periods. Moreover, the FIGARCH model demonstrated ideal performance during 

the initial period, whereas the EGARCH model was deemed more suitable for capturing the 

volatility of both commodities in the subsequent period. 
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A study authored by Faith Wacuka Ng'ang'a and Meleah Oleche (2017) examines various 

volatility models utilized for forecasting crude oil price volatility. The research assesses the 

performance and efficacy of diverse GARCH, EGARCH, and IGARCH models in predicting 

oil price volatility, utilizing empirical analysis. The findings indicate that the IGARCH T-

distribution model is the most effective in forecasting Brent crude oil price volatility and 

Value at Risk (VaR) estimations. 

The study by He et al.(2018) illuminates the effectiveness of employing a multiscale analysis 

approach for forecasting crude oil risk. Τhis has succeeded by investigating the dynamic 

interaction between crude oil price volatility and risk across various time scales. The results 

offer valuable insights for stakeholders, including practitioners and policymakers, engaged in 

managing risk within the oil market. 

Yingying Xu and Donald Lien (2013) investigate the prediction of volatility in crude oil and 

gas assets by analyzing three distinct models: GAS (Generalized Autoregressive Score), 

GARCH (Generalized Autoregressive Conditional Heteroskedasticity), and EGARCH 

(Exponential GARCH). The research assesses the performance of these models in forecasting 

volatility within the context of the energy market through an empirical analysis. 

Ahmed and Shabri's (2017) study enhances comprehension of the dynamics of crude oil 

prices by applying GARCH models to spot price data. The research delivers insights into the 

patterns and features of volatility in crude oil prices. The results emphasize the significance 

of utilizing suitable econometric models to capture precisely the complexities of crude oil 

price tendencies. 

Furthermore, Kang and Yoon (2009) conclude that the asymmetric CGARCH and FIGARCH 

models are suitable for forecasting crude oil price volatility. Whereas Dritsaki (2018) found 

that the hybrid ARIMA-GARCH models provide optimal forecasting results.  
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Given these considerations, it becomes evident why methods for forecasting oil returns have 

not just evolved but have experienced rapid advancements in recent years. The data generated 

from these crude oil returns forecasts holds significant importance, particularly in informing 

governments and businesses' strategic decision-making and resource allocation. For instance, 

the European Central Bank (ECB) utilizes futures price data to forecast oil prices, a practice 

that significantly impacts inflation-related indicators (ECB, 2015). Similarly, global 

organizations such as the International Monetary Fund (IMF) and the Federal Reserve Board, 

at the forefront of innovation, rely on futures prices. 

CHAPTER 4: FUNDAMENTAL CONCEPTS AND CHARACTERISTICS  

4.1 DESCRIPTIVE STATISTICS OF THE DATA  

The current stage represents the descriptive statistic characteristics used to process the data in 

the selected sample of the current research. Subsequently, various visual aids such as charts, 

graphs, and tables facilitate the presentation of statistical data. The tools employed in this 

process include statistical tables and formulas, which provide a comprehensive description of 

the essential characteristics of the data (Hatjinikolou, 2002). 

The arithmetic mean is the quotient of the variable's set of values divided by the number of 

observations. 

The median is the variable's value, which divides the population in half. 

The predominant value is the value that exhibits the highest frequency within the sample. 

The range is the difference between the maximum and minimum values. 
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Variance represents the mean of the squared differences between the values of our variable 

and their arithmetic mean. Variance is measured in squares and not in the same units as our 

variable: 

 𝜎2 =  
1

𝛮
∑ (𝑋𝑖 − 𝜇)2𝛮

𝑖=1   (1)  

 

Standard deviation is the most critical measure of the distribution, i.e., the positive square 

root of the variance, with the difference being that it is estimated in the same measurement 

units as our variable. 

Skewness quantifies the degree of asymmetry in the series distribution relative to its mean. 

𝛼3 =  
1

𝛮
∑ 𝑓(𝑋𝑖−𝜇)3𝑘

𝑖=1

𝜎3                                                   (2) 

 

Kurtosis is a metric that evaluates the curve's steepness in the distribution. 

𝛼4= 

1

𝛮
 ∑ 𝑓(𝑋𝑖−𝜇)4𝑘

𝑖=1

𝜎4                    (3) 

Jarque-Bera is a statistical test which checks whether the series is normally distributed. It 

measures the difference between the skewness and kurtosis of the series and those from the 

normal distribution. Calculated as: 

             𝐽𝑎𝑟𝑞𝑢𝑒 −  𝐵𝑒𝑟𝑎 =  
𝑁

6
(𝛼3

2 +  
(𝛼4−3)2

4
                     (4) 

4.2 TIME SERIES CHARACTERISTICS 

Past experiences and predictions of forthcoming events typically inform an entity's economic 

functions. The significance of forecasting as a framework for making knowledgeable 

judgments in planning actions has been widely acknowledged. Future predictions rely heavily 

on historical statistical data. Time Series Analysis, a statistical methodology, gathers past data 
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to forecast future trends. A time series represents a sequence of values of a variable observed 

over time, typically at regular intervals (Karageorgios et al., 1997). 

Continues and Discrete Intertemporal Changes 

The observations within a time series form an intertemporal variable, which can be either 

continuous or discrete. However, categorising a variable as discrete does not inherently imply 

temporal discontinuity. For instance, a country's population, categorised as a discrete variable, 

is recorded at all time points, thus generating a continuous variable over time. Conversely, a 

continuous variable may not always exhibit continuity about time. For instance, the quantity of 

a commodity, considered a continuous variable, becomes temporally discontinuous when the 

market is closed and prices are not recorded (Karageorgios et al., 1997). 

Time Series Components 

Continuous monitoring of time series data reveals that four components contribute to forming 

variable values. The first component is technological advancements, typically leading to 

increased output or population growth. Technological advancements are forces that also 

influence the trend of a time series. The second component is cyclical variation, inherent in all 

economic activities. Systematic and seasonal fluctuations around the trend line necessitate the 

observation of monthly, quarterly, weekly, and even daily data for analysis and inference. 

Finally, another component is random movement, characterised by unpredictable events or 

unknown factors, lacking any discernible pattern (Karageorgios et al., 1997). 

Stationarity 

A fundamental concept in time series analysis involves distinguishing between stationary and 

non-stationary data. This distinction is not just a technicality but a crucial factor that can 

significantly impact the accuracy and reliability of our analysis. Stationary data refer to those 

with a consistent average level over time, while non-stationary data exhibit variability over 
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time. Autocorrelation signifies the coefficient measuring the correlation between two time 

series elements at different time intervals. However, autocorrelation is meaningful only within 

the context of stationary time series (Box et al., 2008).  

4.3 FORECAST  

 All companies need forecasts to reduce risk and uncertainty about the future. Returns 

forecasting is a process used to make predictions based on past and present data. Forecasts 

are never accurate, and thus, short-term forecasting is preferred because we cannot accurately 

calculate the variables that affect returns in the long term. Long-term forecasts are affected by 

random factors, such as the recent pandemic.  

There are two forecasting methods: quantitative and qualitative methods. The qualitative 

method deals with estimation using expert judgment. 

On the other hand, the quantitative method uses numerical analysis. This method gets 

information from various consultants and experts about future results. In contrast, the 

quantitative forecasting method collects and analyses historical data to infer future trends. In 

this thesis, we are more interested in the quantitative method. 

4.3.1 QUANTITATIVE METHODS OF FORECASTS  

Quantitative methods necessitate the fulfilment of the following three conditions: 

1. They rely on information retrievable from past data. 

2. The information must be amenable to numerical representation. 

3. It assumes that the underlying data pattern will persist into the future. 

Two primary types of models are employed in quantitative methods: explanatory models, 

which seek to establish relationships between multiple variables, and time series models, 
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which utilize historical trends to forecast future outcomes (Hyndman, 1998). This thesis 

focuses on analyzing forecasts derived from time series models. 

4.3.2 BASIC STEPS IN THE FORECAST PROCESS 

According to Hyndman (1998) and Hymans (2020), there are six basic procedures we follow 

for forecasting. 

1. Identification of the problem: Problem identification involves determining the 

recipients of this service, its potential utility, and the specific manner in which the 

process can be beneficial. 

2. Gathering information: Information gathering entails acquiring numerical data from 

historical records to facilitate prediction. It also involves incorporating human 

judgment as a valuable component. 

3. Preliminary information analysis: Preliminary information analysis involves 

examining the data collected using tools such as graphs and statistical indicators like 

the mean and dispersion. These techniques assess the stability of observed patterns 

and identify outliers. This process is crucial as it informs the subsequent stage of 

model selection. 

4. Selection of forecast model: Based on the findings identified in stage three, we 

determine the most suitable model for the analysis.  

5. Analysis of the information: Our data analysis involves examining the data through 

the model chosen at a prior stage. 

6. Model evaluation and efficiency assessment: Upon completion of the preceding 

stages, this phase involves comparing the obtained values with the actual data to 

identify potential adjustments to the model in instances where significant disparities 

are observed. 
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4.3.3 EVALUATION OF FORECASTS   

According to Howrey et al. (1991), researchers highlight the importance of selecting a 

suitable model for enhancing the accuracy of forecasts. Various methods are available to 

assess the performance of a model. Initially, we will address the prediction error, which can 

be expressed mathematically as follows: 

𝜀𝑡̂ = 𝑦𝑡 − 𝑌̂𝑡          (5)  

Where  ε̂t: estimated error in time t 

Yt: observed value at time t  

ŷt: estimated price in time t 

Measuring Forecast Accuracy 

The prevalent measures include: 

 Mean absolute error:  𝑀𝐴𝐸 =  
1

𝑛
     (6) 

∑ |Et|𝑛
𝑡=1                          (7) 

Root mean square error:   𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑡2𝑛

𝑡=1

𝑛
                                       (8) 

The mean absolute error (MAE) is relatively straightforward to comprehend; however, it fails 

to account for extreme errors and does not provide information regarding the direction of the 

errors. MAE represents the average absolute difference between actual and estimated values. 

Conversely, the mean squared error (MSE) is commonly used in estimations despite being more 

challenging to interpret. Root mean squared error (RMSE) quantifies the magnitude of the 

error, calculated as the square root of the average of the squared differences between actual and 

estimated values. 
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MAE and RMSE differences   

The mean absolute error (MAE) is relatively straightforward to comprehend; however, it fails 

to account for extreme errors and does not provide information regarding the direction of the 

errors. MAE illustrates the average absolute difference between actual and estimated values. 

Conversely, the mean squared error (MSE) is commonly used in estimations despite being 

more challenging to interpret. Root mean squared error (RMSE) quantifies the magnitude of 

the error, calculated as the square root of the average of the squared differences between 

actual and estimated values. 

Percentage Error 

The percentage error serves as a metric for evaluating the predictive performance across the 

dataset. 

 Mean absolute percentage error: 𝛭𝛢𝑃𝐸 =  
1

𝑛
∑ |

𝐸𝑡

𝑦𝑡
| 100%

𝑛

𝑡=1
   (9) 

The Mean Absolute Percentage Error (MAPE) represents the average absolute error 

expressed as a percentage. Like the previously mentioned methods, MAPE does not indicate 

the approach of errors. This method is independent of the scale of the data. 

Scaling Errors 

This approach, introduced by statisticians Rob J. Hyndman and Anne B. Koehler in 2006, 

offers an alternative to the MAPE method for evaluating the precision of forecasts in a series. 

It encloses two variants: one applicable to time series indicating seasonality and the other 

suitable for those devoid of seasonality. The term expresses the data's independent scale. 

The term 𝜀𝑖  denotes the data's independent scale. 
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Absence of seasonality: 𝜀𝑖 =
𝜇𝑖𝑖

1

𝑇−1
∑ |𝑌𝑇−𝑦𝑇−1|𝑇

𝑇=2

         (10) 

Existence of seasonality: 𝜀𝑖 =
𝜇𝑖𝑖

1

𝑇−𝛭
∑ |𝑌𝑇−𝑦𝑇−𝛭|𝑇

𝑇=𝛭+1

   (11) 

The mean absolute standard error is: 

    𝛭𝛢𝑆𝐸 =  𝑚𝑒𝑎𝑛(|𝜀𝑖|) (12) 

This metric offers forecasting accuracy without the limitations observed in other metrics. It is 

preferred over the aforementioned methods due to its independence from the data scale, 

symmetry in handling negative and positive forecast errors, and alignment with the Diebold-

Mariano (DM) method. The DM method aids in selecting the optimal prediction method and 

identifying the most minor measurement error. Specifically, it facilitates a more profound 

analysis by assessing the significance of numerical differences. 

Theil index 

                                           𝑈 =  
𝑅𝑀𝑆𝐸

√
1

𝑛
∑ (𝑌𝑡)2+ 

1

𝑛
∑ (𝑌𝑡̂)2𝑛

𝑡=1
𝑛
𝑡=1

                       (13) 

The Theil index is a statistical tool for assessing whether a time series of estimated values 

aligns with a time series of observed values. When the resulting numerical value "U" is closer 

to 0, it indicates higher prediction accuracy, whereas if it is approaching 1, it signifies greater 

prediction inaccuracy. 

CHAPTER 5: INTERPRTATIVE METHODOLOGY 

Econometric Software: Eviews 9 

The econometric analysis in this study utilized the statistical software Eviews 9. Eviews is a 

well-known tool for analyzing time series data. Eviews 9 offers a comprehensive array of tools 

for both basic statistical analysis and advanced econometric modelling. Moreover, it enables 
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the creation of econometric models and facilitates forecasting without complex commands, 

requiring only familiarity with the analytical procedures for conducting our analysis. 

This chapter is dedicated to enlightening the key concepts crucial for understanding the 

modelling and forecasting of stochastic time series. Stochastic processes delineate the 

arrangement of observations within a sequence through a model. Specifically, we employ 

stochastic models grounded in the attributes of white noise, assuming that the time series under 

examination originates from independent residuals. 

After that, the Box-Jenkins methodology, renowned for its effectiveness in identifying and 

constructing suitable models for modelling and forecasting time series, is outlined below. A 

significant aspect of model development involves the assumption of stationarity regarding the 

time series under scrutiny. 

Unit Root Test 

Verifying whether the time series exhibits stationarity is compulsory before investigating 

regression or forecasting models in time series analysis. There are two primary methods for 

diagnosing stationarity. The first involves subjective judgment, while the second utilizes 

statistical tests to detect the presence of a unit root. 

Statistically, a time series is deemed stationary when its key descriptors—such as mean, 

variance, covariance, and standard deviation—remain constant over time. Should a time 

series lack stationarity, regression outcomes become unreliable and nonsensical. Thus, it 

becomes essential to explore potential transformations that induce stationarity. 

One of the most well-known tests for identifying the presence of a unit root is the Dickey-

Fuller (DF) test, along with its augmented counterpart (ADF). ADF holds greater power as it 

can handle more intricate models than DF. Another test based on DF is the Phillips-Perron 
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test, which employs a similar estimation approach but adjusts for autocorrelation and 

dynamic heteroscedasticity in statistical behaviour. 

The ADF test was employed in the paper's econometric analysis. Dickey and Fuller, in their 

Monte Carlo experiments, identified a suitable skewed distribution for testing the hypothesis 

 : ρ = 1. While the DF test employs the t-student distribution, accepting or rejecting   is 

assessed using MacKinnon's critical values. The MacKinnon method has been integrated into 

Eviews 9 software (MacKinnon, 2002). 

The following assumptions make the Dickey-Fuller tests for unit root:  

𝐻0: 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦(𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡)  

𝐻1: 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑡𝑦 (𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡) 

Once the test results are obtained, it is crucial to examine both the t-statistics and p-values. If 

the t-statistics value falls below the critical values at the chosen significance levels, and the 

significance levels surpass the p-value, we reject the null hypothesis (𝐻0) and accept the 

alternative hypothesis (𝐻1) that the time series is stationary. Conversely, if the p-value 

exceeds the significance levels, the time series contains a unit root, indicating instability. 

Identification 

After conducting the stationary test for the time series, the initial step of the Box-Jenkins 

methodology ensues. This step involves identifying an integrated autoregressive moving 

average model, denoted as ARIMA(p,d,q) (Johnston, 1997). 

d = the number of times the raw observations are differenced to allow the time series to 

become stationary. 

p = the number of lag observations in the model 
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q = the order of the moving average 

The parameter d typically assumes values of 0, 1, or, in uncommon instances, 2. In this study, 

d is set to 0 as the time series is confirmed to be stationary. Once stationarity is established, it 

becomes imperative to investigate trends and seasonality by examining autocorrelation and 

partial autocorrelation. Each ARMA(p,q) model is associated with a distinct pair of 

autocorrelation function (ACF) and partial autocorrelation function (PACF) that determine 

the model's order. Searching for appropriate values of p and q involves a three-step process, 

as Anderson (1977) outlined, defining our ARIMA model. Presented below is an analysis of 

fundamental stationary processes. 

Autoregressive models AR(p) 

      𝑦𝑡 = 𝜇 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝑢𝑡             (14) 

The autoregressive process AR(p) is a statistical model that predicts future values based on 

past values. Autoregressive models acknowledge the influence of past values on present ones, 

making this statistical method widely used to analyse dynamic phenomena in natural, 

economic, and other temporal processes. Within the AR(p) model, the terms exhibit a 

consistent variance and a zero mean. The parameter p signifies the order of the autoregressive 

process, dictating the duration of the lag, with 𝑦𝑡−1 ,𝑦𝑡−2,…,𝑦𝑡−𝑝  representing the lagged 

values of the time series. 

Moving Average MA(q) 

The Moving Average processes take the following format: 

𝑦𝑡 = 𝜇 + 𝑢𝑡 − 𝜃1𝑢𝑡−1 − 𝜃2𝑢𝑡−2 − ⋯ − 𝜃𝑞𝑢𝑡−𝑞   (15) 

Determining the moving average of a commodity assists in stabilizing the return data by 

establishing an ongoing average return. Consequently, this reduces the influence of random, 
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short-term fluctuations on the returns within a designated timeframe. Here, the variable 𝑦𝑡  is 

contingent on q lags of 𝑢𝑡. The Moving Average Process maintains its stationarity as it's 

defined as the finite summation of white noise terms. White noise represents a time series 

comprising independent random variables.  

Autoregressive Integrated Moving Average Prediction Model ARIMA(p,d,q) 

An autoregressive integrated moving average model functions as a regression analysis 

technique aimed at assessing the relationship between a dependent variable and other 

fluctuating variables. Its objective is to forecast future movements in securities or financial 

markets by scrutinizing the variances within the series rather than focusing solely on the 

actual values. 

Estimation 

The second phase of the Box-Jenkins methodology entails the estimation of parameters for 

the autoregressive (AR) and moving average (MA) models. The prevailing techniques for 

parameter estimation are least squares and maximum likelihood methods, both relying on the 

examination of autocorrelation and partial autocorrelation functions within the series. In 

evaluating the estimation outcomes, it is crucial to consider the R-squared value, indicating 

the proportion of estimated values dependent on the analyzed time series. 

Diagnostic verification 

Considering the accuracy limitations of the models, it is crucial to emphasise the significance 

of utilising diagnostic tests to validate the suitability of specimens for analysis. Following the 

identification and estimation processes, an estimated ARMA model is generated, and the next 

step is the diagnostic test of the equation obtained from the previous steps. Consequently, 

aggregate assessments are administered to scrutinise the coefficients of the model. These 
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assessments evaluate the statistical significance and stability of the coefficients, examining 

the residuals' properties and assessing the model's predictive efficacy. 

Autocorrelation Test 

Johnston and DiNardo (1997) claim that the tests aim to estimate the extent to which the 

residuals exhibit some autocorrelation. Autocorrelation refers to a similarity between a 

specific time series and a delayed iteration of itself across consecutive periods. It quantifies 

the association between a variable's present value and its prior values. Analysts utilize 

autocorrelation to assess the extent to which historical returns fluctuations influence 

forthcoming returns dynamics, providing investors with insights to anticipate future returns 

trends.  

The Box-Pierce-Ljung autocorrelation test 

The Ljung-Box test is a method for determining the presence of serial autocorrelation up to a 

designated lag. This test relies on the squares residuals and aims to prove whether the 

residuals are independent and identically distributed, akin to white noise. Fundamentally, it 

measures model adequacy: minimal autocorrelation in the residuals suggests a 'lack of 

significant fit'.  

In the analysis conducted using the statistical software Eviews 9, the diagnostic procedure 

incorporates the Ljung-Box test. The Box-Pierce-Ljung autocorrelation test evaluates the 

following hypotheses: 

    𝐻0: 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

    𝐻1: 𝑒𝑥𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  
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In the results, we observe the Q-statistic and p-value values at the level of significance we are 

interested in. If the p-value is less than the level of significance, the null hypothesis 𝐻0 is 

rejected, and the hypothesis 𝐻1 is accepted; therefore, the sample shows autocorrelation. 

Normality Test  

Numerous methods exist to evaluate a distribution's normality, including the Jarque-Bera test, 

which is commonly employed to verify normality. This test assesses the conformity of the 

data's skewness and kurtosis to those of a normal distribution, which has a skewness of zero 

and a kurtosis of three. 

Heteroskedasticity Test 

According to Johnston and DiNardo (1997), testing for heteroscedasticity becomes desirable 

when least squares estimators are no longer efficient. Heteroskedasticity specifies nonconstant 

volatility related to the prior period's volatility. This violates the assumptions for linear 

regression modelling and can impact the validity of econometric analysis. 

The ARCH—LM heteroscedasticity control of the ARCH family has been analyzed to detect 

the presence of dynamic heteroscedasticity in the existing analysis. 

The ARCH – LM test defines as: 

𝐻0 = 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑖𝑡𝑖𝑐𝑦 (ℎ𝑜𝑚𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) 

𝐻1 = 𝑒𝑥𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

Within the findings, we discern the F-statistic and Obs*R-squared figures. Should the p-value 

fall below the predetermined significance level, the null hypothesis 𝐻0 is rejected, leading to 

the acceptance of the alternate hypothesis 𝐻1 , which 

indicates heteroscedasticity within the sample. Consequently, it necessitates identifying, 
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estimating, and diagnosing procedures to ascertain the suitable model within the ARCH family 

(Autoregressive Conditional Heteroscedasticity Model). 

GARCH (p,q) Model 

The Generalized ARCH (p,q) model is of the form:  

𝑦𝑡 = 𝜇 +  𝜀𝑡  (16) 

 𝜀𝑡│𝛪𝑡−1~ 𝐷(0, 𝜎𝑡
2)                                                                                 (17) 

Where, 𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜀𝑡−2
2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞

2 + 𝛽1𝜎𝑡−1
2 + 𝛽2𝜎𝑡−2

2 + ⋯ + 𝛽𝑝𝜎𝑡−𝑝
2   (18) 

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) represents a statistical 

modelling approach employed in forecasting the volatility of returns concerning financial 

assets or commodities. It scrutinizes time series data in which the variance error is suspected 

to exhibit serial autocorrelation. This means that the variance of the error term is not constant, 

signifying dynamic heteroskedasticity. This term delineates the unpredictable variation in an 

error term or variable within a statistical model. A variant of the GARCH model is the 

EGARCH (p,q). 

EGARCH (p,q) Model 

The exponential general autoregressive conditional heteroskedastic (EGARCH) model 

presents an alternative variation of the GARCH framework. Introduced by Nelson (1991), the 

EGARCH model addresses a limitation in GARCH's treatment of financial time series, 

explicitly aiming to accommodate asymmetric effects evident between positive and negative 

asset returns. A notable advantage of the EGARCH model lies in its capability to capture the 

differential impact of positive and negative changes within the series on volatility, a feature 

absent in the traditional GARCH model. Unlike the GARCH model, which illustrates the 
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conditional variance solely as a function of the squared values of past innovations, the 

EGARCH model allows for considering both positive and negative changes. 

T-GARCH (p,q) Model 

The threshold GARCH (TGARCH) model is a volatility model frequently employed to 

address leverage effects. This model characterizes the conditional variance through a linear 

function operating across distinct intervals or sets. TGARCH is predicated on the assumption 

of independent and identically distributed (IID) innovations and examines how negative and 

positive returns influence the dynamics of conditional volatility. 

APGARCH (p,q) Model 

The APARCH or APGARCH(p,q) model is an adaptation of the T-GARCH model, 

incorporating asymmetry in return volatility. It demonstrates that volatility tends to escalate 

to a greater extent in response to negative returns compared to positive returns of equivalent 

magnitude. Similar to the GARCH model, the APARCH model encapsulates stylised facts 

observed in time series, such as volatility clustering, where high volatility at time t is more 

probable if it was also high at time t−1. 

Following the estimation of the GARCH family of models, the subsequent phase involves 

model selection for forecasting purposes. Two widely utilized criteria for evaluating models 

are the Akaike Information Criteria (AIC) and the Schwarz Information Criteria (SIC). The 

selection of the most appropriate model entails a comparison of these criteria, with preference 

given to the model exhibiting the most minor indices. Additionally, it is imperative to conduct 

checks for dynamic heteroscedasticity. These checks serve to confirm the absence of 

autocorrelation and dynamic heteroscedasticity, thereby facilitating accurate forecasts. 

Furthermore, the three phases of the Box-Jenkins methodology have been executed, along 

with the development of four hybrid models, namely ARMA-GARCH and ARMA-

EGARCH, as well as ARMA-T-GARCH and ARMA-APGARCH models. 
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Forecasting 

Forecasting entails utilizing historical data as inputs to formulate informed estimations, which 

serve as predictive tools for discerning future trends. Following the assessment and selection 

of the most suitable model, the prediction of future values for the time series ensues. The 

forecasting process was executed by utilizing observations from the in-sample period.  The 

comprehensive forecasting output provided by Eviews 9.0 includes graphical representations 

of returns and variance forecasts and a reliability assessment of the model's predictive 

capacity. Notably, key performance indicators such as the mean absolute error (MAE), root 

mean squared error (RMSE), mean absolute percentage error (MAPE), and the Theil 

inequality coefficient serve as crucial metrics for evaluating forecasting accuracy, The 

aforementioned indicators were elaborated in greater detail in the preceding section. 

CHAPTER 6: ECONOMETRIC ANALYSIS 

6.1 DATA AND DESCRIPTIVE STATISTICS 

The analysis includes weekly Brent crude oil prices, retrieved from the Federal Reserve Bank 

of St. Louis (FRED). U.S. Energy Information Administration (EIA) calculated weekly prices 

from daily data by taking the average of the daily closing prices for a given comodity over 

the specified time. On a separate note, the missing values of the sample have been treated 

with the "End of Period Aggregation Method". When converting from daily to weekly values, 

there might be a missing value due to public holidays; the end-of-period aggregation method 

will use the value of the day before and repeat it for the day with the missing value. If both 

Thursday and Friday had missing values, the end-of-period aggregation method would use 

the value from Wednesday. 

Aria
 Io

ak
eim

 



37 
 

More specifically, the data belong to 29/12/2014 – 31/12/2019 and have been divided into 

two sections. The first part belongs to the period 29/12/2014 - 31/12/2018, is called the in-

sample period and serves the estimation process of the model, while the second part belongs 

to the period 01/01/2019 - 31/12/2019 is called -the of-sample period and serves to forecast 

oil returns. In total, the sample consists of 262 observations.  

The data range has been chosen based on the fact that forecasts inherently entail uncertainty, 

as unforeseen events may transpire. A recent example is the unforeseen onset of the 

coronavirus pandemic, which exerted unprecedented effects on various sectors, notably 

leading to a significant decline in Brent crude oil returns. Such events underscore the inherent 

limitations of forecasting accuracy. Moreover, the pandemic-induced shock in demand 

significantly impacted crude oil markets. In light of this the chosen data sample stops 31 

December 2019 as a safeguard to avoid misspecification of the model when we ignore the 

presence of this type of data.  

 The following results have been calculated with the help of the statistical program Eviews 

9.0. 

 

 

 

 

 

 

 

 

Figure 1: Graph of the weekly Brent Crude Oil spot prices 31/12/2014 - 31/12/2018 
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The data used is from 01 January 2015 until 31 December 2018. Looking at the chart above, 

we see a wide range of fluctuations in oil prices. Between mid-2014 and early 2016, the 

global economy faced one of modern history's most significant oil price declines.  

The initial drop in oil prices from mid-2014 to early 2015 was driven by supply factors, 

including booming U.S. oil production, receding geopolitical concerns, and shifting OPEC 

policies. However, declining demand also played a noteworthy role from 2015 until the first 

months of 2016. Rather than raising global growth, the oil price drop was accompanied by a 

deceleration in 2015 and 2016. A sharp downshift in oil-exporting economies dragged global 

economic activity down (World Oil Market Chronology From 2003, 2023). 

According to the Global Economic prospect performed by the World Bank Group, in 

December 2015, Brent crude oil fell as low as $36.35 a barrel, the lowest price since summer 

2004. OPEC countries met on November 30 and agreed to limit crude oil output for the first 

time since 2008. As a result, Brent crude oil went over $50, the highest in a month. Behind a 

similar agreement to limit production between Russia and other countries not part of OPEC, 

Brent crude oil prices increased. Despite other countries' promises of lower output, evidence 

of changes still needed to be seen. As a result, Brent crude oil prices fluctuated around the 

same levels until January 2017. Brent crude oil prices rose 40% from June to October 2017 as 

oil producers were expected to continue lower production, with an increase of 20% in the 

third quarter. The increase would have been more, but Turkey did not act on a thread against 

Kurdistan's vote for independence (World Oil Market Chronology From 2003, 2023). 

During the last week of 2017, Brent crude oil prices passed $67 for the first time since May 

2015 due to pipeline problems in Libya and the North Sea, which led to production cuts by 

OPEC and Russia. In January 2018, U.S. production increased, and demand was predicted to 

go down when winter was over. During 2018, Brent crude oil prices were also affected by 
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threats to supply from Libya and proposed sanctions on countries importing oil from Iran. At 

the end of 2018, higher U.S. interest rates, more active U.S. oil rigs, higher U.S. crude 

production, and lower expected worldwide demand did not cancel out proposed production 

cuts by OPEC nations; therefore, Brent crude oil prices went down 20 per cent  

(Global Economic Prospects, January 2018: Broad-Based Upturn, but for How Long?, 2017) 

The modelling process requires the calculation of excess returns of Brent crude oil spot 

prices. The computation is given below: 

𝑟𝑒𝑡𝑢𝑟𝑛𝑡 = (log (𝑝𝑟𝑖𝑐𝑒𝑡) − (log (𝑝𝑟𝑖𝑐𝑒𝑡−1))) ∗ 100  (19) 

Where 𝑝𝑟𝑖𝑐𝑒𝑡−1 is the stock price of the previous period, and 𝑝𝑟𝑖𝑐𝑒𝑡 is the stock price of the 

current period. The equation log (𝑝𝑟𝑖𝑐𝑒𝑡) − (log (𝑝𝑟𝑖𝑐𝑒𝑡−1))  defines the percentage price 

change. Thus, 𝑟𝑒𝑡𝑢𝑟𝑛𝑡 is the percentage return. The econometric analysis of this thesis is 

based on the percentage returns of the weekly Brent crude oil prices. 

 

 

 

 

 

 

 

 

 

                                               Figure 2: Graph of the weekly Brent Crude Oil returns 31/12/2014 - 31/12/2018  

   

Figure 2 shows the graph of the percentage returns of the weekly prices of Brent crude oil for 

the period 1 January 2015 to 31 December 2018. 
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Mean 0.000973 

Median 0.006713 

Maximum 7.037997 

Minimum -6.538120 

Std. Dev. 2.157921 

Skewness -0.120534 

Kurtosis 3.764995 

 

Jarque-Bera 5.602341 

Probability 0.060739 

 

Sum 0.203417 

Sum Sq. Dev. 968.5779 

 

Observations 209 

 

     Table 1: Descriptive Statistics 

Table 1 presents the descriptive statistics of the return time series of the weekly returns of 

Brent crude oil. Based on these statistics, the mean and median are close in value, which 

suggests the data is roughly symmetric. The skewness is slightly negative (-0.1205), 

indicating a slight left skew. The kurtosis is higher than 3 (3.765), indicating slightly heavier 

tails compared to a normal distribution. Then, we interpret the value of the standard 

deviation. Standard deviation compares each data point to the mean of all data points, 

describing whether the data points are nearby or spread out. Outliers have a heavier impact on 

standard deviation. Any standard deviation above or equal to 2 can be considered high, which 

means that in this analysis, the time series data are spread out. While the skewness and 

kurtosis are not far from zero and three, respectively, suggesting some deviation from 

normality, it's important to remember that normality is a matter of degree. Depending on your 

specific context and requirements, this distribution may be considered approximately normal 

for many practical purposes, especially if the deviations are not extreme. However, for 

rigorous statistical analysis, it's often advisable to conduct formal normality tests. 

Aria
 Io

ak
eim

 



41 
 

Therefore, to assess whether the series is normally distributed, we can utilize the Jarque-Bera 

test, which is a test of the null hypothesis that the data follows a normal distribution based on 

skewness and kurtosis. The test statistic Jarque-Bera and its associated p-value are provided: 

Jarque-Bera: 5.602341 

Probability (p-value): 0.060739  

Typically, if the p-value is less than a chosen significance level (e.g., 0.05), we reject the null 

hypothesis, indicating that the data significantly deviates from a normal distribution. 

In this case, the p-value is approximately 0.0607, which is greater than the typical 

significance level of 0.05. Therefore, we fail to reject the null hypothesis at the 0.05 

significance level. This suggests that, based on the Jarque-Bera test, there is not strong 

evidence to conclude that the series significantly deviates from a normal distribution.  

Next follows the Box–Jenkins methodology through which we will develop an ARIMA 

model. The method is carried out based on the following steps: 

First step: Identification 

Before the modelling process begins, the unit root test is executed by performing the 

Augmented Dickey-Fuller (ADF) test to determine whether a unit root exists in the time 

series of the analysis.  
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  Table 2: Augmented Dickey-Fuller Stationarity test performed for Brent crude oil prices 

 

 

 

 

 

 

 

 

 

 

 

                   Table 3: Augmented Dickey-Fuller Stationarity test performed for Brent crude oil returns 
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In accordance with the Box-Jenkins process, we should focus on testing the stationarity of the 

time series we intend to model. We will begin by testing whether the time series of prices is 

stationary. Table 2 represents the first attempt at the Augmented Dickey-Fuller Stationarity 

test performed for Brent crude oil prices. Based on the results, we identify the existence of 

the unit root in the time series of Brent crude oil prices. This non-stationarity is often due to 

inflation or other structural breaks. 

Consequently, we need to convert the data to fulfil the stationarity criterion. A common 

transformation is differencing the prices and generating the returns of the commodity tested. 

Therefore, in Table 3, we examine the stationarity of the time series of Brent crude oil 

returns. Upon the testing, we determined that the null hypothesis, denoted as 𝐻0 , which 

posits the existence of stagnation, is rejected at the 5% significance level. Specifically, the 

probability value (0.0000), being lower than the 0.05 significance level, coupled with the t-

statistic value (-13.02731), falling below the Test Critical Values corresponding to the 1%, 

5% and 10% significance levels, leads to the conclusion that the time series can be deemed 

stationary at significance levels of 1%, 5%, and 10%. 

With the attainment and validation of time series stationarity, we are poised to ascertain the p, 

d, q values essential for defining the ARMA model. Initially, leveraging Figure 3, we will 

discern the value of p, signifying the autoregressive (AR) process order, by scrutinizing the 

autocorrelation function (ACF) values. Subsequently, we will reduce the value of q, 

representing the moving average (MA) process order, through examination of the partial 

autocorrelation function (PAC) values. 
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Matrix 1:Graphical representation of ACF and PAC) of the time series 

 

After conducting an exploratory analysis, during which alternative models were evaluated, it 

has been determined that the ARMA (36,0) and ARMA (0,1) models are the most effective. 

To substantiate this conclusion, the subsequent step in the Box Jenkins methodology, namely 

Estimation, is pursued. 

Second step: Estimation 

This step will estimate the p parameters of the autoregressive model and the q parameters of 

the moving average model. With the help of the EViews 9.0 statistical program, we have 

estimated two models and got the following results: 
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 Table 4: Estimation Equation MA(1) model 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   Table 5: Estimation Equation AR(36) model 

The estimation outputs of the MA(1) and AR(36) models are sequentially presented, 

revealing that, with the exception of the constant coefficient c, all other parameters exhibit 

statistical significance at significance levels of 10% and 5%, respectively, leading to rejection 
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of the null hypothesis. Subsequently, the models are compared utilizing three information 

criteria: Akaike, Hannan-Quinn, and Schwartz. Based on the aforementioned results, the 

model with the minimal value across these criteria in Tables 4 and 5 is selected. It is noted 

that all three criteria consistently advocate for the AR(36) model.  

Following the model estimation, the analysis proceeds with the final phase of the Box-

Jenkins methodology. 

Third step: Diagnostic verification 

In this phase, we assess the appropriateness of the model for our dataset. Specifically, we 

conduct a diagnostic check to ascertain the presence of autocorrelation in the residuals and to 

evaluate whether they adhere to a white noise process. This evaluation is facilitated through 

the application of the Ljung-Box test, which examines the presence of autocorrelation (serial 

correlation) across the entire set of autocorrelations in the sample. Here, the null hypothesis 

H0 posits the absence of autocorrelation, while the alternative hypothesis H1 suggests the 

presence of autocorrelation. 
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Matrix 2:Graphical Representation (Correlogram) of ACF and PACF 

The purpose at this stage is to decide whether the model we have estimated is finally suitable. 

If not, then we need to suggest modifications to the template. The decision on the 

appropriateness of the model is made after considering the autocorrelation function of the 

residuals, as well as some cross-correlation functions between the white noise process and the 

residuals. When autocorrelation is observed in the residuals, a wrong model choice has been 

made. However, a correct choice is made when we observe the convergence of the estimates 

with the actual values in the population, resulting in the residuals approaching the random 

errors of white noise. 

With the help of the following Ljung-Box test, we will conclude whether there is 

autocorrelation in the estimated model. 
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Carrying out the assessment of the following cases: 

𝐻0 = 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

𝐻1 = 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

In Figure 4, we notice that the residuals of the first differences of the autocorrelations (ACF) 

and partial autocorrelations (PACF) time series move at low values and close to zero. 

Nevertheless, looking at the Q-Statistic and p-value values, we see that the p-value results are 

all zero (p-value < 0.05), so the null hypothesis H0 (no autocorrelation) is rejected at the 5% 

significance level, and the alternative hypothesis H1 is accepted which defines the existence of 

autocorrelation in the residuals of the sample. 

To summarise the Box-Jenkins process, the model was identified as an AR(36) model, 

transforming the time series to stationary. Then, the estimation of the model was carried out, 

from which it was shown that the parameter AR(p) is significant and that the estimated values 

have a moderate dependence on the time series we are considering. Finally, a diagnostic check 

was carried out on the model, which shows that there is autocorrelation between the residuals 

and that they do not behave as a white noise process. Consequently, more than this model is 

needed as a predictive tool. 

Overall, the AR (36) model is unsuitable for forecasting the weekly Brent crude oil returns 

returns; therefore, we should continue to build a suitable model for this time series. 

Heteroskedasticity Test  

The completion of the Box-Jenkins methodology analysis involves the examination of dynamic 

heteroskedasticity within the sample residuals.  

This method is employed to identify serial autocorrelation of any magnitude and does not 

presume the absence of time lags in the dependent variable, as with explanatory variables. 
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The ARCH – LM test defines the following hypothesis: 

𝐻0 = 𝐿𝑎𝑐𝑘 𝑜𝑓 𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 (ℎ𝑜𝑚𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) 

𝐻1 = 𝐸𝑥𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

Via the statistical software employed in this analysis, we interpreted the subsequent findings: 

 

 

 

 

 

 

 

 

 

 

Table 6: Dynamic Heteroskedasticity test (ARCH-LM test) of ARMA model (36,0,0) with three (3) lags 

The F statistic assesses the collective statistical significance of the temporal lags in the 

residuals (omitted variables test). Should the probability value (Prob(obs-R^2)) exceed 0.01 

or 0.05, we fail to reject the null hypothesis indicating the absence of autocorrelation. 

Regardless of the chosen level of statistical significance, we are unable to reject the null 

hypothesis that there is no serial autocorrelation in the residuals up to the second temporal 

lag. 
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Table 7: Dynamic Heteroskedasticity test (ARCH-LM test) of ARMA model (36,0,0) with four (4) lags 

Thus, we revisit the initial hypothesis concerning the absence of ARCH-type dynamic 

heteroscedasticity in the residuals up to the i-th temporal lag. We specify the desired number 

of time lags, denoted as i. Given that the probability value (Prob(obs-R^2)) in the 4th lag does 

not exceed 0.01 or 0.05, we fail to accept the null hypothesis of no dynamic 

heteroscedasticity. Consequently, at the 5% level of statistical significance, we reject the null 

hypothesis positing the absence of dynamic heteroscedasticity in the residuals. 

The above results lead us to the conclusion that there is an indication of dynamic 

heteroscedasticity in the time series, so we should continue the modelling process with a 

model of the ARCH (Autopalindromic Bound Heteroscedasticity Model) family. 

ARCH-GARCH models capture volatility clustering but not the leverage effect. They assume 

that future values of 𝜎𝑡
 2 depend only on the magnitude and not the sign (positive or negative) 

of 𝑢𝑡. Stationary conditions and positivity constraints can cause difficulties during the model 

estimation process. 
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6.2 GARCH (Generalized Autoregressive Conditional Heteroskedasticity) 

In the preceding section, the presence of dynamic heteroskedasticity was observed in the time 

series under examination, attributed to volatility in the returns of the weekly spot price 

returns of Brent crude oil. Subsequently, an endeavour is made to characterize the volatility 

of the time series utilizing models from the ARCH (Autoregressive Conditional 

Heteroskedasticity) family. 

At first, the models will undergo evaluation. Subsequently, the most appropriate one will be 

selected based on the AIC (Akaike's Information Criterion) and SIC (Schwarz's Information 

Criterion) model selection criteria. Specifically, the estimation will be performed for the 

hybrid ARMA-GARCH, ARMA-T-GARCH, and ARMA-APARCH models. Following the 

model estimation outcomes analysis, a comparison of the AIC and SIC indices will be 

conducted to determine the most suitable model for progression to the subsequent prediction 

phase. 

6.2.1 ESTIMATION 

Estimation of ARMA-GARCH model 

We determine the order of the GARCH (p,q). The selection of the ARCH order corresponds 

to the value of q, while the GARCH order corresponds to the value of p. Using the EViews 

9.0 statistical software, we have estimated two models and obtained the subsequent results: 
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Table 8: Parameter Estimation, ARIMA-GARCH (1,1) 

 Table 9: Parameter Estimation, ARIMA-GARCH (1,2) 
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Table 10: Parameter Estimation, ARIMA-GARCH (1,3) 
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Table 11: Parameter Estimation, ARIMA-GARCH (1,4) 
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The estimation outputs of the ARMA-GARCH(1,1), ARMA-GARCH(1,2), ARMA-

GARCH(1,3), ARMA-GARCH(1,4),and ARMA-GARCH(2,2),  models are sequentially 

presented, revealing that, with the exception of the ARMA-GARCH (1,1) and the constant 

coefficient c, all other parameters exhibit statistical significance at significance levels of 10% 

and 5%, respectively, leading to rejection of the null hypothesis. Subsequently, the models are 

compared utilizing three information criteria: Akaike, Hannan-Quinn, and Schwartz. Based 

on the aforementioned results, the model with the minimal value across these criteria in 

Tables 8 -12 is selected. It is noted that all three criteria consistently advocate for the ARMA-

GARCH(1,4) model.  

 

Table 12: Parameter Estimation, ARMA-GARCH (2,2) 
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6.2.2 RESIDUAL DIAGNOSTICS/ARCH LM TEST 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Table 13: Dynamic Heteroskedasticity test (ARCH-LM test) of ARMA-GARCH (1,4) model 

 

The null hypothesis of homoscedasticity of the residuals cannot be rejected at the 5% level of 

statistical significance. 

6.3 THRESHOLD GARCH: 

 

6.3.1 ESTIMATION 

 

A Threshold GARCH model comprises a threshold component that helps compute 

asymmetries regarding negative and positive shocks. This means that the models treat the 

good news and bad news asymmetrically. 

After conducting an exploratory analysis, during which alternative models were evaluated, it 

has been determined that the ARMA -T- GARCH (1,1) model is the most effective. 
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Table 14 displays the outcomes of the mean equation in the upper section, the variance 

equation in the middle segment, and the principal statistical findings of the regression 

utilizing the residuals from the mean equation. Upon examination of the analysis of variance 

results, it is observed that the coefficient C(5) holds a positive value. Furthermore, the p-

value associated with the parameter coefficient is zero, indicating the significance of the 

coefficient at a 5% significance level and its positive correlation. These findings suggest the 

presence of a leverage effect, wherein negative returns from past prices exert a more 

pronounced influence on the future volatility of the time series under investigation compared 

to positive returns from past prices. 

 

Table 14:Parameter Estimation, ARMA-T-GARCH (1,1) 
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6.3.2 RESIDUAL DIAGNOSTICS/ARCH LM TEST 

 

 

 

 

 

 

 

 

 

 

 

The null hypothesis of homoscedasticity of the residuals cannot be rejected at the 5% level of 

statistical significance. 

 

6.4 ASYMMETRIC POWER GARCH: 

 

6.4.1 ESTIMATION 

 

The Asymmetric Power GARCH (APGARCH) model is a type of Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model that allows for asymmetric 

volatility responses to shocks in financial time series data. In traditional GARCH models, 

volatility responds symmetrically to positive and negative shocks. However, in APGARCH 

models, the response of volatility to negative shocks can be different from the response to 

positive shocks, capturing asymmetry in volatility dynamics. They allow for a more flexible 

and realistic representation of volatility dynamics compared to symmetric GARCH models. 

Table 15: Dynamic Heteroskedasticity test (ARCH-LM test) for ARIMA-
TGARCH (1,1) model 
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Table 17 displays the outcomes of the mean equation in the upper section, the variance 

equation in the middle segment, and the principal statistical findings of the regression 

utilizing the residuals from the mean equation. Upon examination of the analysis of variance 

results, it is observed that the coefficient C(6) holds a positive value. Furthermore, the p-

value associated with the parameter coefficient is zero, indicating the significance of the 

coefficient at a 5% significance level and its positive correlation. These findings suggest the 

presence of a leverage effect, wherein negative returns from past prices exert a more 

pronounced influence on the future volatility of the time series under investigation compared 

to positive returns from past prices. 

Table 16: Parameter Estimation, ARIMA-APGARCH (1,1) 
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6.4.2 RESIDUAL DIAGNOSTICS/ARCH LM TEST 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The null hypothesis of homoscedasticity of the residuals cannot be rejected at the 5% level of 

statistical significance. 

6.5 MODEL SELECTION 

After assessing the above models and analysing their results, the most appropriate model will 

be selected by comparing the AIC and SIC criteria indices. The most suitable model will be 

the one with the lowest indicators. 

Criteria GARCH (1,4) T-GARCH (1,1) APGARCH (1,3) 

AIC 4,2679 4.1865 4.2499 

SIC 4.3958 4.2824 4.3938 
Table 18 :Indices of Criteria AIC and SIC per GARCH model 

Upon examination of the information criteria, we ascertain that the ARMA-T-ARCH (1,1) 

model is the most suitable choice, as it exhibits the lowest AIC and SIC criteria. 

Table 17: Dynamic Heteroskedasticity test (ARCH-LM test), ARIMA-APGARCH (1,3) 
model 
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Consequently, the ARMA-T-ARCH (1,1) model will be employed to forecast the values of 

the time series under scrutiny, subject to preliminary diagnostic checks. 

Upon selecting the model, a diagnostic assessment becomes imperative to validate its 

appropriateness. This procedure involves two sequential steps. The first step involves testing 

for autocorrelation in the residuals of the examined time series, followed by a subsequent test 

for dynamic heteroscedasticity. The diagnostic check aims to confirm the absence of the 

aforementioned characteristics, enabling the progression to the prediction of the returns of the 

weekly returns of Brent crude oil. Below, the assessment for autocorrelation is conducted by 

visually inspecting the standardized squared residuals using the statistical software EViews 

9.0. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix 3: Correlogram of standardized residuals squared, ARIMA-T-
GARCH (1,1) 
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In Matrix 3, we observe the graphical representation of the autocorrelations (ACF) and the 

partial autocorrelations (PACF) of the residuals, whose values approach zero. Also, observing 

the Q-Statistic and p-value values, we see that the outcomes of the p-value values are more 

significant than the 5% significance level; therefore, the null hypothesis Ho is accepted, 

which means that there is no evidence of autocorrelation in the time series examination at the 

5% significance level. 

Subsequently, the examination proceeds with the test for dynamic heteroskedasticity. Upon 

scrutinizing Table 19, we discern the values of the F-Statistic and Obs*R-squared alongside 

their respective probabilities at the 5% significance level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notably, the computed p-values surpass the predetermined significance threshold, leading to 

the acceptance of the null hypothesis (Ho).  

Table 19: Dynamic Heteroskedasticity test (ARCH-LM test), ARIMA-TGARCH (1,1) 
model Aria
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If the residuals in a time series of Brent Crude oil returns are homoskedastic, it suggests that 

the variance of the residuals is constant over time. In other words, there is no systematic 

pattern of variability in the residuals as the time series progresses. 

Homoskedasticity in the residuals is a desirable property in many statistical models, including 

regression models and time series models, because it implies that the model's errors have a 

consistent level of variability and do not exhibit patterns of increasing or decreasing variance 

over time. 

In the context of financial time series like Brent Crude oil returns, homoskedasticity in the 

residuals indicates that there is no evidence of changing volatility or clustering of volatility in 

the data. This can make the modeling and forecasting process more straightforward and 

reliable, as assumptions about the constant variance of the residuals are met. 

This outcome suggests the absence of dynamic heteroscedasticity within the scrutinized time 

series at the 5% significance level. With the diagnostic test concluded, we deduce that the 

ARMA-T-GARCH (1,1) model remains suitable for progression to the forecasting stage, 

given the absence of autocorrelation and dynamic heteroscedasticity within the time series 

data. 

6.7 FORECASTING – FORECASTING EVALUATION 
 

In this section, we will conduct the forecasting for the returns of weekly Brent crude during 

the out-of-sample period (01/01/2019 – 31/12/2019) utilizing the ARMA-T-GARCH model 

(1,1) with the assistance of the statistical software Eviews 9.0. 
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Figure 3 delineates the comprehensive outcomes of the prediction procedure. Initially, the 

forecast of the percentage returns graph is presented, where the blue line depicts the forecasts. 

In contrast, the red lines delineate the forecast values and the associated error margin. It is 

observed that the output values spanning the period from 01/01/2019 to 12/31/2019 fluctuate 

within the range of -0.5 to 0.5. Subsequently, the volatility forecast chart (Figure 4) is 

displayed, wherein the blue line illustrates the forecasted volatility across the considered 

timeframe. Notably, a discernible downward trend in the variance value is apparent, 

commencing from value 14 and concluding at value 4. 

Figure 3:Prediction of percentage returns from 01/01/2019 - 
31/12/2019 

Figure 4: Prediction of variance (forecast period 01/01/2019 
- 31/12/2019) 

Aria
 Io

ak
eim

 



65 
 

Preliminary information analysis 

Preliminary information analysis involves examining the data collected using graphs and 

statistical indicators like the mean and dispersion. These techniques assess the models' ability 

to forecast future return volatility, observe patterns, and identify outliers. This process is 

crucial as it informs the subsequent stage of model selection. 

The current forecast evaluation comprises the following indicators: Root Mean Square Error, 

Mean Absolute Error, Mean Absolute Percentage Error (MAPE), and Theil’s inequality index.    

Tables 20 - 22 represent the forecast evaluation values for the GARCH  models created in this 

analysis. 

Real Forecast: Percentage Returns of the weekly Brent Crude Oil Prices 

Forecast Sample: 01 January 2019 - 31 December 2019 

Παρατηρήσεις: 52 

Indicator Root 

Mean 

Squared 

Error 

Mean 

Absolute 

Error 

Mean 

Absolute 

% Error 

Theil 

Inequality 

Coef. 

Bias 

Proportion 

Varianc. 

Proportion 

Covariance 

Proportion 

Total 1.6240 1.2527 98.0909 0.8483 0.0233 0.6275 0.3490 

 

Table 20: Assessing the reliability of the forecasting the ARMA-GARCH (1,4) model 
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Real Forcast: Percentage Returns of the weekly Brent Crude Oil Prices 

Forecast Sample: 01 January 2019 - 31 December 2019 

Παρατηρήσεις: 52 

Indicator Root 

Mean 

Squared 

Error 

Mean 

Absolute 

Error 

Mean 

Absolute 

% Error 

Theil 

Inequality 

Coef. 

Bias 

Proportion 

Varianc. 

Proportion 

Covarianc. 

Proportion 

Total 1.5995 1.2214 105.5216 0.8372 0.0024 0.7103 0.2872 

 

Table 21:Assessing the reliability of the forecasting the ARMA-T- GARCH (1,1) model 

 

Real Forcast: Percentage Returns of the weekly Brent Crude Oil Prices 

Forecast Sample: 01 January 2019 - 31 December 2019 

Παρατηρήσεις: 52 

Indicator Root 

Mean 

Squared 

Error 

Mean 

Absolute 

Error 

Mean 

Absolute 

% Error 

Theil 

Inequality 

Coef. 

Bias 

Proportion 

Varianc. 

Proportion 

Covarianc. 

Proportion 

Total 1.6180 1.2445 96.8420 0.8495 0.0180 0.6443 0.3375 

Table 22: Assessing the reliability of the forecasting the ARMA-APGARCH (1,3) model 

RMS measures the standard deviation of the residuals. Residuals are prediction errors 

measuring the distance between the data points from the regression line, influenced by 

outliers. Therefore, RMSE is a representation of how spread out these residuals are. 

Comparing the RMSE of all three models, we can observe that the value of the specific index 
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is relatively low, which indicates the reliability of the model's predictive ability—the lower 

our index, the better. The model with the lowest residual spread around the line of best fit is 

ARMA – T-GARCH.  

The MAE index helps determine forecast accuracy. In particular, the index is the average of 

errors in absolute value. This indicator shows the magnitude of errors without considering 

whether they are overestimations or underestimations. The smaller the MAE, the better the 

model's predictions align with the data. An MAE of 0 would mean a perfect prediction, but in 

most cases, achieving such perfection is unlikely, and thus, lower values are better. Unlike 

other metrics, MAE is less sensitive to the data's extreme values (outliers). In this analysis, all 

models indicate that the mean absolute error is near one (1), which is also low and indicates 

the accuracy of the prediction results. 

The subsequent metric under consideration is the Mean Absolute Percentage Error (MAPE) 

index. MAPE is the average absolute percentage error equal to 98.0909, 105.5216 and 

96.8420 (refer to the Tables 20-22 respectively) confirming the forecasts' reliability based on 

the time series model where it was followed. 

Finally, we will observe the Theil inequality coefficient, which always lies between 0 and 

1.  When the Theil Inequality Coefficient is close to 1, it indicates a high level of inequality 

within the dataset. The Theil coefficient is a measure used to assess inequality within a 

distribution. It takes values from 0 to 1. Therefore, a value close to 1 suggests a significant 

disparity among the values in the dataset, with some values dominating others, resulting in a 

highly unequal distribution. The Theil index breaks up into three ratios of inequality, such 

that bias + variance + covariance = 1.   Whatever the value of the Theil index, we prefer the 

model with a bias indicator close to 0.   However, if the variance is large, the actual series has 

fluctuated broadly, whereas the forecast has not. This proportion measures unsystematic 
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error.  The outcomes show that the relative differences among forecasting evaluation criteria 

are minor. Thus, the ARMA - T- GARCH model is chosen as the most preferred among all 

the other models to study the volatility behaviour and the corresponding forecasting of 

returns. 

Upon concluding the forecasting procedure for the weekly returns of Brent crude oil, the 

ARMA-T-GRACH (1,1) model demonstrated reliability in its predictive capacity. 

CHAPTER 7: CONCLUSION 

 

This analysis involved applying econometric standards to determine the most suitable 

forecasting model. Upon achieving this thesis's objective, a methodical approach was 

employed to synthesize the econometric models' results, conclusions, and analyses. 

Beginning with the initial phase of the Box Jenkins methodology, namely identification, the 

stationarity of the time series was verified through the Augmented Dickey-Fuller (ADF) test. 

Subsequently, the diagnostic test was conducted as the third stage of the Box Jenkins 

methodology to evaluate the autoregressive models. It was determined that the ARMA model 

(36,0) exhibited superior adaptability compared to the alternative ARMA model. 

Two conditional generalized constrained dynamic heteroscedasticity models were then 

estimated where, again, using appropriate diagnostic tests, we concluded that the most 

appropriate model for forecasting Brent Crude oil returns is ARMA-T-GARCH(1,1) to which 

we have fitted the autoregressive ARMA model (36,0).  T-GARCH consider the tendency of 

volatility clustered in time, meaning that periods of high volatility are often followed by 

additional periods of high volatility. This is a common phenomenon observed in financial 

time series data. T-GARCH can capture the asymmetric response of volatility to positive and 

negative shocks, known as leverage effects. This feature is essential for accurately modelling 
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the behaviour of financial assets, where adverse shocks often result in higher volatility 

compared to positive shocks. 

Therefore, forecasting was conducted for the period spanning from 01 January 2019 to 31 

December 2019. Moreover, the forecast outcomes were deemed notably satisfactory. 

Subsequently, metrics were applied to assess the reliability of the model predictions, utilizing 

the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and Theil indices. Considering the 52 observations within our 

sample, the RMSE index exhibited a relatively low value, indicative of the optimal alignment 

of our data. Furthermore, the MAE index, at 1.2214, reflected a negligible disparity between 

the forecasted and actual returns, affirming the precision of the prediction results. Notably, 

the MAE index serves as an indicator of predictive accuracy. However, the Theil Inequality 

Coefficient is close to 1. This means there is a significant disparity among the values in the 

dataset, with some values dominating others, resulting in a highly unequal distribution. 

Referring to Figure 1, where we identified a wide range of fluctuations and spikes in Brent 

crude oil prices, it is highlighted that outliers could lead to a misspecification of the model 

when we ignore the presence of this type of data. Despite that, the model's parameters 

governing volatility dynamics are biased when we do not consider outliers, regardless of the 

trading environment (calm or noisy periods). 

As per the literature reviewed in chapter three, forecasting models may be of two types: 

symmetric models, including ARCH and GARCH, and asymmetric models, comprised of 

EGARCH, T-GARCH, and APGARCH. The difference between these two models is that the 

asymmetric models capture leverage effects in the time series.  

Upon comparing the outcomes of our analysis with the existing literature, a notable 

consensus emerges. Most studies, in line with our findings, assert that asymmetric GARCH 

models are well-suited for forecasting returns. This aligns with the study of Ng’ang’a, F. W., 
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& Oleche, M. (2017), which outlines that the IGARCH model is the most suitable model out 

of the five asymmetric models of the GARCH family. In addition, Kang and Yoon (2009) 

conclude that the CGARCH and FIGARCH models are suitable for forecasting crude oil 

price volatility. Dritsaki (2018) found that the hybrid ARIMA-GARCH models provide 

optimal forecasting results. Thus, the combination of ARIMA and GARCH family models 

provides biased results on handling the volatility of oil returns. This makes hybrid models the 

most suitable for analyzing and forecasting time series of commodities. 

Having conducted the aforementioned analysis utilizing the statistical software Eviews 9.0, it 

becomes evident that this statistical tool is appropriate for modelling and forecasting time 

series data.  

This thesis delineates the methodology employed in modelling time series and elucidates the 

process of forecasting future commodity returns. Mitigating investment risks is imperative for 

businesses to attain profitability. Thus, employing predictive models can substantially 

mitigate risks and enhance performance. However, it is essential to acknowledge that 

forecasts inherently entail uncertainty, as unforeseen events may transpire. 

A recent example is the unforeseen onset of the coronavirus pandemic, which exerted 

unprecedented effects on various sectors, notably leading to a significant decline in Brent 

crude oil returns. Such events underscore the inherent limitations of forecasting accuracy. 

Moreover, the pandemic-induced shock in demand significantly impacted crude oil markets. 

7.1 SUGGESTIONS FOR FUTURE RESEARCH 

 
This paper focuses its analysis on searching for the most suitable model to estimate and forecast 

the volatility and return values of the weekly spot prices of Brent crude oil. Future research 

could extend the analysis of this paper and make predictions by applying all the models 

developed here to compare and evaluate their results. 
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Another suggestion for future research is to compare the forecast results of the weekly returns 

of  WTI crude oil with the BRENT crude oil counterparts since these two types of crude oil are 

used as benchmarks in the oil industry. It would be interesting to analyze the results of this 

comparison. 

Finally, a suggestion for future research is to compare the forecast results between weekly 

returns of Brent-type crude oil and future weekly returns of the same type of oil. We know that 

futures price trends in the stock market play an important role in investors' expectations of 

future oil prices. 
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