University of Cyprus

Master’s Thesis

DETECTION AND CLASSIFICATION OF
CONSTRUCTION OBJECTS
BY USE OF MACHINE VISION AND DEEP LEARNING

Nicolas Nicolaou

Nicosia, May 2024

Approval Form

Master’s Thesis

DETECTION AND CLASSIFICATION OF
CONSTRUCTION OBJECTS
BY USE OF MACHINE VISION AND DEEP LEARNING

Presented by

Nicolas Nicolaou

Supervisor: Symeon Christodoulou, Professor
Department of Civil and Environmental Engineering

Member of the Committee: Loukas J Dimitriou, Associate Professor

Department of Civil and Environmental Engineering

Member of the Committee:

https://www.ucy.ac.cy/cee/en/people/schristo
https://www.ucy.ac.cy/cee/en/people/schristo

Copyrights

©2024

Nicolas Nicolaou

ALL RIGHTS RESERVED

Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, Dr. Symeon Christodoulou,
for his invaluable assistance and guidance throughout the preparation and completion of

my MSc thesis work. His support has been indispensable and greatly appreciated.

I would also like to extend my gratitude to my family for their unwavering support
throughout this endeavor. Additionally, I am thankful to my colleagues and partners for
granting me access to and supporting me in obtaining photographic material from

construction sites.

The construction industry represents a continuously evolving environment where there is
always room for process improvement and modernization. Artificial intelligence, as well
as other emerging technologies such as machine vision (MV) and machine learning (ML),
are indispensable in such an environment. Indeed, in recent years, their usefulness has

become increasingly evident, along with the various possibilities for their application.

This research paper focuses on the detection and classification of objects at construction
sites and analyzes the utility and potential of these detection and classification activities in
the modern construction industry. Object detection and classification are performed by
applying technologies such as machine vision (MV) and deep learning (DL) to image
processing and/or in combination with object segmentation and labeling using bounding
boxes. These activities have varied applications on construction sites, including but not
limited to: (1) the monitoring of workers, machinery, and vehicles for productivity
measurement and for the prevention of accidents and collisions; and (2) the monitoring and
classification of procured of construction materials, to evaluate the progress of construction
work. This serves as a valuable, low-cost measurement tool in the context of the

management and monitoring of construction projects.

First, the presented research work examines the knowledge base from past work on the
application of the aforementioned technologies to similar problems across varying
professional domains, focusing on the construction sector. An extensive evaluation of their
accuracy, reliability, and effectiveness is conducted, along with the identification of
potential advantages/disadvantages of their application. Further presented is the
methodology followed in pursuit of the research’s scope of work. Specifically, nine
specific ‘construction classes’ potentially found at a construction site are addressed.
Subsequently, the corresponding results are provided and extensively discussed, along with

an examination of any potential errors in the recognition and taxonomy of these classes.

Finally, snippets (in the Python programming language) of the programming code used

during various phases of the overall methodology are provided.

O KoTaoKeELOOTIKOG KAGOOG amotelel éva cuveymg eEeMacdevo teptBdAlov 6to omoio
TavTo VIAPYEL TEPIOMPLO Yo EVEPYEIEG PEATIMONG OlEPYUSLOV AALA KO EKGLYYPOVIGLOV
tov. H teyvnt) vonuoosvvn kabo¢ eniong Kot GAAEG veopavelg Teyvoloyieg OTmg givor 1
unyovikn opaon (MV) kot n pnyoavikn ekpadnon (ML) dev Ba propovcav va Asimovv amd
10 TePPIAAOV avtd. AAlmote, To TElgvTain ¥povia yiveToar OAO KOl O EUOOVAG M

YPNOUOTNTO TOVS OALA KOl O O1APOPES OLVATOTNTEG EPOPLLOYNG TOVG.

H mopodca epguvntikn epyacio ETKEVIPAOVETOL GTOV EVIOTMICUO KOl TNV TOSVOUNON
OVTIKEWWEVOV GE €PYOTASIO Kol avOADEL TN YPNOILOTNTO KOl TH SUVOUIKY OLTOV TOV
OpPACTNPOTATOV EVIOTMICUOD KOl TOEWVOUNGNG GTN CLYYPOV] KOTOGKELOGTIKN
«Bropmyovion. O gvtomiopdg Kot 1 TaEvOUNoT AVTIKEIUEVOV TPOYLOTOTOLEITOL LEGH TNG
EQPAPUOYNG TEXVOLOYIOV OTtmg 1 unyaviky 6pacn (MV) ko n fadid ekpuadbnon (DL) oty
eneepyacio eikdvoc /Kol oe cLVOVAGHO HE TNV avdbdeon ETIKETOV Kol oplofeTnuévev
mlociov oe oviikeipeva. AVTéG ot dpacTnPOTTEG £XOVV SAPOPES EPAPUOYES GTA
gpyota&ia, Kabdg cupuPdiovy HeTa&d AAA®Y, GTOV EAEYYO TOV EPYUTIKOD TPOCMOTIKOD, TOV
UNYOVNUATOV KOl TOV OYNUATOV 7OV J0KIVOOVTOL GE OLTO HE OKOMO TNV TPOANYM
ATVYNUATOV KOl GUYKPOVGEMV, KOOMDC ETiONG GTNV TOPaKOA0VON G Kot KATYOPLOTOoino
TOV TPOUNOEVOUEVOV KATAGKEVOGTIKMOV VAMK®OV, TPOKEUEVOL VA a&toloynBel n mpdodog
TOV KOTOOKEVOOTIKOV £PYOctdV. Avtd Asttovpyel ¢ €va yauniod K6GTovg TOAVTIHO
gpyoieio empéTpnong-aEloAdynong ota mAaiclo g olayeipiong kot mapokolovdnong

KOTOGKEVOGTIKAOV £PYMV.

Apywad, n mapovoa gpevvnTikny epyocio e€etdlel v VmapEn mPoOTEPNS £pYACIiag Kot
EQOUPUOYNG TOV €V AOY® TEXVOAOYLOV Yio TOPOUOLNG GVOTNG (NTAUATO GE OTO00NTOTE
EMAYYEALO Kol ON OTOV KOTAGKELAOTIKO Topén. [iveton pio extevig a&loAdynon g
axpifelog, g aglomoTtiog Kot TG AmOTEAEGUOTIKOTNTOS TOVS KaBdg Kot 1 dtakpifmon
TV TOOVAOV TAEOVEKTNUATOV/UEIOVEKTNUATOV ond TV €Qappoyn tovs. Emumiéov,
napovotdletaln peBodoroyio Tov akorovdnOnke ot fAcT TOL GKOTOV TOL TEPLEYPAPNKE
TPONYOLUEVMG. ZVYKEKPIUEVQ, e&eTdlovTon evvEd SLOPOPETIKEG KAACELS OVTIKEIUEVOV Ol

omoieg dvvnTik®g evtomilovtol o€ éva gpyotd&lo. AkoAovBmg, divovtal ta avticTotyo

amoteAéopato Kot oyoMdlovior ektevadg Kabodg emiong efetaleton m vmapén TLXOV

COOAUATOV.

Téhog, dtvovtan amoomdopoto amd KOJKO 6T YA®ooo mpoypouptoticpod Python wov
xpnoomomdnke Katd 1Tn Oldpkew OPoOpwv @doemv g Mebodoroyiag mov

axoAovOnOnKe.

TABLE OF CONTENTS

ABSTRACT ettt st b e a et ere 5
TTEPIAHWH ..ottt st 6
TABLE OF CONTENTS ..ottt ettt sttt eie s 8
LIST OF FIGURES.......coo ittt sttt ene 9
LIST OF TABLES........o ottt 10
LIST OF ABBREVIATIONS. ..ottt 11
L INTRODUCTION ..ottt sttt sa e e 12
1.1 LItErature rVIEW ..c.cciiiiiiiiiiiiicri e 12
B N 1o EE Y o] o 1TSS PUPUPR 17
1.3 ThESIS OFZANIZAtION .. .uiiii ittt ettt e e e tre e e e et te e e e sba e e e e ebaeeeeebeeeesenstaeaeensaneesnns 18
2. RESEARCH BACKGROUND.......ccoiotiiritiiteteeeetetse ettt 20
D2 1Y =T o T YRR A Y To T Y (1Y YA IS 20
2.2 DEEP LEAIMING (DL) 1uveiiiiiieeieeeeieeeiee ettt e ettt e s e e e tae e s te e eta e e s te e s baeesateeesaeessseesnsaeesnseennses 21
2.3 Image Classification (IC)......cuiiiieeiiieeiieeeciee ettt et e s e ere e s te e e bae e s be e e bae e ateeenbaeesnseaennes 22
PN 0] oY =Totd D 1=T {=Tox d oY s (@] 5) ISR 23
3. RESEARCH METHODOLOGYoociiiiiitiniiieieieteesiesrese ettt 25
3.1 OVEIVIBW .ottt 25
3.2 Image Classification FrameWorK.........oocuiieiiiiiiiiceccces e 26
3.3 Object Detection FrameWOrKc.uuei ittt 28
4. ANALYSIS AND RESULTS ...ttt 35
4.1 Image Classification RESUILSccoccuiiiiiiiiie ettt e e ebee e e e eatae e e e areas 35
4.2 Object Detection RESUILScciciiiii et e et e e e s aba e e e e 43
5. SUMMARY OF FINDINGS.......ccootiiriiiiiitice s 61
6. CONCLUSIONSottt 64
REFERENGCES ...ttt st st nbe s 66
APPENDIX ...ttt b et n e ere 68

Figure 1.1: The value of global Generative Al in the construction industry 13

Figure 2.1: Object detection using Maching Visionccccccocvveieiieviiene e 20
Figure 2.2: Functional difference between Machine Learning and Deep Learning......... 21
Figure 2.3: Sample result for image classification by ImageAl library..........ccccccoenennen. 22
Figure 2.4: Sample result for object detection by ImageAl libraryccccovevviiernnnn. 23
Figure 3.1: Custom image classification methodology flowchart..............c.ccoevveinnnnnn. 28
Figure 3.2: Instance and image distribution across custom classes............cccoovevveviereeennn. 29
Figure 3.3: Labelimg workspace during annotation ProCESScccvvvereeveseerueereeseesnns 30
Figure 3.4: Custom object detection methodology flowchartcccoeoeieiiininn. 34
Figure 4.1: Prediction percentages per class by custom IC model (example 1)............... 36
Figure 4.2: Prediction percentages per class by custom IC model (example 2)............... 38
Figure 4.3: Prediction percentages per class by custom IC model (example 3)............... 39
Figure 4.4: Prediction percentages per class by custom IC model (example 4)............... 41
Figure 4.5: Custom OD model implementation (example 1): (a) Initial random photo, (b)
Detected objects by custom OD mModel...........cccovvveiiieiiiieniereee e 44
Figure 4.6: Custom OD model implementation (example 2): (a) Initial random photo, (b)
Detected objects by custom OD mModel..........cccevvieiiiniiieieee e 46
Figure 4.7: Custom OD model implementation (example 3): (a) Initial random photo, (b)
Detected objects by custom OD mModel..........cccovvieiiiiiiiieieece e 48
Figure 4.8: Custom OD model implementation (example 4): (a) Initial random photo, (b)
Detected objects by custom OD model..........cccovveiiiieiiiisenece e 49

Figure 4.9: Custom OD model implementation (NMS example): (a) Initial random photo,
(b) Detected objects by custom OD model without NMS, (c) Detected objects

by custom OD model with NMS and rendering settingsccccceceevvevveennnne 51
Figure 4.10: Custom OD model implementation (H&S example): (a) Initial random
photo, (b) Detected objects by custom OD model.c.ccceovvevveviiieinennne 53
Figure 4.11: Python code output (H&S eXample)ccccceeveiveieiie e 53
Figure 4.12: Results of confusion matrix based on custom OD modelc..ccoc........ 55
Figure 4.13: Custom object detection model’s metrics (per class and overall)................ 56
Figure 4.14: Instance distribution before and after NMS applicationc.cccoveeneenee. 58
Figure 4.15: Results of confusion matrix based on custom OD model after NMS
APPHICALION ... e s 59
Figure 4.16: Custom object detection model’s metrics after NMS application (per class
ANA OVETAIN) <. 60

Table 3.1: Numerical codes of examined construction objects’ classes........c.cvvvverrrennnns 26

Table 4.1: Custom object detection MOdel’s MEIICSucvvvviiiieiiiiiei e 43
Table 4.2: Detected objects by custom OD model (example 1)cccevvviiiiiienininennnns 45
Table 4.3: Detected objects by custom OD model (example 2)ccccoovvveviiiienienienns 47
Table 4.4: Detected objects by custom OD model (example 3)ccccovviieiiinieiiennennns 48
Table 4.5: Detected objects by custom OD model (example 4)cccovviieviiiieiinnnennns 50
Table 4.6: Detected objects by custom OD model (H&S example)cccoovevviiinnnnnns 54

10

LIST OF ABBREVIATIONS

Al
MV

DL

oD
NMS
loU

mAP

Artificial Intelligence
Machine Vision

Deep Learning

Image Classification

Object Detection
Non-Maximum Suppression
Intersection over Union

mean Average Precision

11

1.1 Literature review

The construction sector, even in modern times, faces numerous perennial problems and

challenges related to the effective management and monitoring of construction projects.

Some of these challenges are, for example, associated with safety and health on
construction sites. Despite significant progress achieved through the introduction of
regulatory frameworks and legislation, a considerable number of occupational accidents
are still recorded today. These accidents are not exclusively personal but are often linked
to the reckless use of mechanical equipment and vehicles, as well as insufficient
coordination, organization, and monitoring at construction sites. Therefore, a system using
machine vision (MV) and deep learning (DL) technologies could, in this case, detect a
worker in a restricted zone of the construction site, or determine whether the worker is
wearing appropriate safety equipment or, even better, continuously appraise the ergonomic
risks to workers (Lambrides and Christodoulou, 2023) [1]. Additionally, the system could
be used to ensure the proper operation of mechanical equipment in designated areas and

the maintenance of safe distances by the working personnel at the construction site.

Another critical issue commonly encountered at construction sites is resource management
and construction progress monitoring. Delays, particularly in large construction projects,
often occur due to material shortages and insufficient logistics in material delivery.
Conflicts and construction delays are also frequent occurrences. Therefore, a mechanism
based on the aforementioned technologies could be employed to monitor the transport of
construction material to sites and visually document the construction process. This visual

documentation can be valuable for reference and analysis.

In light of the aforementioned and other challenges faced by the modern construction
industry, the use of machine vision and deep learning technologies is imperative. These
technologies enable the automation of numerous technical processes on the construction
site while facilitating the monitoring and resolution of various problems within it. The

investment of the construction industry in technologies related to artificial intelligence has

12

taken significant dimensions in recent years. Specifically, according to Market.us (Figure
1.1) [2], for the year 2023, the value of Generative Al in the construction industry, on a
global scale, has been estimated at around USD 142 million, while this value is expected
to double by 2033, as depicted in the following graph. Additionally, a significant, if not the
most significant, contribution to this value seems to be attributed to machine learning
technology, something that is expected to continue happening in the immediate future. This
once again confirms the prominent value of this technology in the activities of the

construction sector.

Global Generative Al in Construction Market

W Machine Learning

® Natural Language Processing 5 g5
Other Technologies

Size, by Technology, 2023-2033 (USD Million)
3000

2500
2114.9

2000
1,566.6

o 1160.4
o 859.6

e 636.7

471,
o ya20 1917 2588 349.4 I
s mou o m N

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

The Market will Grow The Forecasted Market

At the CAGR of: 35% size for 2033 in USD: $2,8 55.1M !'\'.' i

Figure 1.1: The value of global Generative Al in the construction industry

In recent years, a significant volume of research studies have been conducted on the use of
machine vision (MV) and deep learning (DL) technologies for detecting and classifying
construction elements at construction sites. This trend began in the early 2010s, with works
on the automated generation of parametric BIMs (Brilakis et al., 2010) [3], and despite the
significant improvements in relevant applications, there is still room for further

development.

13

The article by Czerniawski and Leite (2020) [4] introduces the automation of digital
modeling of existing buildings through reality capture devices and computer vision
algorithms. The goal is to facilitate the use of digital building representation technologies,
promoting new forms of simulation, automation, and information provision. The article
provides an overview of endeavors spanning the last decade (2010-2020), with a primary
focus on object recognition methodologies. Addressing limitations identified in previous
review literature, the authors meticulously dissect the structure and variations of object
recognition systems, accompanied by thorough quantitative performance evaluations. The
research results suggest that achieving a more complete semantic coverage of building
infrastructures will require a revision and intensification of relevant efforts. In conclusion,
the study advocates for a reevaluation and heightened dedication to bridging existing gaps
in object recognition technologies to propel advancements in automated digital modeling

for existing buildings.

Nath and Behzadan (2020) [5] propose the validation of a genetic adversarial network
(GAN) based on a deep convolutional neural network (CNN). The research involves photos
taken, trained, and tested at the construction site from two internal datasets to increase
image resolution when generating missing pixel information. Results demonstrate that
using GAN-enhanced images can further improve the average accuracy of pre-trained
models for object detection while maintaining overall processing time for real-time object

detection.

A key aspect in leveraging DL methods for construction site data interpretation is the
accurate identification of objects of interest. Achieving this accuracy requirement is
essential, albeit often at the expense of computational speed. While lightweight DL
algorithms like Mask R-CNN offer high accuracy in visual recognition tasks, their
processing efficiency may hinder real-time decision-making capabilities. Notably, the
YOLO (you-only-look-once) algorithm emerges as a promising solution due to its ability
to strike a balance between speed and accuracy. The study introduces the Pictor-v2 dataset,
comprising approximately 3,500 images and 11,500 instances of common construction site

objects. Through transfer learning, the researchers trained YOLO-v2 and YOLO-v3

14

variants, assessing their performance on various combinations of data sources, including

crowdsourced and web-mined images.

This review underscores the significance of employing DL-based approaches in
construction site data interpretation and lays the groundwork for future research endeavors
aimed at enhancing human capabilities through advanced assistive technology systems in

complex visual data environments.

In a subsequent work, Paneru and Jeelani (2021) [6] provided an up-to-date and categorized
overview of computer vision applications in construction by examining recent
developments in the construction sector and the challenges that future research must
address to maximize the benefits of computer vision. The authors focus on specific areas
considered most likely to benefit significantly from computer vision, such as safety
management on construction sites, progress and productivity monitoring, and work quality

control.

This work provides an insightful and categorized overview of computational vision
applications in construction, highlighting recent advancements in the field and identifying
opportunities and challenges for future research. The focus is narrowed down to four key
areas where computer vision can significantly enhance construction management: Safety
Management, Progress Monitoring, Productivity Tracking, and Quality Control. Overall,
the article offers a comprehensive examination of the potential benefits of integrating
computer vision into construction management practices, shedding light on the
opportunities and obstacles that lie ahead in fully harnessing the capabilities of this

technology.

One year later, Duan et al. (2022) [7], focused on developing a large-scale image dataset
specifically collected and processed for construction sites, named SODA (Site Object
Detection Dataset). This dataset includes 15 types of objects categorized into mechanical
means, materials, and labor personnel. Specifically, 20,000 images were collected from
various construction sites, considering different construction site conditions, weather
conditions, construction phases, and shooting angles. After careful examination and
processing, 19,846 images were selected, containing 286,201 objects accompanied by

corresponding labels from predefined categories.

15

An analysis conducted indicated that the developed dataset is advantageous in terms of
diversity and volume. Further evaluation using two widely accepted object detection
algorithms based on deep learning (YOLO v3 / YOLO v4) demonstrated the dataset’s
effectiveness in visualizing typical construction scenarios, achieving a maximum mean
Average Precision (mAP) of 81.47%. This research contributes a large-scale dataset for the
development of deep learning applications in object detection within the construction
industry. It serves as a reference point for the further evaluation of corresponding
algorithms in this field.

In their work, Wang et al. (2022) [8] proposed a new semantic method aiming to extract
information by integrating deep learning object detection and image captioning. This
method explores important information from construction images or videos. In the
proposed approach, object detection serves as an encoder to extract features of construction
objects and the holistic image. The image caption was selected as a decoder to extract the
semantic information. A new post-processing technique has been suggested to assess
semantic information in graph format, aiming to enhance accessibility and visualization.
In experimental trials, the proposed approach yielded a Consensus Image Description
Evaluation (CIDEr) score of 1.84, indicating its effectiveness. By adopting this method,
semantic information from construction images can be presented to project managers as a

valuable tool for making crucial decisions on the construction site.

In the research work of Hou et al. (2022) [9], a multi-object detection method based on the
improved YOLOv4 model is proposed to overcome the problem of low detection accuracy.
The method involves several key optimizations, including the utilization of the K-means
algorithm for anchor box initialization, replacing pooling operations with dilated
convolution to preserve feature map resolution, and integrating focus loss to address
sample imbalance during model training. Research results indicate that the average
accuracy (mAP) of the improved YOLOv4 model for many objects can reach 97.03%,
which is 2.16% higher than that of the original YOLOv4 detection network. At the same
time, the detection speed reached 31.11 fps, a decrease of 0.59 fps, a result quite

satisfactory for real-time detection data.

16

Overall, this research marks a notable advancement in environment perception for
construction machinery swarm operations. By addressing critical limitations in detection
accuracy and speed, the proposed method lays a solid foundation for the unmanned and
intelligent evolution of construction machinery operations, promising enhanced efficiency

and safety in complex construction environments.

Zhou et al. (2022) [10] propose an object detection method based on an improved YOLOV5
model with high sorting accuracy of construction waste. It involves creating a dataset from
images of construction waste taken in situ at construction sites. This improved model was
trained, validated, and tested based on the collected images and compared with other
conventional models such as Faster-RCNN, YOLOv3, YOLOv4, and YOLOv7. The
YOLOvV5 model recorded an average accuracy (mAP) on the test dataset of 0.9480,

indicating better performance than other conventional models in object detection.

Overall, the study underscores the accuracy and practicality of the enhanced YOLOvV5
model for sorting construction waste. By outperforming existing models, the proposed
approach holds significant potential for optimizing waste management processes in
construction settings, ultimately contributing to improved efficiency and resource

utilization.

In a recent research paper by Jog et al. (2022) [11], full-scale validation experiments of a
multi-object location tracking method for its application to resource tracking in large-scale,
congested, outdoor construction sites are presented. The validation stage involved testing
under harsh conditions on various large project sites. This research paper describes the
process of data collection and testing, as well as the measurements and results obtained.
The validation showed that the new vision tracking provides a good solution for tracking

different entities in large and congested construction sites.

1.2 Thesis scope

As previously mentioned, this research work endeavor aims to achieve successful
classification and detection of objects encountered at construction sites through the
utilization of photographs and technologies in machine vision and deep learning. The

object detection and classification tasks was focused on nine distinct classes of objects,

17

encompassing both load-bearing and non-load-bearing structural elements, excavators,
human personnel, and individual protective equipment. Additionally, a capability was
incorporated to examine safety and health issues at construction sites by issuing relevant
warnings in case individuals without the required personal protective gear were identified
in the photographs. For the training of classification and object detection models, two
pertinent classes, namely "safety helmet™ and "reflective jacket,” were incorporated among
the nine classes under examination to facilitate the aforementioned supplementary
functionality. Furthermore, conclusions regarding the performance and accuracy of the
new custom trained models were drawn through examples and confusion matrices, utilizing

various measurement units and success rates.

To accomplish the aforenamed objective, models, codes (in Python), and algorithms were
employed, which undertake the activities under examination with the assistance of
computer vision and deep learning technologies. Following this, in this thesis a dedicated
chapter (“Research Background”) elucidates the operational mechanisms of these
technologies and the pertinent tasks they undertake. Furthermore, a chapter entitled
"Research Methodology" is dedicated to providing a detailed explanation of the preparation
and training process of the two models under study, as well as the examination of other
functions. Following this chapter, the presentation and discussion of the relevant results
ensue, along with a further evaluation of the effectiveness of the resultant models. In
conclusion, the research work concludes with chapters on findings summary and
conclusions, where a comprehensive and overarching commentary on the relevant findings

is provided.

1.3 Thesis organization

Further to this introductory and brief literature review chapter, the thesis discusses the
research background (Chapter 2) on machine vision (MV), deep learning (DL), image

classification (IC) and object detection (OD), and the research methodology (Chapter 3).

Chapters 4 and 5 present the analysis performed and the findings, respectively, on object

detection and classification at construction sites.

18

The thesis concludes with a chapter on key conclusions and an appendix with snippets of

the programming code used for the analysis.

19

2. RESEARCH BACKGROUND

2.1 Machine Vision (MV)

Machine vision, also referred to as computer vision, pertains to a technological domain
wherein computers are equipped to interpret and comprehend visual data, akin to the
human visual system. It involves the development of algorithms, techniques, and systems
that empower machines to extract, analyze, and understand meaningful insights from

digital images or video feeds.

Typically, machine vision setups encompass cameras or similar image-capturing devices
for acquiring visual data, alongside software and hardware components tasked with
processing this data to execute various functions. These functions may entail tasks such as
detecting, recognizing, classifying, tracking, analyzing motion, enhancing images, and
reconstructing 3D representations. The application scope of machine vision spans
numerous industries and disciplines, encompassing manufacturing, healthcare, agriculture,
automotive, surveillance, robotics, augmented reality, and beyond. Its significance lies in
its pivotal role in automation, quality control, inspection, monitoring, and decision-making
processes by granting machines the capability to autonomously "see" and interpret visual
information. An example of object detection task as part of machine vision technology is
given in Figure 2.1 [12].

Figure 2.1: Object detection using Machine Vision

20

2.2 Deep Learning (DL)

Deep learning is a branch of machine learning technology focused on training complex
artificial neural networks with multiple layers. These networks, inspired by the human
brain's structure, process data through interconnected nodes called neurons across
successive layers. Each layer extracts features from the input data, and through
backpropagation, the network adjusts its internal parameters to minimize prediction errors

during training.

Deep learning is particularly effective in tasks like image and speech recognition, natural
language processing, and recommendation systems. It automatically learns hierarchical
representations of data, eliminating the need for manual feature engineering.
Advancements in hardware and the availability of large datasets have propelled deep
learning's popularity and impact. It has revolutionized fields such as computer vision,
speech processing, healthcare, finance, and autonomous systems. The following figure [13]

explains graphically the difference between machine and deep learning.

MACHINE LEARNING

v
. S
P<="ag "W"é

INPUT FEATURE EXTRACTION CLASSIFICATION OUTPUT

DEEP LEARNING

%
Q—EO—Cr—O—Cr—@——C
a Y eV eV W
"\ 7‘\ "‘ "\ "‘ U‘

INPUT FEATURE EXTRACTION + CLASSIFICATION OUTPUT

Figure 2.2: Functional difference between Machine Learning and Deep Learning

21

2.3 Image Classification (1C)

Image classification, a core concept in machine vision, refers to the process where images
are sorted into predefined categories based on their visual features. By use of machine
learning or deep learning algorithms, models are trained to discern patterns and
characteristics that differentiate one category from another, such as shapes, colors, or
textures. After training, these models can predict the most probable class for new images,
often providing confidence scores or probability percentages for each predicted label.
Image classification finds applications in various fields like object recognition, medical
imaging, and satellite analysis. It serves as a foundational task in computer vision systems,
providing essential insights into the content of images and enabling more complex tasks.
In Figure 2.3 [12] a sample result of image classification implementation is provided
through the usage of ImageAl [12] Python library, in which this thesis is based.
Specifically, the classes with their corresponding probabilities of successful prediction are
provided. The class with the highest percentage is considered to be the one that explains
the content of the respective image to a greater extent according to the relevant trained
model.

Sample Result:

convertible : 52.4595558543341856
sports_car @ 37.61284649372181
plckup : 3.1751288556755666
car_wheel : 1.817585206634404
miniwan : 1.74878C6955428352

Figure 2.3: Sample result for image classification by ImageAl library

22

2.4 Object Detection (OD)

Obiject detection is a machine vision process that identification and localization of specific
objects within images or videos. In contrast to image classification, which categorizes
whole images into predefined classes, object detection not only identifies objects within an

image but also determines their exact positions by outlining bounding boxes around them.

This task typically relies on machine learning or deep learning algorithms trained on
datasets containing images labeled with annotated object bounding boxes. Object detection
is vital for numerous applications, such as autonomous driving, surveillance, robotics, and
medical imaging, as it allows machines to comprehend and interact with their environment

by detecting and localizing relevant objects in visual data.

However, detection is frequently conflated with recognition, which refers to the process of
identifying and comprehending objects or patterns within an image or scene. Unlike
detection, recognition entails a more profound analysis of visual content, which may
include grasping the context, identifying specific object features or traits, and drawing

higher-level associations or inferences based on observed patterns.

Victsr® 7%

P erCrI6 82556
L S

Figure 2.4: Sample result for object detection by ImageAl library

23

In the above figure a sample result of object detection implementation is provided through
the usage of ImageAl [12] Python library. In contrast to image classification, in this
activity, separate probabilities are provided, rather than complementary ones, for each
object detected, along with additional information regarding the inclusion of the
corresponding bounding boxes. Similarly, higher prediction percentages indicate greater
confidence in the relevant model for successful localization, prediction, and classification

of each respective object.

24

3.1 Overview

The research work discussed herein focuses on the automated detection and classification
of construction objects, and the applied research methodology was based on utilizing the

Python programming language along with machine vision and deep learning technologies.

The goal was to create software, or leverage existing tools, capable of learning a series of
construction objects present on a construction site. Subsequently, the software should
successfully detect and classify these objects using either images from a dataset or random
images. To achieve this objective, ImageAl (v.3.0.3) [12] was employed. ImageAl (Moses,
2018) is an open-source Python library that simplifies machine vision and deep learning
tasks. It is built on other libraries such as TensorFlow and Keras. From the array of tasks
offered by ImageAl, specific code libraries related to image classification and object
detection were utilized - activities directly aligned with the focus of this research. The
codes were divided into those dedicated to image classification and those dedicated to
object detection. For each of the two tasks, a code was used for custom model training
process based on the custom classes, resulting in the creation of a model. Additional codes
were employed for result extraction, verification of the resulting accuracy-performance,
and broader evaluation of the respective trained models, primarily through the utilization
of unseen data.

Furthermore, a dataset was created for each task, incorporating photos of all the examined
classes. These data resulted from a combination of own photos from construction sites,
ready-made datasets from Kaggle [14] [15] [16] [17], which is a platform for data science

and machine learning competitions, the GitHub web-based platform [18], and generally
photos obtained by the Google Images search service. In the context of this research, the
decision was made to initially explore two distinct classes to clarify the operational mode
and compatibility of ImageAl with the research goals. These objects were the ‘column’ and
the ‘excavator’. However, at a later stage, seven more classes (totaling 9) were added,

which were as follows: ‘beam’, ‘masonry’, ‘slab’, ‘window’, ‘person’, ‘safety helmet’, and

25

‘reflective jacket’. The choice of some of these object classes relates to the intent of using
the developed algorithms and trained models for use in health & safety applications at
construction sites. Furthermore, for the purpose of custom object detection training,
numerical codes needed to be implemented for each class, as illustrated in the following
table.

Table 3.1: Numerical codes of examined construction objects’ classes

EXAMINED CONSTRUCTION OBJECTS’ CLASSES
Numerical Code Object Class
0: Column
1 Excavator
2: Beam
3: Masonry
4: Slab
5: Window
6: Person
7: Safety Helmet
8: Reflective Jacket

3.2 Image Classification Framework

For this task, a set of 6000+ images of the object classes to be examined was collected.
Initially, a general folder was created, which contained two additional folders named ‘train’
and ‘test,” respectively. Within each folder, a subfolder was created for each prediction
class. The training photos, used to train the classification model, and the corresponding test

photos, used to evaluate it, were placed in these subfolders.

In the ‘train’ folder/dataset, 500 photos were included for each class, while in the ‘test’
folder/dataset, 200 photos were included. This dataset was then utilized in the training code
(Appendix) as provided by ImageAl [12], where various tasks were performed, including
the selection of the algorithm. ImageAl offers the option to use four different algorithms
for training custom image prediction models (MobileNetV2, ResNet50, InceptionV3, and

DenseNet), each with different speed and prediction accuracy characteristics.

26

Additionally, other parameters such as ‘batch _size’ (the number of images the network will
process simultaneously) and ‘num_experiments’ (the number of network training iterations
on all training images) were set in this code. For the purposes of this work, the
MobileNetV2 algorithm was chosen due to its fastest prediction speed in compare with

other algorithms.

Upon each execution of training code, the model attaining the highest accuracy was
generated and subsequently stored in the dataset folder, accompanied by its corresponding
generated JSON file. In this scenario, a JSON (JavaScript Object Notation) file functions
as a structured data format for the storage and exchange of information pertaining to the
custom detection and classification tasks conducted utilizing ImageAl or analogous
frameworks. Additionally, the other parameters mentioned above were systematically
varied during each run to elucidate their impact on the accuracy of the respective model.
This measure was undertaken to facilitate the incremental enhancement of the model,
which became evident with each successive iteration. In this context, accuracy represents
the percentage probability that a detected object belongs to a specific class. The accuracy

is calculated using the following formula:

Number of Correctly Classified Images 100 [3.1]
*

Accuracy =
Y Total Number of Images

This percentage reflects the model’s confidence in the correctness of its prediction. Higher
percentage probabilities generally indicate that the model is more confident in recognizing
a particular class of object in the image.

At a later stage, this model was employed in another code, where its effectiveness in
predicting the examined and subsequently trained classes was evaluated using both trained
and random photos. In this code, the trained model, along with its corresponding JSON
file, was imported, alongside the algorithm used for training the said model. Subsequently,
the photograph to be examined by the image classification model was selected,
concurrently with the configuration of certain parameters (some of which are optional).
Among other settings, the number of classes to be displayed in the results was chosen, as

well as the limitation of prediction display by setting a minimum threshold percentage for

27

predictions. By default, for the aforementioned code provided by ImageAl, this threshold

is set at 30%. A schematic overview of this methodology is depicted in Figure 3.1.

Create Custom Image Classification
Dataset

.

Train Image Classification

Model on Custom Dataset
Il

I

Test Image Classification
Model on Custom Dataset

J

Test Image Classification
Model on random images

Figure 3.1: Custom image classification methodology flowchart

3.3 Object Detection Framework

For this task, a set of 2700+ images was collected for the examined classes. Initially, a
general folder was created, which included two subfolders named ‘train’ and ‘validation,’
respectively. Within each of these folders, two additional subfolders were created. The
first, named ‘images,” contained photos - in jpg format - of the examined classes without
separating them based on the object they depict. The second, named ‘annotations,’
contained the corresponding assignments for these classes, in txt format. The number of
instances and images used for each class is given in Figure 3.2, although it is important to

indicate that some images used for multiple classes.

For this task, a set of photos from the dataset collected for image classification was utilized.
This dataset was then input into the training code as is given by ImageAl, where, among
other tasks, algorithm selection was performed. ImageAl provides the option to use two
different algorithms to train custom image object detection models, namely YOLOv3 and

TinyYOLOv3, each with varying speed and accuracy characteristics for prediction. In this

28

code, additional parameters such as ‘batch size’ and ‘num_experiments’ were set, as

previously explained.

Instance and Image Distribution Across Classes

2191
2125 mmm Number of Instances

2000 A B Number of Images

1500

Count

1000 -

500 -

< < <
N S L 'S éfo‘° N & & &

Class

Figure 3.2: Instance and image distribution across custom classes

During the training process for object detection, the initial model used did not include
specific objects such as those found on construction sites. The model training with
additional construction site objects enriches the utilized pre-trained model and facilitates
its use on construction-related image detection applications. Additionally, the option for
training using a pre-trained YOLOv3 model was specified. For the purposes of this work,
both algorithms were employed. Future work shall aim the incorporation of newer releases
of YOLO models (e.g., YOLOV8) and training datasets (e.g., SODA).

To create the assignments, an open-source graphic annotation tool for images, Labelimg
[19], was employed. The process involved creating bounding boxes and labels in each
photo and assigning them to each of the examined objects for the purpose of custom object

detection training process. The associated annotation .txt files were generated in YOLO

29

format, wherein each row signifies a detected object and includes specific details such as
the numerical class code and its corresponding coordinates. In Figure 3.3, an example of
annotation creation in the Labellmg [19] interface is provided. As part of this task, 300+
photos were collected for each object, with 70-80% stored in the ‘train’ folder for training
the detection model and the remainder in the 'validation' folder for evaluating the model’s

performance during training.

1) labellmg C: i y i g ples\New folder - 0D8(01234 imag _original_IMG_20231220_111320,pg_5143fa30-57af-Abff-Ocdf-afa1f2a87bbc jpg [129/ 639] - o X

File Edit View Help

Box Labels 8 x
[difficult

[Use default label | column 5

E tr g t,s

[}
B
=)

2
|
0 Y
5]
2
&

column
beam

a
3
3

=]

beam
beam
beam
colurmn
coluran
column
beam
beam
colurnn

z
H

i@ ;&

Edit RectBox

File List a8

-4d23-b784-856517d460df jpg ~

| b-a547-8206: cF272676030,pg

-4bc3-2638-003111b0e671jpg v
< >

@

Hide RectBox

Figure 3.3: Labelimg workspace during annotation process

Each time the code was executed, the model with the highest accuracy in terms of mAP50
(mean Average Precision at 50%), along with its corresponding JSON file were generated
and stored in the dataset folder. Additionally, the other parameters mentioned above were
systematically varied - in conjunction with the practical application of non-maximum
suppression (NMS) - during each run to elucidate their impact on the accuracy of the
respective model. NMS is a technique applied after object detection to sift through
numerous overlapping bounding boxes generated by a model, retaining only the most

assured ones.

In the context of object detection, Non-Maximum Suppression (NMS) is crucial for
refining the predictions made by a model. When an object detection model analyzes an

30

image, it often generates multiple bounding boxes that overlap, resulting in redundant
detections of the same object. NMS addresses this issue by filtering out less accurate

bounding boxes and retaining only the most confident ones.

The NMS process involves several steps. First, the model assigns a confidence score to
each bounding box, and these boxes are then sorted from highest to lowest based on their
scores. Starting with the highest-scoring box, NMS iteratively selects this box and
suppresses all other overlapping boxes whose Intersection over Union (loU) with the
selected box exceeds a certain threshold. This suppression process continues until all boxes

are either selected or discarded.

NMS is significant for several reasons. It reduces redundancy by eliminating overlapping
bounding boxes, thus enhancing the model's precision. Retaining only the most confident
detections helps improve the overall accuracy of the model. This is particularly important
in construction site monitoring, where accurately detecting objects such as safety helmets
and reflective jackets is critical. Furthermore, applying NMS can lead to significant
improvements in performance metrics like mean Average Precision (mAP) and F1 score,

as it ensures that detections are more reliable and less cluttered.

In this research work, the NMS threshold was systematically varied to observe its impact
on model performance. The results indicated that adjusting the NMS value could
significantly affect the precision, recall, and overall F1 score of the detection model. For
instance, selecting an NMS threshold of 0.4 resulted in a notable improvement in the

model's accuracy, highlighting the importance of fine-tuning this parameter.

In summary, NMS is an indispensable technique in object detection, enhancing the
reliability and accuracy of models by ensuring that only the most probable detections are
considered. This study's findings underscore the critical role of NMS in achieving robust

performance, particularly in the context of construction object detection models.

During the training of each model, several key metrics were evaluated, including mAP50,
precision, recall, and mAP50-95. These metrics provided valuable insights into the model's
performance. However, it is important to note that some of these metrics were not

automatically saved during the training process.

31

Specifically, precision serves as a fundamental metric for evaluating the accuracy of
positive predictions made by the model. It quantifies the model's ability to correctly
identify positive instances among all instances predicted as positive. In the context of
construction object detection, precision is crucial as it helps ensure that identified objects
such as beams, columns, and safety gear are indeed present, thereby reducing false alarms
that could lead to unnecessary inspections or safety checks. Precision is derived from the

following relationship:

True Positives [3.2]
True Positives + False Positives

Precision =

On the other hand, recall, also known as sensitivity or true positive rate, assesses the
model's capacity to identify all relevant instances of a particular class. It measures the
proportion of true positives that the model correctly identifies out of all actual positives.
The recall score is computed by dividing the number of true positives by the sum of true
positives and false negatives (Equation 3.3). High recall is essential in construction
applications where missing a true positive, such as failing to detect a safety hazard, could
have significant implications for site safety and compliance.

True Positives [3.3]
True Positives + False Negatives

Recall =

By using these two terms, it is possible to calculate another widely used metric for
evaluating classification models. The F1 score, often referred to as the harmonic mean of
precision and recall, provides a balanced assessment of the model's performance. It
captures the trade-off between precision and recall, offering a single metric to evaluate a
model's effectiveness. This metric is particularly useful in construction applications where
both precision and recall are equally critical, ensuring the model accurately identifies and

classifies construction objects and hazards. The F1 score is computed using the formula:

Precision * Recall [3.4]

F1S =2
core * Precision + Recall

32

The term ‘mAP’ (mean Average Precision) is a metric that assesses the precision-recall
tradeoff of a model. It evaluates how well a model performs at different confidence levels
in its predictions. Specifically, ‘mAP50’ evaluates the model’s precision and recall at a
specific 50% Intersection over Union (loU) threshold. Higher mAP50 values indicate
better performance, with a maximum value of 1.0 representing perfect precision and recall
at the specified loU threshold. loU is a metric that measures the overlap between the
predicted bounding box and the actual location of the object. A 50% loU means there is at
least a 50% overlap between the predicted and actual contexts. The accuracy metric of
mMAP offers insights into the model's ability to detect construction objects of varying sizes
and complexities within an image, such as identifying smaller items like safety helmets in

addition to larger objects like excavators.

Understanding and optimizing these metrics are essential for improving the effectiveness
of custom trained models in practical applications. Precision, recall, and the F1 score allow
for a balance between minimizing false positives and false negatives, while mAP provides
a comprehensive evaluation of the object detection models' performance under various
detection challenges. Utilizing these metrics enables the refinement of the models, ensuring

they are well-suited for a range of use cases and environments.

This evaluation system is commonly used in assessing object detection models, including
those trained for custom object detection tasks. At a later stage, this model was employed
in another code, where its effectiveness in custom object detection examined and
subsequently trained classes was evaluated using mainly unseen data, alongside the
selection of a specific value for NMS and the adjustment of various rendering options. A

summary flowchart of this methodology is presented in Figure 3.4.

33

Dataset & Training Process

| |
| |
| ini |
1 Collect Apply labels Il S5 T Train Export [l
[} pictures for & bounding : Object custom U
1 b (algorithm, pre-S=s . . I
ek 0Xes on) Detection trained I
: presented trained model, Model detection [
g custom custom batch size & model
I num. epochs) 1
---I
Custom Model Evaluation
r---1
| |
: Export :
: Test Trained Test Trained Export NIVE ég]r?;ss\:gﬂ :
g Model on Model on confusion implemen matiix & I
| Custom random matrix & tation accuracy |
| i : I
: Dataset images accuracy metrics I
| |
| |

Figure 3.4: Custom object detection methodology flowchart

Additionally, the capability was provided by creating a Python code in combination with
trained detection models to identify health and safety issues in photographs from
construction sites, specifically printing a relevant warning message for the absence of a
part or of all of the necessary safety equipment (protective helmet and reflective jacket) in
case a person is detected in those areas. Specifically, the code initially examined the
presence or absence of the aforementioned objects, and then examined the potential high
overlap (loU > 90%) of their defined bounding boxes with those of the detected human
figure/s (indicating the adoption of this specific security measure by the individual). The
high effectiveness of this additional function was verified through the execution of various
tests on trained and random photos including some or all of the relevant classes.

34

In the pursuit of fulfilling the objectives of this work, a series of tests were conducted
through the execution of custom training Python programming language codes, as
previously described. Throughout these tests, specific parameters were systematically
varied in each training code, including the dataset itself, to generate two models - one for
each task - with the highest accuracy and optimal performance. These models aimed to best

fulfill the intended purpose for which they were created.

4.1 Image Classification Results

The final analysis results for the nine classes described in the previous stage are as follows.
For image prediction, considering the case of nine classes, a MobileNetV2 model achieved
an accuracy of 81.06%. This relatively high accuracy indicates the near certainty of the
model in the correctness of its predictions, specifically in successfully predicting the nine
trained classes in any given photo. This result was further validated by the model’s
performance on various photos, consistently yielding generally high probabilities for
correctly predicting the depicted object. The model was tested on both trained and random
images, and during the conducted tests, no significant change in performance was observed
between these two categories of images. It is thus evident that the model’s performance
was proportional to its accuracy rate. It should be noted that the listed per image object-
classification probabilities add up to 100%. Thus, when multiple object classes are detected
within an image, the reported class probabilities are lower in value compared to cases
where object classes are fewer. As a result, in several tests performed on both trained and
random images, notable fluctuations were observed in the prediction rates between the
displayed classes, with some classes showing low rates. Some example results are provided

below.

35

EXAMPLE 1:

Figure 4.1: Prediction percentages per class by custom 1C model (example 1)

36

Discussion:

In the initial instance of image classification, the presented figure depicts the outcomes
derived from analyzing a random image showcasing various objects on a construction site,
notably columns, beams, and slabs. Employing the aforementioned image classification
model, probabilities were assigned to the objects identified in the photo, with a beam
receiving a probability of 52.24%, a column 26.02%, and a slab 21.38%. Predictions for
the remaining classes were notably low, aligning with expectations given that only these

three classes were prominently featured in the image under examination.

The variance in probabilities assigned to the three main predicted classes can be attributed
to factors such as the viewing angle of each class within the photo and the inherent
similarity between certain classes in appearance or features (e.g., beam versus column).
Such similarities may challenge the model's ability to accurately distinguish between them,

resulting in lower confidence scores for certain classes.

Nevertheless, the overall outcome underscores the model's robust predictive capabilities,
despite the nuanced challenges presented by the image's composition and the similarities

between certain classes.

37

EXAMPLE 2:

Figure 4.2: Prediction percentages per class by custom IC model (example 2)

Discussion:

Figure 4.2 presents the outcomes derived from analyzing a random photograph featuring
masonry and window elements, both of which are equally prominent. Notably, the
prediction percentage for these two primary classes is relatively high and nearly equal,
while predictions for other classes not represented in the image are minimal. Specifically,
the model assigned a probability of 50.79% to the window class and 44.41% to the masonry
class. In this instance, the custom image classification model demonstrated its
commendable accuracy, maintaining balance in the prediction probabilities between the
two primary classes, due to the absence of significant similarities in appearance or features

between masonry and window elements, along with the low number of detected classes.

38

EXAMPLE 3:

Figure 4.3: Prediction percentages per class by custom IC model (example 3)

39

Discussion:

The image depicted in Figure 4.3 pertains to the presence of a worker adorned with
appropriate personal protective equipment at a construction site. The model's analysis of
this scenario yielded successful predictions for the three primary classes evident in the

photograph, albeit with notable fluctuations in prediction percentages.

Specifically, the reflective jacket class garnered the highest prediction percentage at
49.10%, followed by the person class at 38.31%, and the safety helmet class registering a
significantly lower percentage at 12.34% among these three categories. The substantial
variance in these probability values can be attributed to the inherent similarity between the
images used for training the model across these three classes. Notably, person, safety
helmet, and reflective jacket are classes frequently observed together within a construction

site environment.

However, it is to some extent expected that there will be significant variations in percentage
values and relatively low prediction rates for some classes. This occurs because the
prediction rates for all detected objects in an image collectively add up to 100%, leading

to lower individual prediction rates when multiple objects are present.

40

EXAMPLE 4:

Figure 4.4: Prediction percentages per class by custom IC model (example 4)

41

Discussion:

Figure 4.4 illustrates the outcomes derived from an image featuring a worker equipped with
appropriate personal protective gear in proximity to an excavator. The model accurately
identified the presence of the excavator and the safety vest; however, it failed to recognize

the worker and the safety helmet.

One potential explanation for the notably low prediction rates pertaining to the
aforementioned classes within the corresponding photograph could be attributed to intense
lighting conditions, particularly around the area where the safety helmet is situated,
compounded by the posture of the human subject. Additionally, the similarity between the
classes "person,” "safety helmet,” and "reflective jacket" may pose a challenge for the
model in distinguishing between them, consequently resulting in diminished confidence
scores for some of these classes.

42

4.2 Object Detection Results

Accordingly, for object detection, a YOLOv3 model with an average accuracy (mAP) of
67.41 % was achieved. The obtained model recorded also F1-Score accuracy roughly
above 65% as shown in Table 4.1. This figure indicates the relatively average to good
accuracy of the specific model in terms of detecting, bounding and successfully classifying
the objects under study in examined photographs, however efforts are being made to
enhance the performance of this model to achieve even higher success rates. This result
was further validated by the model’s performance on various photos, where several
satisfactory results were observed in terms of the true positive detection and classification
of objects. The YOLOv3 model was tested on both trained and random images, and during
the conducted tests, no significant change was observed in terms of the model’s
performance between these two categories of images. Therefore, in this case as well, it is
evident that the performance of the model is proportional to its accuracy rate. Some

example results are provided below.

In object detection models, it is common to encounter overlapped bounding boxes for each
detected object. To address this issue, a common practice is the implementation of Non-
Maximum Suppression (NMS), which, according to its threshold, removes overlapped
bounding boxes and retains only those with the highest confidence scores for each detected
object. To improve the outcomes with the implementation of the custom object detection
model, various NMS thresholds were applied, either to each image result or to the overall
validation set. This was done to understand how different values of NMS affect the

performance and accuracy of the trained model across different metrics.

Table 4.1: Custom object detection model’s metrics

MODEL PRECISION F1-SCORE
RECALL (%) MAPO.5 (%)
ALGORITHM (%) (%)
YOLOV3 61.82 68.99 65.21 67.41

43

EXAMPLE 1:

(b)

Figure 4.5: Custom OD model implementation (example 1): (a) Initial random photo, (b)
Detected objects by custom OD model

44

Discussion:

The figure above presents the results derived from a random image depicting various
objects observed within a construction site, encompassing columns, beams, and slabs.
Employing the aforementioned object detection model, the analysis revealed the successful
detection of four columns, three beams, and one slab, each with a classification probability
exceeding 97%, thus affirming the model's robust performance. Notably, only one column
yielded a positive detection probability below 97%; however, even in this case, the
probability remains relatively high, indicating a favorable outcome.

However, certain other objects anticipated to be detected by the model were not identified.
This discrepancy could potentially be attributed to occlusion phenomena resulting from the
specific angle at which the photograph was captured. Nonetheless, the overall results
remain largely consistent with those obtained using the classification model, thus
warranting a satisfactory evaluation. NMS application with a threshold value of 0.05 was

also necessary for obtaining the presented results.

Table 4.2: Detected objects by custom OD model (example 1)

No. OBJECT CLASS CONFIDENCE SCORE
DETECTED (%)

1 COLUMN 99.65

2 COLUMN 99.77

3 COLUMN 81.92

4 COLUMN 97.17

5 BEAM 98.98

6 BEAM 99.14

7 BEAM 99.43

8 SLAB 99.22

45

EXAMPLE 2:

(b)

Figure 4.6: Custom OD model implementation (example 2): (a) Initial random photo, (b)
Detected objects by custom OD model

46

Table 4.3: Detected objects by custom OD model (example 2)

No. OBJECT CLASS CONFIDENCE
DETECTED SCORE (%)
1 SAFETY HELMET 98.90
2 REFLECTIVE JACKET 98.76
3 PERSON 96.94
Discussion:

Figure 4.6 illustrates the outcomes derived from a random photo capturing a worker on a

construction site equipped with appropriate personal protection measures. The model

successfully detected the three main classes depicted in the photo, with corresponding

confidence scores exceeding 96%. This aligns with the results obtained from the

classification model applied to the same photo, as previously presented. Notably, in the

case of custom object detection, no issues were observed with the trained model, despite

the inherent similarity among photos featuring these three classes in the training dataset.

During the annotation process, all objects of different classes observed in each photo were

duly annotated, contributing to the model’s effective performance. Additionally, the NMS

technique was applied with a threshold set to 0.35 to enhance the model’s outcomes.

47

EXAMPLE 3:

(@) (b)

Figure 4.7: Custom OD model implementation (example 3): (a) Initial random photo, (b) Detected
objects by custom OD model

Discussion:

The image showcased in Figure 4.7 captures a scene from a construction site, focusing on
a window encased by brickwork. Through the utilization of the trained object detection
model on this photo, both masonry structures and the window were successfully identified,
each boasting a confidence score surpassing 94%. This outcome underscores the
effectiveness of the model under these particular conditions, reaffirming its capability to
accurately discern and classify objects within complex and detailed construction
environments. The overall result mentioned above was achieved in conjunction with the

implementation of NMS with a threshold value of 0.2.

Table 4.4: Detected objects by custom OD model (example 3)

No. OBJECT CLASS CONFIDENCE
DETECTED SCORE (%)
1 MASONRY 99.78
2 MASONRY 99.74
3 MASONRY 94.82
4 WINDOW 98.13

48

EXAMPLE 4:

A

(b)

Figure 4.8: Custom OD model implementation (example 4): (a) Initial random photo, (b)
Detected objects by custom OD model.

49

Table 4.5: Detected objects by custom OD model (example 4)

No. OBJECT CLASS CONFIDENCE
DETECTED SCORE (%)
1 SAFETY HELMET 99.39
2 REFLECTIVE JACKET 95.24
3 PERSON 72.86
4 EXCAVATOR 97.94
Discussion:

The preceding figure illustrates an example portraying various objects pertinent to the

examination, with the custom-trained object detection model delivering commendable

outcomes for the majority of these objects. Particularly, it demonstrates a moderate to good

result for a singular class, namely "person.” Notably, an enhanced performance of the

detection model is discernible in this image when juxtaposed with its classification

counterpart (Figure 4.4), showcasing notably higher prediction rates. This instance serves

as additional confirmation that the trained detection model remains unaffected by the

resemblance among the train photos used for three of the four identified classes above

(“safety helmet”, “reflective jacket” and “person”). In the aforementioned case, a NMS

threshold of 0.3 was implemented to attain sharper results.

50

NMS CORRECTION EXAMPLE:

(©

Figure 4.9: Custom OD model implementation (NMS example): (a) Initial random photo, (b)
Detected objects by custom OD model without NMS, (c) Detected objects by custom OD model with
NMS and rendering settings

51

Discussion:

In Figure 4.9, a comparison is made between the output of a custom object detection model
on a random image with and without the application of NMS (Non-Maximum
Suppression). The initial output exhibits numerous predicted bounding boxes overlapping
multiple times on the detected objects, each bearing a high confidence score for the
overlapping detected object, labeled with the same class and accompanied by reduced
readability of the results. To refine the final outcome, NMS was applied in conjunction
with several rendering settings to achieve sharper and accurately adjusted results on the
specified image. In this particular case, the NMS threshold was set to 0.2 to attain the clear

and satisfactory result.

In more detail, the initial output without NMS shows a cluttered visualization, where some
of the detected object are surrounded by multiple bounding boxes. This can cause
confusion and makes it difficult to accurately interpret the results, as the same object might
appear multiple times in different positions, each with a slight variation in the bounding
box coordinates. This issue arises because the object detection model, by default, generates
bounding boxes for every potential detection with a confidence score above a certain
threshold. However, these overlapping boxes can obscure the true position and scale of the
detected objects. To mitigate this problem, NMS is employed. This technique works by
retaining the bounding box with the highest confidence score for each detected object and
suppressing all other overlapping boxes with lower confidence scores. In addition, NMS
ensures that only the most relevant and accurate bounding boxes are displayed,
significantly improving the readability and interpretability of the results. By setting the
NMS threshold to 0.2, the model discards any bounding boxes that overlap significantly

with the highest confidence box, ensuring a cleaner and more precise detection.

Moreover, the rendering settings were fine-tuned to complement the NMS application.
These settings include adjusting the line thickness, color, and transparency of the bounding
boxes and labels to enhance visibility. As a result, the final output provides a clear, concise,
and accurate representation of the detected objects, making it easier to assess the model's
performance. The approach of using NMS with varying thresholds and rendering settings

was consistently applied across other images analyzed in this section.

52

HEALTH & SAFETY EXAMPLE:

15
.l

Ders

(a) (b)

Figure 4.10: Custom OD model implementation (H&S example): (a) Initial random photo, (b)
Detected objects by custom OD model.

Figure 4.11: Python code output (H&S example)

53

Discussion:

Using the same detection model, results were obtained from other construction site
photographs, with an additional capability introduced: the detection and notification of
safety and health issues concerning the necessary and recommended personal protective
measures on the construction site. Specifically, if a person was detected in these
photographs without either or both of the reflective jacket and safety helmet, a

corresponding warning was issued, as effectively demonstrated in the subsequent figure.

In Figure 4.10, two persons are depicted within a construction site, one wearing a protective
helmet and the other not wearing any personal protective equipment. Therefore, this case
serves as a prime example of a situation where issues regarding compliance with safety
and health regulations may arise on the construction site. Upon the introduction of the
photograph and the utilization of the trained object detection model, the two individuals
and the protective helmet were correctly identified, with classification success rates
exceeding 98%. Through the execution of the specialized Python code tailored for cases
such as this, utilizing the aforementioned photograph, a warning (Figure 4.11) was
appropriately issued regarding the presence of safety and health concerns, as one or more
individuals failed to adhere to all required measures of personal protection (i.e., "safety

helmet™ and "reflective jacket™).

Table 4.6: Detected objects by custom OD model (H&S example)

No. OBJECT CLASS CONFIDENCE
DETECTED SCORE (%)
1 SAFETY HELMET 99.01
2 PERSON 98.62
3 PERSON 99.59

54

CONFUSION MATRIX:

Complete Confusion Matrix

« JEE o BEIN 10 @ 67 3 3 0 0
&
W
&
1l o 7 o o o g 2 o o 200
O
R4
L’O
& {1 o 6 51 7 3 1 0
£ 250
v@
al 3 0 6 JEEON S 4 6 1 0
@ Hol 200
2 <«
© o] 66 0 a 3 78 1 2 0 1
S °
= - 150
2z 0 5 7 2 26 0 0
bo
&
&
Jo g 5 4 6 4 15 s8 74 - 100
o
d?}c’
oo 2 1 1 0 0 95 107 62
2
é@ - 50
c\/
& 4 0 0 0 1 0 0 85 70 65
24 SE
T T T T T T T T T e O
040 & o <& S & & &
o o & & & 3 & <2 & o
@ ¢ %3 @ N >®
e < Y R\2
@ &
P Q@&

Predicted labels

Figure 4.12: Results of confusion matrix based on custom OD model

Discussion:

Figure 4.12 presents the confusion matrix of the detection model examined in the study. In
a confusion matrix, each row represents the actual labels depicted in the validation set
images, while the columns represent the corresponding labels predicted by the detection
model. From the presented matrix, it is observed that some classes are positively evaluated
due to a high number of true positive detections (e.g., excavator, window, etc.), while
others are characterized as moderate to negative. The results of the matrix are to some
extent expected, as the examined detection model did not achieve particularly high levels

of accuracy. Essentially, the matrix provides insights into which classes the model

55

struggles to predict accurately and can guide further improvements in the model, such as
fine-tuning class-specific features or collecting more diverse training data for those classes.

Therefore, there is room for significant future improvements.

Precision, Recall, and F1 Score by Class

1.0 0.96 g4 Precision
0.92 B Recall
830 81 F1 Score
0.8
0.6 062
n 0.6 1
g
o
&
0 41
0.41 Sy
0 290.31
0.0
L X
((\Q 6\9 \(_0
> N c,o \ &
e 2 (& N Q ‘2‘ (,J\)
o & &
P N
Q~

Figure 4.13: Custom object detection model’s metrics (per class and overall)

A better visualization of the results and information contained in the confusion matrix
presented in Figure 12 is provided in Figure 13. Using the extracted matrix and a specially
configured Python code, the precision values of the trained model against each class were
calculated, utilizing measurement metrics such as precision, recall, and the derived F1-
Score. Specifically, a higher F1-Score value was recorded for the class "excavator” (94%),
while the lowest was for the class "Reflective Jacket". High precision values were also
recorded for the classes "window" and "masonry”, moderate values for the classes
"column”, "person”, and "beam", while low precision F1-Score values were recorded for
the remaining classes. From the above prediction graph of the trained model against the
true labels of the validation set used for training purposes, an overall F1-Score of 61.11%

was obtained, a result deemed moderate to good.

With the aim of improving the accuracy and performance of the custom object detection

trained model, the practice of NMS was applied—initially at various values—on the initial

56

predictions of the model on the validation set. The use of different NMS values aimed at a
deeper understanding of its impact on the number of model predictions as well as the
overall accuracy in terms of precision, recall, and F1-Score, and consequently by extracting

corresponding confusion matrices.

From the experiments conducted for this particular model, an increase in its accuracy
values was observed with the decrease in NMS values, which is highly positive and entirely
expected. However, this positive impact of low NMS values was counteracted by the
dramatic decrease in the instances for each class, as this practice removes a large number
of instances and leaves only those with the highest confidence scores, resulting in even

fewer instances than the truth labels.

Upon the conclusion of the experiments, the decision was made to select an NMS value of
0.4. This value led to an increase in the overall accuracy of the model in terms of F1-Score
by approximately 30%. As we can see in graph below, instantly the predicted labels for
each class and overall were more than truth labels, especially for some classes like column

and person.

Although, after the implementation of NMS practice with a threshold = 0.4, a significant
drop of instances per class was observed as many overlapped bounding boxes and mainly
those with the relatively lowest confidence scores were removed. However, the certain
value of NMS has led to have less predicted instances than truth labels. This drop between

truth and NMS predicted labels was relatively high for all classes, except class “excavator”.

57

Instance Distribution Across Classes

1000

800

2ee [Truth Labels

B Predicted Labels
1 NMS Predicted Labels (0.4)

903

Number of Instances

600

400 -

200

556

211

329

259
196

96 80

438

100

476

136

176

224

401

Class

Figure 4.14: Instance distribution before and after NMS application

The impact of applying NMS with a threshold of 0.4 on the accuracy and performance of
the custom trained model was observed through the confusion matrix and the resulting
metrics derived from its values. As illustrated in Figure 4.14, the total instances per class
are notably fewer compared to the confusion matrix depicted in Figure 4.12. Additionally,
the matrix exhibits a more diagonal pattern (Figure 4.15), indicating that more classes have
predominantly higher accuracies (around 70%), while fewer classes exhibit moderate
accuracies (around 50-60%). This observation suggests that the application of NMS with a
threshold of 0.4 has led to a refinement in the model's performance, with a clearer
delineation between classes and improved overall accuracy.

The analysis of the confusion matrix shown in Figure 4.15, reveals a noteworthy
enhancement in the model's overall performance, quantified by an F1-Score of 79.69%
(Figure 4.16). This improvement is particularly significant when considering the individual
classes. Notably, classes that previously exhibited lower accuracy with the model's initial
predictions experienced substantial boosts in their F1-Score values. Specifically, both
"masonry” and "window" classes achieved notably higher F1-Score values, reaching an
impressive 94%. This indicates a marked improvement in the model's ability to accurately

detect and classify these objects within the images. Furthermore, the majority of the

58

remaining classes also demonstrated commendable F1-Score values, surpassing the 70%
threshold. This indicates a consistent improvement across multiple object categories,

reflecting the efficacy of the adjustments made to the model.

Complete Confusion Matrix

120
122 [10 2 28 0 1 0 0
&
W
&
| 0 0 0 0 5 1 0
58 100
&
& |l 7 o | 48 0 1 1 0 2 0
&
,OQ/
80
1 o 0 1 67 0 1 1 0 0
OQ«*
12
» &
[7] Qo
s s o 42 0 0 0 35 0 1 0 0 1
v e I 60
=
fo ok 0 0 1 o [JEUEM o 0 0
b°*\
N
& - 40
g 5 0 1 1 1 1 0
S
X
&
&1 1 0 0 0 0 2 30 16 -
é@
&] o 0 0 1 0 o 1 10 [N
<
4 £
> T T T T T T T T T _'0
vAQ' S RS X X
<§ S & S N e 2
o o & & S 2 & & & &
@ S @ & & & ¥ X
& < > @
Al
P N
@

Predicted labels

Figure 4.15: Results of confusion matrix based on custom OD model after NMS application

However, it is worth noting that the class "safety helmet" registered the lowest F1-Score
value in this analysis, recording a value of 58%. While this falls within the realm of
moderate accuracy, it underscores the ongoing need for refinement, particularly in
accurately detecting and classifying instances of safety helmets within the images. Overall,
these findings underscore the effectiveness of the model refinement efforts, leading to

substantial enhancements in accuracy across various object classes.

59

Precision, Recall, and F1 Score by Class

1.0 1 0.960.04 0.97 [0 Precision
0.92 0.920.920.92 0.93 0.92 0.01%%4 - —
9.83 0.810.810.81 F1 Score
0.8 0.75 0.76
: e A
0.68 o~ 0.68 0.68
| 0.58

g 06 - |
o B
O
(%]

0.4

0.2 1

0.0

N X X
& 9 S (\d & 60& c;°° & N
N 2 % 9 2 & < X @
° 2 & N ¢ Al ¥
£ 5 < & @
@ ",33' k i
N
<@

Figure 4.16: Custom object detection model’s metrics after NMS application (per class and

overall)

60

Upon examining the results derived from the two trained models (image classification &
object detection) in the previous section, several observations and conclusions regarding

their accuracy, performance, and reliability can be made.

Firstly, in the image classification model, which achieved a high accuracy rate (81%)
during training, a significant validation of this accuracy was observed in the four examples
examined. Specifically, in all cases except Example 4, the depicted objects exhibited
significant prediction rates, with each object class receiving the majority share of the one
unit of prediction (100%) available each time, thereby avoiding the presence of significant

percentages in classes that were not depicted in each photograph.

Some significant challenges identified during the application of the trained model included
the notable fluctuations in prediction rates among the depicted classes, and more
specifically, false negative predictions of classes in the photographs. One possible
explanation for both phenomena appears to be the model's inability to accurately describe
the content of the examined photograph when depicting classes with similar characteristics,
such as beams and columns, or the combination of classes for which similar photographs
were used in the trained dataset, as they often coexist on the construction site, such as the
classes "safety helmet"”, "reflective jacket", and "person™. Another possible explanation
seems to be the presence of obstacles in front of the depicted objects, specific lighting
conditions of the images, and even the angle of capture. Another significant factor that
influenced both the degree of variation and the prediction percentages for each class was
that these percentages cumulatively summed to 100% for the entire content of each
examined photograph. This effect became more pronounced as the number of identified

classes increased.

In any case, to address the aforementioned issues in the results of the trained image
classification model, it is recommended, as part of future work, to modify or add to the
existing trained dataset in order to achieve a better balance between the number of instances

and greater variety of images for each class.

61

Similarly, with the implementation of the trained object detection model with an accuracy
in terms of mAPOQ.5 of 67.41%, which is considered moderate to high, a plethora of results
emerged that significantly validated the reliability and effectiveness of the model using
random photographs, most of which were also used in image classification for result
comparison. In this model, very positive results were recorded as the highest number of
depicted classes were identified in all examples, even in cases where a large number of
classes were depicted, and objects of the same class were identified in the same photograph.
Additionally, prediction rates for each detected object exceeded 90% in the majority of

Cases.

However, similar to the image classification model, the object detection model also
encountered a series of issues, comparable in magnitude to the accuracy of the model.
Specifically, it was found that objects covering a smaller portion of the examined
photograph or objects with significant obstacles preventing their full depiction recorded
lower rates of successful prediction compared to other objects of the same class, or worse,
were not detected at all (see windows in example 1). One possible explanation appears to
be the methodology followed during the process of assigning bounded boxes during the
preparation of the training data, where objects under poor lighting conditions, with
obstacles, or with relatively small covering surface areas were avoided in order to simplify
and facilitate the model training on the examined objects.

Nonetheless, unlike the image classification model, the results of the object detection
model were not influenced by similar characteristics or training images among the detected
classes. This was mainly because, for this activity, the training images were not separated
per object; instead, bounding boxes were applied to objects of all depicted classes
simultaneously. Additionally, this model was used for detecting safety and health issues on

construction sites, achieving satisfactory results.

Furthermore, an extensive application of the Non-Maximum Suppression (NMS) technique
was conducted on the extracted results to remove any overlapping bounding boxes of the
same class and to achieve more distinct results. Moreover, precision, recall, and F1-Score

were evaluated on the validation set using various NMS values, where it was demonstrated

62

that using NMS=0.4 achieves the optimal precision result and number of instances for this

trained model.

In conclusion, both prediction models, one for each activity, demonstrate relatively good
accuracy values, as verified by their application to random photographs. However, they are
accompanied by a significant number of challenges and observations that require thorough
study and addressing in future work. This aims to simultaneously increase the achieved

accuracies and utilize more recent and advanced learning algorithms (e.g., YOLOV8).

63

The utilization of artificial intelligence, particularly technologies such as Machine Vision
(MV) and Deep Learning (DL), in the construction industry is deemed imperative. The
applications and benefits that can arise from these technologies are crucial, especially
during the transition to a new era fraught with challenges. Activities such as image
classification and object detection consistently prove to be extremely valuable tools,
enhancing, improving, and facilitating numerous practical and technical tasks on
construction sites. The real-time application of these technologies can enhance the
monitoring of safety and health issues on construction sites, extending to the broader and
more essential oversight of labor management, mechanical equipment, vehicles, and
materials, all while considering the relatively low costs resulting from the use of these

technologies.

The present study focused on the automated detection and classification of construction
elements at construction sites using the ImageAl library, built on the foundation of Python’s
TensorFlow and Keras libraries. The entire process was based on the integration of
Machine Vision and Deep Learning technologies, combined with a dataset collected for
the objects under consideration. The extracted results were analyzed in relation to the

accuracy of the corresponding models from which they were derived.

As part of future work, the following actions are to be taken to enhance the performance

and accuracy of the relevant models based on ImageAl:

e Quantitative and qualitative expansion of the dataset, encompassing a greater
variety of objects. To incorporate more construction classes, the methodology
employed for the nine classes examined in this research could be extended. These
additional classes might encompass various items categorized into groups such as
mechanical equipment, construction materials, vehicles, and personnel. Procuring
images depicting these new classes would be essential. However, this endeavor
would entail augmented computational resources and incur higher costs,
particularly contingent upon the quantity of additional classes. Mitigating this,

existing training images featuring these classes could be utilized, or new images

64

could be generated using the Augmentor Python library (a code example is
provided in the Appendix), ensuring diversity within the dataset without
redundancy. Additionally, the use of a balanced dataset with respect to all examined
objects would be crucial to prevent overfitting and the memorization of specific

objects by the trained model for each task.

In future research, a systematic approach could categorize object classes into
purpose-specific groups, enhancing model applicability in construction
management. For instance, machinery items like excavators, cranes, and bulldozers
could be tracked for productivity analysis, while materials such as bricks, steel
beams, and piping could aid in quantity/cost estimation. Additionally, structural
elements like columns and walls could be monitored for construction scheduling
purposes. All these applications can complement the existing capability of health
and safety object tracking provided by this research, to ensure adherence to safety
protocols on construction sites, which can also be expanded including more health

& safety classes.

Improvement of the annotation functions for bounded frames and labels, using
advanced rendering practices in conjunction with the practical application of non-
maximum suppression (NMS) to produce sharper and accurately adjusted results.
Additionally, exploration and testing of other custom activities offered by the
ImageAl library for accuracy and usefulness, particularly by using video streams
of related content, would be beneficial.

Exploring alternative methods, software libraries, and datasets to enhance speed
and accuracy is a pivotal aspect of future research. This entails delving into newer
iterations of object detection algorithms, like YOLOV8, and exploring cutting-edge
architectures such as feature pyramid networks (FPN) and EfficientDet.
Additionally, integrating diverse training datasets like SODA can enrich the
model's capabilities by offering a broader range of training examples. Continuously
assessing and adopting the latest techniques, libraries, and datasets ensures that
custom object detection models remain at the forefront of innovation, delivering

optimal results in terms of speed, accuracy, and reliability.

65

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Lambrides, E., & Christodoulou, S.E. (2023). Human action detection and
ergonomic risk assessment at construction sites, by use of machine vision and
deep learning. In: EC3 Conference 2023 (\Vol. 4). European Council on
Computing in Construction, Crete, Greece.

Market.US (2024). Specializes in in-depth market research and analysis.
https://market.us/report/generative-ai-in-construction-market/

Brilakis, 1., Lourakis, M., Sacks, R., Savarese, S., Christodoulou, S., Teizer, J. and
Makhmalbaf, A. (2010). Toward automated generation of parametric BIMs based
on hybrid video and laser scanning data. Advanced Engineering Informatics,
24(4), pp.456-465.

Czerniawski, T. & Leite, F. (2020). Automated digital modeling of existing
buildings: A review of visual object recognition methods. Automation in
Construction, 113, p.103131.

Nath, N. & Behzadan, A.H. (2020). Deep generative adversarial network to
enhance image quality for fast object detection in construction sites. In: 2020
Winter Simulation Conference (WSC) (pp. 2447-2459). IEEE.

Paneru, S. & Jeelani, 1. (2021). Computer vision applications in construction:
Current state, opportunities & challenges. Automation in Construction, 132,
p.103940.

Duan, R., Deng, H., Tian, M., Deng, Y. & Lin, J. (2022). SODA: site object
detection dataset for deep learning in construction. arXiv preprint
arXiv:2202.09554.

Wang, Y., Xiao, B., Bouferguene, A., Al-Hussein, M. & Li, H. (2022). Vision-
based method for semantic information extraction in construction by integrating
deep learning object detection and image captioning. Advanced Engineering
Informatics, 53, p.101699.

Hou, L., Chen, C., Wang, S., Wu, Y. & Chen, X. (2022). Multi-object detection
method in construction machinery swarm operations based on the improved
YOLOv4 model. Sensors, 22(19), p.7294.

Zhou, Q., Liu, H., Qiu, Y. & Zheng, W. (2022). Object Detection for Construction
Waste Based on an Improved YOLOvV5 Model. Sustainability, 15(1), p.681.

Jog, G.M,, Brilakis, 1.K. & Angelides, D.C. (2011). Testing in harsh conditions:
Tracking resources on construction sites with machine vision. Automation in
construction, 20(4), pp.328-337.

Moses, O. (2018). ImageAl, an open source python library built to empower
developers to build applications and systems with self-contained computer vision
capabilities. https://github.com/

OlafenwaMoses/ImageAl.

Turing (2024). A combination of internal experts, global talent, and proprietary Al
technology working together to accelerate and innovate companies and careers
more efficiently. https://www.turing.com/kb/ultimate-battle-between-deep-
learning-and-machine-learning

66

https://market.us/report/generative-ai-in-construction-market/
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning
https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning

[14] Umer Yasin, M. (2022). Bricks Under Construction or Old Building / Houses, an
image dataset that contains pictures of buildings and houses under construction.
https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-
building-houses/data

[15] Ahmadzada, A. (2020). People Image Dataset, many pictures of people
performing different activities.
https://www.kaggle.com/datasets/ahmadahmadzada/images2000/data

[16] B Naik, N. (2023). Safety Helmet and Reflective Jacket, images of Individuals
Wearing Safety Helmets and Reflective Jackets.
https://www.kaggle.com/datasets/niravnaik/safety-helmet-and-reflective-jacket

[17] Deshmukh, R., Wenguang, M. & Wei, M. (2020). Window Detection in Street
Scenes, selected images from Paris Street-View Dataset with Window
Annotations. https://www.kaggle.com/datasets/rude009/window-detection-in-
street-scenes

[18] B Naik, N. (2022). PPUldataset, a test dataset of concrete column and concrete
beam annotated images for developing custom column and beam object detection
model. https://github.com/febrifahmi/PPUZ1dataset

[19] Tzutalin (2015). Labellmg, a graphical image annotation tool.
https://github.com/HumanSignal/labelimg

67

https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-building-houses/data
https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-building-houses/data
https://www.kaggle.com/datasets/ahmadahmadzada/images2000/data
https://www.kaggle.com/datasets/niravnaik/safety-helmet-and-reflective-jacket
https://www.kaggle.com/datasets/rude009/window-detection-in-street-scenes
https://www.kaggle.com/datasets/rude009/window-detection-in-street-scenes
https://github.com/febrifahmi/PPU1dataset
https://github.com/HumanSignal/labelImg

APPENDIX

Python code for custom image classification training

from imageai.Classification.Custom import ClassificationModelTrainer

model trainer = ClassificationModelTrainer ()

model trainer.setModelTypAsMobileNetV2 ()

model trainer.setDataDirectory("structural elements - ver.2 - IP9")
model trainer.trainModel (num experiments=1000, batch size=4)

Python code for custom image classification prediction

from imageai.Classification.Custom import CustomImageClassification
import os

execution path = os.getcwd()

prediction = CustomImageClassification|()

prediction.setModelTypeAsMobileNetV2 ()

prediction.setModelPath (os.path.join(execution path, " mobilenet v2-

structural elements - ver.2 - IPS9-test acc 0.81056 epoch-257.pt"))

prediction.setJsonPath (os.path.join (execution path, " structural

elements - ver.2 - IP9 model classes.json"))

prediction.loadModel ()

predictions, probabilities =

prediction.classifyImage (os.path.join (execution path,

"IMG 20240410 101352.jpg"), result count=9)

for eachPrediction, eachProbability in zip(predictions, probabilities):
print (eachPrediction + " : " + str(eachProbability))

Python code for custom object detection training

from imageai.Detection.Custom import DetectionModelTrainer

trainer = DetectionModelTrainer ()
trainer.setModelTypeAsYOLOV3 ()
trainer.setDataDirectory(data directory="CustomObjectDetection")
trainer.setTrainConfig(object names array=['column', 'excavator', 'beam',
'masonry', 'slab', 'window', 'person', 'Safety Helmet',6 'Reflective Jacket']
, batch size=4

, num experiments=200,
train from pretrained model="yolov3 hololens-yolo mAP-0.82726 epoch-
73.pt")
#download pre-trained model via
https://github.com/OlafenwaMoses/ImageAIl/releases/download/3.0.0-
pretrained/yolov3.pt
If you are training to detect more than 1 object, set names of
objects above like object names array=["hololens", "google-glass",
"oculus", "magic-leap"]
trainer.trainModel ()

68

Python code for augmented pictures production

import os
import Augmentor

Specifies the path to the directory containing original images
input directory = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\final entry\BEAM\RENAME JPG"

Specifies the output directory where augmented images will be saved
output directory = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\final entry\BEAM\aug2"

Checks if the output directory exists, otherwise creates it
if not os.path.exists (output directory):
os.makedirs (output directory)

Creates an Augmentor pipeline for the input directory
pipeline = Augmentor.Pipeline (input directory, output directory)

Defines augmentation operations

pipeline.rotate (probability=0.7, max left rotation=3,

max_ right rotation=3)
pipeline.flip left right (probability=0.7)
pipeline.flip top bottom(probability=0.7)

pipeline.zoom random(probability=0.7, percentage area=0.8)
pipeline.flip random(probability=0.7)

Color Jittering
pipeline.random color (probability=0.7, min factor=0.7, max factor=1.3)

Brightness Adjustment
pipeline.random brightness (probability=0.7, min factor=0.7,
max factor=1.3)

Contrast Adjustment
pipeline.random contrast (probability=0.7, min factor=0.7,
max factor=1.3)

Sets the number of augmented images to generate
num_augmented images = 100

Executes the augmentation process
pipeline.sample (num_augmented images)

69

Python code for custom object detection with NMS and rendering settings

import cv2
from imageai.Detection.Custom import CustomObjectDetection

Defines rendering settings for each class

class rendering settings = {
"excavator": {"color": (255, 0, 0), "label position": "top left"},
"person": {"color": (204, 204, 0), "label position":
"bottom right"},
"Safety Helmet": {"color": (0, 255, 0), "label position":
"bottom left"},
"Reflective Jacket": {"color": (0, 0, 255), "label position":

"top right"},
}

detector = CustomObjectDetection ()

detector.setModelTypeAsYOLOV3 ()
detector.setModelPath ("yolov3 CustomObjectDetection mAP-0.67410 epoch-
20.pt")

detector.setJsonPath ("CustomObjectDetection yolov3 detection config.jso
n")

detector.loadModel ()

Detection with adjusted rendering options
detections = detector.detectObjectsFromImage (
input image="ud6.jpg",
output image path="ud6 output.jpg",
minimum percentage probability=30,
display percentage probability=False, # Disables displaying
percentage probability
display object name=False, # Disables displaying object names
display box=True,
nms_treshold=0.35
)

Loads the image
image = cv2.imread("ud6_ output.jpg")

Iterates through detections
for detection in detections:
class name = detection["name"]
rendering settings = class_rendering settings.get(class_name, {})
Gets rendering settings for the class
color = rendering settings.get ("color", (255, 255, 255))
label position = rendering settings.get("label position",
"top_ left")

Draws the bounding box
left, top, right, bottom = detection["box points"]
cv2.rectangle (image, (left, top), (right, bottom), color, 2)

Calculates the center of the bounding box

center y = (top + bottom) // 2

70

1)

label = detection["name"] + "
{:.2f}%".format (detection["percentage probability"])
label = detection["name"] + " :
{:.2f}%".format (detection["percentage probability"])
label size, = cv2.getTextSize(label, cv2.FONT HERSHEY SIMPLEX,
if label position == "bottom right":
label position = (right -95, top-(-60))
elif label position == "bottom left":
label position = (right , top)
elif label position == "top left":
label position = (right -95, center y + label size[l] // 2)
elif label position == "top right":
label position = (right - 125, center y + label size[l] // 2)
else:
label position = (right, top - 100)

0.3,

Draws the label

1,

cv2.putText (image, label, label position, cv2.FONT HERSHEY SIMPLEX,

color, 1)

Saves the image with modified rendering

cv2.

imwrite ("ud6-detected-labeled.jpg", image)

71

Python code for custom object detection on .txt format (class, bounding boxes
coordinates, confidence score)

from imageai.Detection.Custom import CustomObjectDetection
import os
from PIL import Image

Creates a CustomObjectDetection instance
detector = CustomObjectDetection ()

Sets the model type to YOLOV3
detector.setModelTypeAsYOLOV3 ()

Sets the path to the trained YOLOv3 model file
detector.setModelPath ("yolov3 CustomObjectDetection mAP-0.67410 epoch-
20.pt")

Sets the path to the JSON file containing detection configuration
detector.setJsonPath ("CustomObjectDetection yolov3 detection config.jso
n")

Loads the YOLOv3 model
detector.loadModel ()

Path to the directory containing validation set images
validation set path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\validation\images"

Path to the directory where the output text files with bounding box
annotations will be saved

output annotations path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\validation\predictions"

Dictionary to map class names to numerical codes
class _mapping = {"column": 0, "excavator": 1, "beam": 2, "masonry": 3,
"slab": 4, "window": 5, "person": 6,

"Safety Helmet": 7, "Reflective Jacket": 8}

Iterates over each image in the validation set
for image filename in os.listdir(validation set path):
if image filename.endswith(".jpg"):
Builds the full path to the input image
input image path = os.path.join(validation set path,
image filename)

Opens the image and gets its dimensions
with Image.open (input image path) as img:
image width, image height = img.size

Performs object detection on the current image

detections =
detector.detectObjectsFromImage (input image=input image path,
output image path=None)

Builds the full path to save the output text file with
bounding box annotations

72

annotation filename = image filename.replace(".jpg", ".txt")

output annotation path = os.path.join(output annotations path,
annotation filename)

Opens the output text file for writing
with open(output annotation path, 'w') as annotation file:
Writes each detection in YOLO format to the text file
for detection in detections:
class label = detection["name"]
numerical code = class mapping.get(class_ label)
if numerical code is not None and numerical code in
range (9) :
X min, y min, X max, y max =
detection["box points"]

X _center = (x min + x max) / 2 / image width
y _center = (y min + y max) / 2 / image height
box width = (x max - x min) / image width

box height = (y max - y min) / image height

confidence score =
detection["percentage probability"] / 100.0

annotation str = f"{numerical code} {x center:.6f}
{y center:.6f} {box width:.6f} {box height:.6f}
{confidence score:.6f}\n"

annotation file.write (annotation str)

else:

print (f"Invalid class label '{class label}' for

{image filename}. Skipping annotation.")

73

Python code for custom object detection on .txt format (NMS implementation)

import numpy as np
import os
def non max suppression (boxes, scores, threshold):
If no boxes, returns an empty list
if len(boxes) ==
return []

Converts boxes to numpy array
boxes = np.array (boxes)

Initializes list to store the picked boxes
picked boxes = []

Extracts coordinates of bounding boxes

x1l = boxes[:, 0]
yl = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]

Computes the area of each bounding box
area = (x2 - x1 + 1) * (y2 - yl + 1)

Sorts the bounding boxes by their confidence scores (in

descending order)
idxs = np.argsort(scores) [::-1]

while len(idxs) > O:

Picks the bounding box with the highest confidence score

last = len(idxs) - 1
i = idxs[last]
picked boxes.append (i)

Calculates the intersection over union (IoU)
box with other boxes

of the picked

xx1 = np.maximum(x1[i], x1[idxs[:last]])

yyl = np.maximum(yl[i], yl[idxs[:last]])

xx2 = np.minimum(x2[i], x2[idxs[:last]])

yy2 = np.minimum(y2[i], y2[idxs[:last]])

w = np.maximum (0, xx2 - xx1 + 1)

h = np.maximum (0, yy2 - yyl + 1)

intersection = w * h

iou = intersection / (area[i] + area[idxs[:last]] -
intersection)

Discards the boxes with IoU greater than the threshold

idxs = np.delete(idxs, np.concatenate(([last],
threshold) [0])))

Returns the indices of the picked boxes
return picked boxes

np.where (iou >

74

Function to apply NMS to bounding box predictions in a TXT file
def apply nms to txt file(txt file path, output file path,
nms_threshold) :
Opens the input TXT file
with open(txt file path, 'r') as input file:
lines = input file.readlines()

Parses each line in the input file and apply NMS
refined lines = []
boxes = []
scores = []
for line in lines:
Parses the line to extract bounding box coordinates and
confidence score
class_label, x center, y center, box width, box height,
confidence score = map(float, line.strip().split())
Appends the bounding box details to the lists
boxes.append([x center - box width / 2, y center - box height /
2, x_center + box width / 2, y center + box height / 2])
scores.append(confidence score)

Applies NMS to the bounding box predictions
picked boxes = non max suppression(boxes, scores, nms_ threshold)

Writes the refined bounding box predictions to the output TXT
file

with open(output file path, 'w') as output file:
for idx in picked boxes:
output file.write(' '.join(map (str,
lines[idx].strip().split())) + '\n'")

Path to the folder containing the TXT files with bounding box
predictions

input folder path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\validation\predictions"
Path to the folder to save the refined TXT files with NMS applied
output folder path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\validation\predictions-
nms0.4"

NMS threshold
nms_threshold = 0.4 # Adjust as needed

Iterates over each TXT file in the input folder
for txt file name in os.listdir (input folder path):
if txt file name.endswith (".txt"):
Builds the full path to the input TXT file
input txt file path = os.path.join(input folder path,
txt file name)
Builds the full path to the output TXT file
output txt file path = os.path.join(output folder path,
txt file name)

Applies NMS to the bounding box predictions in the current
TXT file
apply nms to txt file(input txt file path,

output txt file path, nms threshold)

75

Python code for custom object detection model confusion matrix

from sklearn.metrics import confusion matrix
import os

from collections import Counter

import numpy as np

import matplotlib.pyplot as plt

Custom class labels
class labels = {

0: "column", 1: "excavator", 2: "beam", 3: "masonry",

4: "slab", 5: "window", 6: "person", 7: "Safety Helmet", 8:
"Reflective Jacket"

}

Paths

ground_truth path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\validation\annotations"
predictions path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\validation\predictions-
nms0.4"

Initializes variables to store confusion matrices
conf matrices = []

Processes files one by one
for batch index in range (0, len(os.listdir (ground truth path)), 1):
batch ground truth labels, batch predicted labels = [], []

Loads ground truth and predicted labels for the current batch
for filename in
os.listdir(ground truth path) [batch index:batch index + 1]:
if filename.endswith(".txt"):
with open(os.path.join(ground truth path, filename), 'r')
as annotation file:
Reads ground truth labels
batch ground truth labels.extend(int (line.split() [0])
for line in annotation file.readlines())

with open(os.path.join(predictions path, filename), 'r') as
prediction file:
Reads predicted labels
batch predicted labels.extend(int (line.split() [0]) for
line in prediction file.readlines())

Counts occurrences of each class in ground truth and predicted
labels

ground truth counts = Counter (batch ground truth labels)

predicted counts = Counter (batch predicted labels)

Determines the minimum count for each class
class min _counts = {cls: min(ground truth counts[cls],

predicted counts[cls]) for cls in class labels.keys()}

Creates lists to store filtered ground truth and predicted labels
filtered ground truth labels = []

76

filtered predicted labels = []

Iterates over each label and keep only the required number of
instances for each class
for label, cls in zip(batch predicted labels,
batch ground truth labels):
if class min counts[cls] > 0:
filtered ground truth labels.append(cls)
filtered predicted labels.append(label)
class min counts[cls] -= 1

Updates batch lists with filtered ones
batch ground truth labels = filtered ground truth labels
batch predicted labels = filtered predicted labels

Computes confusion matrix for the current batch
conf matrices.append(confusion matrix(batch ground truth labels,
batch predicted labels, labels=range(9)))

Merges confusion matrices to create the complete confusion matrix
complete conf matrix = sum(conf matrices)

Displays confusion matrix with numbers in each cell
plt.figure(figsize=(10, 8))

plt.imshow (complete conf matrix, interpolation='nearest',
cmap=plt.cm.Blues)

Adds color bar
plt.colorbar ()

Adds numbers in each cell

thresh = complete conf matrix.max() / 2.

for i in range(complete conf matrix.shape[0]):

for j in range(complete conf matrix.shape[l]):
plt.text(j, i, format(complete conf matrix[i, j], 'd'),

horizontalalignment="center",
color="white" if complete conf matrix[i, Jj] > thresh

else "black")

Sets axis labels and title
plt.xlabel ('Predicted labels')
plt.ylabel ('True labels')
plt.title('Complete Confusion Matrix')

Sets x and y axis ticks and labels

plt.xticks (np.arange(len(class labels)), class labels.values(),
rotation=45)

plt.yticks (np.arange (len(class labels)), class_labels.values(),
rotation=45)

plt.tight layout ()
plt.show()

77

Python code for custom object detection model accuracy metrics

import numpy as np
import matplotlib.pyplot as plt

Custom class labels
class labels = {

0: "column", 1: "excavator", 2: "beam", 3: "masonry",

4: "slab", 5: "window", 6: "person", 7: "Safety Helmet", 8:
"Reflective Jacket"}

def calculate metrics(conf matrix):
num classes = conf matrix.shape[0]

Initializes arrays to store precision, recall, and F1l score for
each class

precision = np.zeros (num classes)
recall = np.zeros (num classes)
fl score = np.zeros(num classes)

for i in range(num classes):
True positives: diagonal element

tp = conf matrix[i, i]

False positives: sum of column i (excluding tp)

fp = np.sum(conf matrix[:, 1]) - tp

False negatives: sum of row i (excluding tp)

fn = np.sum(conf matrix[i, :]) - tp

True negatives: sum of all values except row i and column i
tn = np.sum(conf matrix) - tp - fp - fn

Calculates precision

precision[i] = tp / (tp + fp) if (tp + fp) > 0 else O

Calculates recall

recall[i] = tp / (tp + fn) if (tp + fn) > 0 else O

Calculates F1 score

fl score[i] = 2 * (precision[i] * recall[i]) / (precision[i] +
recall[i]) if (precision[i] + recall[i]) > 0 else 0

Calculates overall metrics

overall precision = np.mean(precision)

overall recall = np.mean(recall)

overall fl score = np.mean(fl score)

return precision, recall, fl score, overall precision,
overall recall, overall fl score

Provided confusion matrix
conf matrix = np.array ([

(22, o, 10, 2, 28, 0, 1, 0, O],
(6, 5, 0, 0, 0, 0, 5, 1, 0],
(7, o, 48, 0, 1, 1, 0, 2, 0],
[OI OI 1/ 67/ OI 1/ 1/ OI O]l
[21 OI OI OI 35/ OI 1/ OI O]l
(L, o, ¢, 1, o, 108, 9, 0, O],
(6, 5, ¢, 1, 1, 1, 77, 1, 0],
(6, 1, o, o0, o, 0, 12, 30, 161,
(o, o, 0, 1, o, 0, 11, 10, 4711)

78

Calculates precision, recall, and F1l score
precision, recall, fl score,
overall fl score = calculate metrics (conf matrix)

overall precision, overall recall,

Plots the results for each class
classes = list(class_labels.values())

X = np.arange (len(classes))

width = 0.2
space = 0.1

fig, ax = plt.subplots(figsize=(12, 6))

Calculates the maximum value among precision, recall, and fl score

arrays

max value = max(max(precision), max(recall), max(fl score))

Sets the upper limit of the y-axis slightly higher than the maximum

value

ax.set ylim(0, max value + 0.1)

rectsl = ax.bar(x - width -

color='cyan')
rects?2 = ax.bar (x, recall,
color="mediumseagreen')

space, precision, width, label='Precision'

width, label='Recall',

rects3 = ax.bar(x + width + space, fl score, width, label='Fl Score',
color="#FFB6C1') # Light pink color

Adds labels, title, and legend

ax.set ylabel ('Scores', fontsize=14)

ax.set title('Precision, Recall, and F1l Score by Class', fontsize=18)
ax.set xticks (np.arange (len(classes)))

plt.yticks (fontsize=12)

ax.set xticklabels(list(class labels.values()), rotation=45,

ha="'right', fontsize=14)
ax.legend (fontsize=13)

Adds value annotations to each bar

def autolabel (rects) :
for rect in rects:

height = rect.get height ()
ax.annotate('{}'.format (round(height, 2)),
xy=(rect.get x() + rect.get width()/2, height),

xytext=(0,

3)y

textcoords="offset points",
ha='center', va='bottom', fontsize=11)

autolabel (rectsl)
autolabel (rects?2)
autolabel (rects3)

Shows the plot
plt.tight layout ()
plt.show()

Prints overall metrics

print (f"\nOverall Precision

{overall precision:.4f}, Overall Recall

{overall recall:.4f}, Overall Fl Score = {overall fl score:.4f}")

4

79

Python code for custom object detection (H&S VERSION)

import cv2

from imageai.Detection.Custom import CustomObjectDetection

def calculate iou(boxl, box2, image width, image height):

x1l, yvl1, wl, hl = boxl
%2, y2, w2, h2 = box2

Converts YOLO coordinates to pixel coordinates

x1l, yl = int(x1l image width), int(yl *
wl, hl = int(wl * image width), int(hl *
X2, y2 = int(x2 * image width), int(y2 *
w2, h2 int (w2 * image width), int(h2 *

image height)
image height)
image height)
image height)

Calculates intersection rectangle coordinates

x_start = max(x1l, x2)
y_start = max(yl, y2)
x end = min(xl + wl, x2 + w2)

y_end = min(yl + hl, y2 + h2)

Calculates width and height of intersection rectangle
intersection width = max(0, x end - x start)
intersection height = max(0, y end - y start)

Calculates area of intersection rectangle

intersection area = intersection width *

intersection height

Calculates areas of individual bounding boxes

area boxl = wl * hl
area box2 = w2 * h2

Calculates area of union

union area = area boxl + area box2 - intersection area

Calculates IoU

iou = intersection area / union area if union area > 0 else 0

return iou

detector = CustomObjectDetection ()
detector.setModelTypeAsYOLOV3 ()

detector.setModelPath ("yolov3 CustomObjectDetection mAP-0.67410 epoch-

20.pt")

detector.setJsonPath ("CustomObjectDetection yolov3 detection config.jso

n")
detector.loadModel ()

Loads the image to get its dimensions
input image path = "hj93.jpg"

image = cv2.imread (input image path)

image height, image width, = image.shape

Detection with adjusted rendering options
detections = detector.detectObjectsFromImage (
input image=input image path,
output image path="hj93 output.jpg",

80

minimum percentage probability=30,

display percentage probability=False, # Disable displaying
percentage probability

display object name=True, # Disable displaying object names

display box=True,

nms_treshold=0.05)

class 6 detected = False
class_ 7 detected False
class_8 detected False

Count of objects for each class

class 6 count = 0
class 7 count = 0
class_8 count = 0

Stores bounding boxes for each class
class_6 boxes = []
class 7 boxes = []
class 8 boxes

—
[—

Counters for checkpoints

warning count 1 = 0
warning count 2 = 0
warning count 3 = 0

Iterates through detections
for detection in detections:

class name = detection["name"]
bbox = detection["box points"]
if class name == "person":

class 6 detected = True
class 6 _count += 1
class_ 6 boxes.append (bbox)

elif class name == "Safety Helmet":
class 7 detected = True
class 7 count +=1
class_ 7 boxes.append (bbox)

elif class name == "Reflective Jacket":
class 8 detected = True
class 8 count +=1
class 8 boxes.append (bbox)

if not class 6 detected:
print ("No action required")
else:
if not class 7 detected or not class 8 detected:
warning count 1 += class_ 6 count
else:
if class_ 7 count < class 6 count or class 8 count <
class_ 6 _count:
warning count 2 += class 6 count - min(class_ 7 count,
class_8 count)
else:
Check for full overlapping
full overlap = True
class 6 without full overlap = O

81

for class_6 box in class_6 boxes:
overlap 7 = False
overlap 8 = False
for class_7 box in class_7 boxes:
if calculate iou(class_6 box, class 7 box,
image width, image height) >= 0.9:
overlap 7 = True
break
for class_ 8 box in class_ 8 boxes:
if calculate iou(class_6 box, class 8 box,
image width, image height) >= 0.9:
overlap 8 = True
break
if not overlap 7 or not overlap 8:
full overlap = False
class_6 without full overlap += 1
if not full overlap:
warning count 3 += class 6 without full overlap
else:
print ("No action required")

ANSI escape code for red color

RED = '\033[91m'

ANSI escape code for underlining text
UNDERLINE = '\033[4m'

ANSI escape code for resetting underline
RESET UNDERLINE = '\033[24m'

Prints the checkpoint with the highest count

max_ count = max(warning count 1, warning count 2, warning count 3)
if max count == 1:
if max count == warning count 1:

print (f"{RED} {UNDERLINE}HEALTH & SAFETY
ISSUE: {RESET UNDERLINE}\n{warning count 1} person without proposed
safety equipment\nin the construction site!!!")
if max count == warning count 2:
print (f"{RED} {UNDERLINE}HEALTH & SAFETY
ISSUE: {RESET UNDERLINE}\n{warning count 2} person without proposed
safety equipment\nin the construction site!!!")
if max count == warning count 3:
print (£f"{RED} {UNDERLINE}HEALTH & SAFETY
ISSUE: {RESET UNDERLINE}\n{warning count 3} person without proposed
safety equipment\nin the construction site!!!"™)
else:
if max count == warning count 1:
print (£"{RED} {UNDERLINE}HEALTH & SAFETY
ISSUE: {RESET UNDERLINE}\n{warning count 1} persons without proposed
safety equipment\nin the construction site!!!")
if max count == warning count 2:
print (£f"{RED} {UNDERLINE}HEALTH & SAFETY
ISSUE: {RESET UNDERLINE}\n{warning count 2} persons without proposed
safety equipment\nin the construction site!!!")
if max count == warning count 3:
print (£"{RED} {UNDERLINE}HEALTH & SAFETY
ISSUE: {RESET UNDERLINE}\n{warning count 3} persons without proposed
safety equipment\nin the construction site!!!™)

82

Python code for number of instances & images per class counter

import os
import matplotlib.pyplot as plt
import numpy as np

Custom class labels
class labels = {
0: "column", 1: "excavator", 2: "beam", 3: "masonry",
4: "slab", 5: "window", 6: "person", 7: "Safety Helmet", 8:
"Reflective Jacket"
}

Function to parse YOLO format truth labels and count instances for
each class
def count instances (truth labels dir):
class _counts = {label: 0 for label in range(len(class labels))}
class _files = {label: 0 for label in range(len(class_labels))}
Iterates through each truth label file
for filename in os.listdir(truth labels dir):
if filename.endswith(".txt"):

with open(os.path.join(truth labels dir, filename), r') as
file:
Reads lines and counts instances for each class
lines = file.readlines()
found classes = set()
for line in lines:
class_id = int(line.split () [0])

if class id in class labels:
class_counts[class id] += 1
found classes.add(class_id)
Counts the files that contain at least one instance
of each class
for class id in found classes:
class_files[class id] += 1

return class counts, class_files
Function to plot bar graph of instance distribution

def plot instance distribution(class counts, class files):
Sorts class counts and class files by class ID

sorted counts = [class counts[label] for label in
sorted(class labels)]

sorted files = [class files[label] for label in
sorted(class labels)]

class names = [class_labels[label] for label in

sorted(class labels)]

Sets bar width
bar width = 0.35

Sets position of bars on X axis

rl = np.arange(len(class names))
r2 = [x + bar width for x in rl]

83

Plots bars

plt.figure(figsize=(10, 6))

plt.bar(rl, sorted counts, color='blue', width=bar width,
edgecolor="'grey', label='Number of Instances')

plt.bar(r2, sorted files, color='red', width=bar width,
edgecolor='grey', label='Number of Images')

Adds labels and title with custom font size

plt.xlabel ('Class', fontweight='bold', fontsize=14) # Adjust
fontsize as needed

plt.ylabel ('Count', fontweight='bold', fontsize=14) # Adjust
fontsize as needed

plt.xticks([r + bar width / 2 for r in range(len(class names))],
class names, rotation=45,
fontsize=12) # Adjust fontsize as needed

Sets y-axis scale
plt.yticks (fontsize=12) # Adjust fontsize as needed
plt.title('Instance and Image Distribution Across Classes',
fontweight="bold',
fontsize=16) # Adjust fontsize as needed

Adds values on each bar
for i, count in enumerate (sorted counts) :
plt.text (i, count + 0.1, str(count), ha='center',
va='bottom', fontsize=11)

for i, files in enumerate (sorted files):

plt.text (i + bar width, files + 0.1, str(files), ha='center',

va="'bottom', fontsize=11)

Adds legend
plt.legend (fontsize=12)
plt.tight layout ()
plt.show ()

Path to directory containing truth label files
truth labels dir = r'C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\totals'

Counts instances and files for each class
class_counts, class files = count instances(truth labels dir)

Plots instance and file distribution
plot instance distribution(class counts, class_ files)

84

Python code for number of instances per class counter (3 folders comparison
version)

import os
import matplotlib.pyplot as plt
import numpy as np

Custom class labels
class labels = {

0: "column", 1l: "excavator", 2: "beam", 3: "masonry",

4: "slab", 5: "window", 6: "person", 7: "Safety Helmet", 8:
"Reflective Jacket"

}

Function to parse YOLO format truth labels and count instances for
each class
def count instances (truth labels dir):
class_counts = {label: 0 for label in range(len(class_ labels))}
class _files = {label: 0 for label in range(len(class_labels))}
Iterates through each truth label file
for filename in os.listdir(truth labels dir):
if filename.endswith (".txt"):

with open(os.path.join(truth labels dir, filename), 'r')
file:
Reads lines and counts instances for each class
lines = file.readlines /()
found classes = set()
for line in lines:
class_id = int(line.split () [0])

if class _id in class_labels:
class counts[class id] += 1
found classes.add(class_id)
Counts the files that contain at least one instance
of each class
for class_id in found classes:
class_files[class _id] += 1

return class counts, class_ files
Function to plot bar graph of instance distribution

def plot instance distribution(class counts, class files):
Sorts class counts and class files by class ID

sorted counts = [class counts[label] for label in
sorted(class labels)]

sorted files = [class files[label] for label in
sorted(class labels)]

class names = [class labels[label] for label in

sorted(class labels)]

Sets bar width
bar width = 0.35

Sets position of bars on X axis
rl = np.arange(len(class_names))
r2 = [x + bar_width for x in rl]

as

85

Plots bars

plt.figure(figsize=(10, 6))

plt.bar(rl, sorted counts, color='blue', width=bar width,
edgecolor='grey', label='Number of Instances')

plt.bar(r2, sorted files, color='red', width=bar width,
edgecolor='grey', label='Number of Images')

Adds labels and title with custom font size

plt.xlabel ('Class', fontweight='bold', fontsize=14) # Adjust
fontsize as needed

plt.ylabel ('Count', fontweight='bold', fontsize=14) # Adjust
fontsize as needed

plt.xticks([r + bar width / 2 for r in range(len(class names))],
class_names, rotation=45,
fontsize=12) # Adjust fontsize as needed

Sets y-axis scale
plt.yticks (fontsize=12) # Adjust fontsize as needed
plt.title('Instance and Image Distribution Across Classes',
fontweight="'bold",
fontsize=16) # Adjust fontsize as needed

Adds values on each bar
for i, count in enumerate (sorted counts) :
plt.text (i, count + 0.1, str(count), ha='center',
va='bottom', fontsize=11)

for i, files in enumerate (sorted files):

plt.text (i + bar width, files + 0.1, str(files), ha='center',

va='bottom', fontsize=11)

Adds legend
plt.legend(fontsize=12)
plt.tight layout ()
plt.show()

Path to directory containing truth label files
truth labels dir = r'C:\Users\Nicolas\PycharmProjects\ImageAI-
master\examples\CustomObjectDetection - Results\totals'

Counts instances and files for each class
class_counts, class files = count instances(truth labels dir)

Plots instance and file distribution
plot instance distribution(class counts, class_ files)

86

