
1

Master’s Thesis

DETECTION AND CLASSIFICATION OF

CONSTRUCTION OBJECTS

BY USE OF MACHINE VISION AND DEEP LEARNING

Nicolas Nicolaou

Nicosia, May 2024

Nico
las

 N
ico

lao
u

2

Approval Form

Master’s Thesis

DETECTION AND CLASSIFICATION OF

CONSTRUCTION OBJECTS

BY USE OF MACHINE VISION AND DEEP LEARNING

Presented by

 Nicolas Nicolaou

Supervisor: Symeon Christodoulou, Professor

Department of Civil and Environmental Engineering

Member of the Committee:

Loukas J Dimitriou, Associate Professor

Department of Civil and Environmental Engineering

Member of the Committee:

Nico
las

 N
ico

lao
u

https://www.ucy.ac.cy/cee/en/people/schristo
https://www.ucy.ac.cy/cee/en/people/schristo

3

Copyrights

©2024

Nicolas Nicolaou

ALL RIGHTS RESERVED

Nico
las

 N
ico

lao
u

4

Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, Dr. Symeon Christodoulou,

for his invaluable assistance and guidance throughout the preparation and completion of

my MSc thesis work. His support has been indispensable and greatly appreciated.

I would also like to extend my gratitude to my family for their unwavering support

throughout this endeavor. Additionally, I am thankful to my colleagues and partners for

granting me access to and supporting me in obtaining photographic material from

construction sites.

Nico
las

 N
ico

lao
u

5

ABSTRACT

The construction industry represents a continuously evolving environment where there is

always room for process improvement and modernization. Artificial intelligence, as well

as other emerging technologies such as machine vision (MV) and machine learning (ML),

are indispensable in such an environment. Indeed, in recent years, their usefulness has

become increasingly evident, along with the various possibilities for their application.

This research paper focuses on the detection and classification of objects at construction

sites and analyzes the utility and potential of these detection and classification activities in

the modern construction industry. Object detection and classification are performed by

applying technologies such as machine vision (MV) and deep learning (DL) to image

processing and/or in combination with object segmentation and labeling using bounding

boxes. These activities have varied applications on construction sites, including but not

limited to: (1) the monitoring of workers, machinery, and vehicles for productivity

measurement and for the prevention of accidents and collisions; and (2) the monitoring and

classification of procured of construction materials, to evaluate the progress of construction

work. This serves as a valuable, low-cost measurement tool in the context of the

management and monitoring of construction projects.

First, the presented research work examines the knowledge base from past work on the

application of the aforementioned technologies to similar problems across varying

professional domains, focusing on the construction sector. An extensive evaluation of their

accuracy, reliability, and effectiveness is conducted, along with the identification of

potential advantages/disadvantages of their application. Further presented is the

methodology followed in pursuit of the research’s scope of work. Specifically, nine

specific ‘construction classes’ potentially found at a construction site are addressed.

Subsequently, the corresponding results are provided and extensively discussed, along with

an examination of any potential errors in the recognition and taxonomy of these classes.

Finally, snippets (in the Python programming language) of the programming code used

during various phases of the overall methodology are provided.

Nico
las

 N
ico

lao
u

6

ΠΕΡΙΛΗΨΗ

Ο κατασκευαστικός κλάδος αποτελεί ένα συνεχώς εξελισσόμενο περιβάλλον στο οποίο

πάντα υπάρχει περιθώριο για ενέργειες βελτίωσης διεργασιών αλλά και εκσυγχρονισμού

του. Η τεχνητή νοημοσύνη καθώς επίσης και άλλες νεοφανείς τεχνολογίες όπως είναι η

μηχανική όραση (MV) και η μηχανική εκμάθηση (ML) δεν θα μπορούσαν να λείπουν από

το περιβάλλον αυτό. Άλλωστε, τα τελευταία χρόνια γίνεται όλο και πιο εμφανής η

χρησιμότητα τους αλλά και οι διάφορες δυνατότητες εφαρμογής τους.

Η παρούσα ερευνητική εργασία επικεντρώνεται στον εντοπισμό και την ταξινόμηση

αντικειμένων σε εργοτάξια και αναλύει τη χρησιμότητα και τη δυναμική αυτών των

δραστηριοτήτων εντοπισμού και ταξινόμησης στη σύγχρονη κατασκευαστική

«βιομηχανία». Ο εντοπισμός και η ταξινόμηση αντικειμένων πραγματοποιείται μέσω της

εφαρμογής τεχνολογιών όπως η μηχανική όραση (MV) και η βαθιά εκμάθηση (DL) στην

επεξεργασία εικόνας ή/και σε συνδυασμό με την ανάθεση ετικετών και οριοθετημένων

πλαισίων σε αντικείμενα. Αυτές οι δραστηριότητες έχουν διάφορες εφαρμογές στα

εργοτάξια, καθώς συμβάλουν μεταξύ άλλων, στον έλεγχο του εργατικού προσωπικού, των

μηχανημάτων και των οχημάτων που διακινούνται σε αυτό με σκοπό την πρόληψη

ατυχημάτων και συγκρούσεων, καθώς επίσης στην παρακολούθηση και κατηγοριοποίηση

των προμηθευομένων κατασκευαστικών υλικών, προκειμένου να αξιολογηθεί η πρόοδος

των κατασκευαστικών εργασιών. Αυτό λειτουργεί ως ένα χαμηλού κόστους πολύτιμο

εργαλείο επιμέτρησης-αξιολόγησης στα πλαίσια της διαχείρισης και παρακολούθησης

κατασκευαστικών έργων.

Αρχικά, η παρούσα ερευνητική εργασία εξετάζει την ύπαρξη πρότερης εργασίας και

εφαρμογής των εν λόγω τεχνολογιών για παρόμοιας φύσης ζητήματα σε οποιοδήποτε

επάγγελμα και δη στον κατασκευαστικό τομέα. Γίνεται μία εκτενής αξιολόγηση της

ακρίβειας, της αξιοπιστίας και της αποτελεσματικότητας τους καθώς και η διακρίβωση

των πιθανών πλεονεκτημάτων/μειονεκτημάτων από την εφαρμογή τους. Επιπλέον,

παρουσιάζεται η μεθοδολογία που ακολουθήθηκε στη βάση του σκοπού που περιεγράφηκε

προηγουμένως. Συγκεκριμένα, εξετάζονται εννέα διαφορετικές κλάσεις αντικειμένων οι

οποίες δυνητικώς εντοπίζονται σε ένα εργοτάξιο. Ακολούθως, δίνονται τα αντίστοιχα

Nico
las

 N
ico

lao
u

7

αποτελέσματα και σχολιάζονται εκτενώς καθώς επίσης εξετάζεται η ύπαρξη τυχών

σφαλμάτων.

Τέλος, δίνονται αποσπάσματα από κώδικα στη γλώσσα προγραμματισμού Python που

χρησιμοποιήθηκε κατά τη διάρκεια διαφόρων φάσεων της μεθοδολογίας που

ακολουθήθηκε.

Nico
las

 N
ico

lao
u

8

TABLE OF CONTENTS

ABSTRACT ... 5

ΠΕΡΙΛΗΨΗ ... 6

TABLE OF CONTENTS .. 8

LIST OF FIGURES ... 9

LIST OF TABLES ... 10

LIST OF ABBREVIATIONS ... 11

1. INTRODUCTION ... 12

1.1 Literature review ... 12

1.2 Thesis scope ... 17

1.3 Thesis organization .. 18

2. RESEARCH BACKGROUND ... 20

2.1 Machine Vision (MV) .. 20

2.2 Deep Learning (DL) .. 21

2.3 Image Classification (IC) ... 22

2.4 Object Detection (OD) ... 23

3. RESEARCH METHODOLOGY ... 25

3.1 Overview .. 25

3.2 Image Classification Framework .. 26

3.3 Object Detection Framework .. 28

4. ANALYSIS AND RESULTS .. 35

4.1 Image Classification Results .. 35

4.2 Object Detection Results ... 43

5. SUMMARY OF FINDINGS ... 61

6. CONCLUSIONS .. 64

REFERENCES .. 66

APPENDIX .. 68

Nico
las

 N
ico

lao
u

9

LIST OF FIGURES

Figure 1.1: The value of global Generative AI in the construction industry 13

Figure 2.1: Object detection using Machine Vision ... 20

Figure 2.2: Functional difference between Machine Learning and Deep Learning 21

Figure 2.3: Sample result for image classification by ImageAI library 22

Figure 2.4: Sample result for object detection by ImageAI library 23

Figure 3.1: Custom image classification methodology flowchart 28

Figure 3.2: Instance and image distribution across custom classes 29

Figure 3.3: Labelimg workspace during annotation process .. 30

Figure 3.4: Custom object detection methodology flowchart .. 34

Figure 4.1: Prediction percentages per class by custom IC model (example 1) 36

Figure 4.2: Prediction percentages per class by custom IC model (example 2) 38

Figure 4.3: Prediction percentages per class by custom IC model (example 3) 39

Figure 4.4: Prediction percentages per class by custom IC model (example 4) 41

Figure 4.5: Custom OD model implementation (example 1): (a) Initial random photo, (b)

Detected objects by custom OD model .. 44

Figure 4.6: Custom OD model implementation (example 2): (a) Initial random photo, (b)

Detected objects by custom OD model .. 46

Figure 4.7: Custom OD model implementation (example 3): (a) Initial random photo, (b)

Detected objects by custom OD model .. 48

Figure 4.8: Custom OD model implementation (example 4): (a) Initial random photo, (b)

Detected objects by custom OD model. ... 49

Figure 4.9: Custom OD model implementation (NMS example): (a) Initial random photo,

(b) Detected objects by custom OD model without NMS, (c) Detected objects

by custom OD model with NMS and rendering settings 51

Figure 4.10: Custom OD model implementation (H&S example): (a) Initial random

photo, (b) Detected objects by custom OD model. .. 53

Figure 4.11: Python code output (H&S example) .. 53

Figure 4.12: Results of confusion matrix based on custom OD model 55

Figure 4.13: Custom object detection model’s metrics (per class and overall) 56

Figure 4.14: Instance distribution before and after NMS application 58

Figure 4.15: Results of confusion matrix based on custom OD model after NMS

application .. 59

Figure 4.16: Custom object detection model’s metrics after NMS application (per class

and overall) .. 60

Nico
las

 N
ico

lao
u

10

LIST OF TABLES

Table 3.1: Numerical codes of examined construction objects’ classes 26

Table 4.1: Custom object detection model’s metrics .. 43

Table 4.2: Detected objects by custom OD model (example 1) 45

Table 4.3: Detected objects by custom OD model (example 2) 47

Table 4.4: Detected objects by custom OD model (example 3) 48

Table 4.5: Detected objects by custom OD model (example 4) 50

Table 4.6: Detected objects by custom OD model (H&S example) 54

 Nico
las

 N
ico

lao
u

11

LIST OF ABBREVIATIONS

AI Artificial Intelligence

MV Machine Vision

DL Deep Learning

IC Image Classification

OD Object Detection

NMS Non-Maximum Suppression

IoU Intersection over Union

mAP mean Average Precision

Nico
las

 N
ico

lao
u

12

1. INTRODUCTION

1.1 Literature review

The construction sector, even in modern times, faces numerous perennial problems and

challenges related to the effective management and monitoring of construction projects.

Some of these challenges are, for example, associated with safety and health on

construction sites. Despite significant progress achieved through the introduction of

regulatory frameworks and legislation, a considerable number of occupational accidents

are still recorded today. These accidents are not exclusively personal but are often linked

to the reckless use of mechanical equipment and vehicles, as well as insufficient

coordination, organization, and monitoring at construction sites. Therefore, a system using

machine vision (MV) and deep learning (DL) technologies could, in this case, detect a

worker in a restricted zone of the construction site, or determine whether the worker is

wearing appropriate safety equipment or, even better, continuously appraise the ergonomic

risks to workers (Lambrides and Christodoulou, 2023) [1]. Additionally, the system could

be used to ensure the proper operation of mechanical equipment in designated areas and

the maintenance of safe distances by the working personnel at the construction site.

Another critical issue commonly encountered at construction sites is resource management

and construction progress monitoring. Delays, particularly in large construction projects,

often occur due to material shortages and insufficient logistics in material delivery.

Conflicts and construction delays are also frequent occurrences. Therefore, a mechanism

based on the aforementioned technologies could be employed to monitor the transport of

construction material to sites and visually document the construction process. This visual

documentation can be valuable for reference and analysis.

In light of the aforementioned and other challenges faced by the modern construction

industry, the use of machine vision and deep learning technologies is imperative. These

technologies enable the automation of numerous technical processes on the construction

site while facilitating the monitoring and resolution of various problems within it. The

investment of the construction industry in technologies related to artificial intelligence has

Nico
las

 N
ico

lao
u

13

taken significant dimensions in recent years. Specifically, according to Market.us (Figure

1.1) [2], for the year 2023, the value of Generative AI in the construction industry, on a

global scale, has been estimated at around USD 142 million, while this value is expected

to double by 2033, as depicted in the following graph. Additionally, a significant, if not the

most significant, contribution to this value seems to be attributed to machine learning

technology, something that is expected to continue happening in the immediate future. This

once again confirms the prominent value of this technology in the activities of the

construction sector.

Figure 1.1: The value of global Generative AI in the construction industry

In recent years, a significant volume of research studies have been conducted on the use of

machine vision (MV) and deep learning (DL) technologies for detecting and classifying

construction elements at construction sites. This trend began in the early 2010s, with works

on the automated generation of parametric BIMs (Brilakis et al., 2010) [3], and despite the

significant improvements in relevant applications, there is still room for further

development.

Nico
las

 N
ico

lao
u

14

The article by Czerniawski and Leite (2020) [4] introduces the automation of digital

modeling of existing buildings through reality capture devices and computer vision

algorithms. The goal is to facilitate the use of digital building representation technologies,

promoting new forms of simulation, automation, and information provision. The article

provides an overview of endeavors spanning the last decade (2010-2020), with a primary

focus on object recognition methodologies. Addressing limitations identified in previous

review literature, the authors meticulously dissect the structure and variations of object

recognition systems, accompanied by thorough quantitative performance evaluations. The

research results suggest that achieving a more complete semantic coverage of building

infrastructures will require a revision and intensification of relevant efforts. In conclusion,

the study advocates for a reevaluation and heightened dedication to bridging existing gaps

in object recognition technologies to propel advancements in automated digital modeling

for existing buildings.

Nath and Behzadan (2020) [5] propose the validation of a genetic adversarial network

(GAN) based on a deep convolutional neural network (CNN). The research involves photos

taken, trained, and tested at the construction site from two internal datasets to increase

image resolution when generating missing pixel information. Results demonstrate that

using GAN-enhanced images can further improve the average accuracy of pre-trained

models for object detection while maintaining overall processing time for real-time object

detection.

A key aspect in leveraging DL methods for construction site data interpretation is the

accurate identification of objects of interest. Achieving this accuracy requirement is

essential, albeit often at the expense of computational speed. While lightweight DL

algorithms like Mask R-CNN offer high accuracy in visual recognition tasks, their

processing efficiency may hinder real-time decision-making capabilities. Notably, the

YOLO (you-only-look-once) algorithm emerges as a promising solution due to its ability

to strike a balance between speed and accuracy. The study introduces the Pictor-v2 dataset,

comprising approximately 3,500 images and 11,500 instances of common construction site

objects. Through transfer learning, the researchers trained YOLO-v2 and YOLO-v3

Nico
las

 N
ico

lao
u

15

variants, assessing their performance on various combinations of data sources, including

crowdsourced and web-mined images.

This review underscores the significance of employing DL-based approaches in

construction site data interpretation and lays the groundwork for future research endeavors

aimed at enhancing human capabilities through advanced assistive technology systems in

complex visual data environments.

Ιn a subsequent work, Paneru and Jeelani (2021) [6] provided an up-to-date and categorized

overview of computer vision applications in construction by examining recent

developments in the construction sector and the challenges that future research must

address to maximize the benefits of computer vision. The authors focus on specific areas

considered most likely to benefit significantly from computer vision, such as safety

management on construction sites, progress and productivity monitoring, and work quality

control.

This work provides an insightful and categorized overview of computational vision

applications in construction, highlighting recent advancements in the field and identifying

opportunities and challenges for future research. The focus is narrowed down to four key

areas where computer vision can significantly enhance construction management: Safety

Management, Progress Monitoring, Productivity Tracking, and Quality Control. Overall,

the article offers a comprehensive examination of the potential benefits of integrating

computer vision into construction management practices, shedding light on the

opportunities and obstacles that lie ahead in fully harnessing the capabilities of this

technology.

One year later, Duan et al. (2022) [7], focused on developing a large-scale image dataset

specifically collected and processed for construction sites, named SODA (Site Object

Detection Dataset). This dataset includes 15 types of objects categorized into mechanical

means, materials, and labor personnel. Specifically, 20,000 images were collected from

various construction sites, considering different construction site conditions, weather

conditions, construction phases, and shooting angles. After careful examination and

processing, 19,846 images were selected, containing 286,201 objects accompanied by

corresponding labels from predefined categories.

Nico
las

 N
ico

lao
u

16

An analysis conducted indicated that the developed dataset is advantageous in terms of

diversity and volume. Further evaluation using two widely accepted object detection

algorithms based on deep learning (YOLO v3 / YOLO v4) demonstrated the dataset’s

effectiveness in visualizing typical construction scenarios, achieving a maximum mean

Average Precision (mAP) of 81.47%. This research contributes a large-scale dataset for the

development of deep learning applications in object detection within the construction

industry. It serves as a reference point for the further evaluation of corresponding

algorithms in this field.

In their work, Wang et al. (2022) [8] proposed a new semantic method aiming to extract

information by integrating deep learning object detection and image captioning. This

method explores important information from construction images or videos. In the

proposed approach, object detection serves as an encoder to extract features of construction

objects and the holistic image. The image caption was selected as a decoder to extract the

semantic information. A new post-processing technique has been suggested to assess

semantic information in graph format, aiming to enhance accessibility and visualization.

In experimental trials, the proposed approach yielded a Consensus Image Description

Evaluation (CIDEr) score of 1.84, indicating its effectiveness. By adopting this method,

semantic information from construction images can be presented to project managers as a

valuable tool for making crucial decisions on the construction site.

In the research work of Hou et al. (2022) [9], a multi-object detection method based on the

improved YOLOv4 model is proposed to overcome the problem of low detection accuracy.

The method involves several key optimizations, including the utilization of the K-means

algorithm for anchor box initialization, replacing pooling operations with dilated

convolution to preserve feature map resolution, and integrating focus loss to address

sample imbalance during model training. Research results indicate that the average

accuracy (mAP) of the improved YOLOv4 model for many objects can reach 97.03%,

which is 2.16% higher than that of the original YOLOv4 detection network. At the same

time, the detection speed reached 31.11 fps, a decrease of 0.59 fps, a result quite

satisfactory for real-time detection data.

Nico
las

 N
ico

lao
u

17

Overall, this research marks a notable advancement in environment perception for

construction machinery swarm operations. By addressing critical limitations in detection

accuracy and speed, the proposed method lays a solid foundation for the unmanned and

intelligent evolution of construction machinery operations, promising enhanced efficiency

and safety in complex construction environments.

Zhou et al. (2022) [10] propose an object detection method based on an improved YOLOv5

model with high sorting accuracy of construction waste. It involves creating a dataset from

images of construction waste taken in situ at construction sites. This improved model was

trained, validated, and tested based on the collected images and compared with other

conventional models such as Faster-RCNN, YOLOv3, YOLOv4, and YOLOv7. The

YOLOv5 model recorded an average accuracy (mAP) on the test dataset of 0.9480,

indicating better performance than other conventional models in object detection.

Overall, the study underscores the accuracy and practicality of the enhanced YOLOv5

model for sorting construction waste. By outperforming existing models, the proposed

approach holds significant potential for optimizing waste management processes in

construction settings, ultimately contributing to improved efficiency and resource

utilization.

In a recent research paper by Jog et al. (2022) [11], full-scale validation experiments of a

multi-object location tracking method for its application to resource tracking in large-scale,

congested, outdoor construction sites are presented. The validation stage involved testing

under harsh conditions on various large project sites. This research paper describes the

process of data collection and testing, as well as the measurements and results obtained.

The validation showed that the new vision tracking provides a good solution for tracking

different entities in large and congested construction sites.

1.2 Thesis scope

As previously mentioned, this research work endeavor aims to achieve successful

classification and detection of objects encountered at construction sites through the

utilization of photographs and technologies in machine vision and deep learning. The

object detection and classification tasks was focused on nine distinct classes of objects,

Nico
las

 N
ico

lao
u

18

encompassing both load-bearing and non-load-bearing structural elements, excavators,

human personnel, and individual protective equipment. Additionally, a capability was

incorporated to examine safety and health issues at construction sites by issuing relevant

warnings in case individuals without the required personal protective gear were identified

in the photographs. For the training of classification and object detection models, two

pertinent classes, namely "safety helmet" and "reflective jacket," were incorporated among

the nine classes under examination to facilitate the aforementioned supplementary

functionality. Furthermore, conclusions regarding the performance and accuracy of the

new custom trained models were drawn through examples and confusion matrices, utilizing

various measurement units and success rates.

To accomplish the aforenamed objective, models, codes (in Python), and algorithms were

employed, which undertake the activities under examination with the assistance of

computer vision and deep learning technologies. Following this, in this thesis a dedicated

chapter (“Research Background”) elucidates the operational mechanisms of these

technologies and the pertinent tasks they undertake. Furthermore, a chapter entitled

"Research Methodology" is dedicated to providing a detailed explanation of the preparation

and training process of the two models under study, as well as the examination of other

functions. Following this chapter, the presentation and discussion of the relevant results

ensue, along with a further evaluation of the effectiveness of the resultant models. In

conclusion, the research work concludes with chapters on findings summary and

conclusions, where a comprehensive and overarching commentary on the relevant findings

is provided.

1.3 Thesis organization

Further to this introductory and brief literature review chapter, the thesis discusses the

research background (Chapter 2) on machine vision (MV), deep learning (DL), image

classification (IC) and object detection (OD), and the research methodology (Chapter 3).

Chapters 4 and 5 present the analysis performed and the findings, respectively, on object

detection and classification at construction sites.

Nico
las

 N
ico

lao
u

19

The thesis concludes with a chapter on key conclusions and an appendix with snippets of

the programming code used for the analysis.

Nico
las

 N
ico

lao
u

20

2. RESEARCH BACKGROUND

2.1 Machine Vision (MV)

Machine vision, also referred to as computer vision, pertains to a technological domain

wherein computers are equipped to interpret and comprehend visual data, akin to the

human visual system. It involves the development of algorithms, techniques, and systems

that empower machines to extract, analyze, and understand meaningful insights from

digital images or video feeds.

Typically, machine vision setups encompass cameras or similar image-capturing devices

for acquiring visual data, alongside software and hardware components tasked with

processing this data to execute various functions. These functions may entail tasks such as

detecting, recognizing, classifying, tracking, analyzing motion, enhancing images, and

reconstructing 3D representations. The application scope of machine vision spans

numerous industries and disciplines, encompassing manufacturing, healthcare, agriculture,

automotive, surveillance, robotics, augmented reality, and beyond. Its significance lies in

its pivotal role in automation, quality control, inspection, monitoring, and decision-making

processes by granting machines the capability to autonomously "see" and interpret visual

information. An example of object detection task as part of machine vision technology is

given in Figure 2.1 [12].

Figure 2.1: Object detection using Machine Vision

Nico
las

 N
ico

lao
u

21

2.2 Deep Learning (DL)

Deep learning is a branch of machine learning technology focused on training complex

artificial neural networks with multiple layers. These networks, inspired by the human

brain's structure, process data through interconnected nodes called neurons across

successive layers. Each layer extracts features from the input data, and through

backpropagation, the network adjusts its internal parameters to minimize prediction errors

during training.

Deep learning is particularly effective in tasks like image and speech recognition, natural

language processing, and recommendation systems. It automatically learns hierarchical

representations of data, eliminating the need for manual feature engineering.

Advancements in hardware and the availability of large datasets have propelled deep

learning's popularity and impact. It has revolutionized fields such as computer vision,

speech processing, healthcare, finance, and autonomous systems. The following figure [13]

explains graphically the difference between machine and deep learning.

Figure 2.2: Functional difference between Machine Learning and Deep Learning

Nico
las

 N
ico

lao
u

22

2.3 Image Classification (IC)

Image classification, a core concept in machine vision, refers to the process where images

are sorted into predefined categories based on their visual features. By use of machine

learning or deep learning algorithms, models are trained to discern patterns and

characteristics that differentiate one category from another, such as shapes, colors, or

textures. After training, these models can predict the most probable class for new images,

often providing confidence scores or probability percentages for each predicted label.

Image classification finds applications in various fields like object recognition, medical

imaging, and satellite analysis. It serves as a foundational task in computer vision systems,

providing essential insights into the content of images and enabling more complex tasks.

In Figure 2.3 [12] a sample result of image classification implementation is provided

through the usage of ImageAI [12] Python library, in which this thesis is based.

Specifically, the classes with their corresponding probabilities of successful prediction are

provided. The class with the highest percentage is considered to be the one that explains

the content of the respective image to a greater extent according to the relevant trained

model.

Figure 2.3: Sample result for image classification by ImageAI library

Nico
las

 N
ico

lao
u

23

2.4 Object Detection (OD)

Object detection is a machine vision process that identification and localization of specific

objects within images or videos. In contrast to image classification, which categorizes

whole images into predefined classes, object detection not only identifies objects within an

image but also determines their exact positions by outlining bounding boxes around them.

This task typically relies on machine learning or deep learning algorithms trained on

datasets containing images labeled with annotated object bounding boxes. Object detection

is vital for numerous applications, such as autonomous driving, surveillance, robotics, and

medical imaging, as it allows machines to comprehend and interact with their environment

by detecting and localizing relevant objects in visual data.

However, detection is frequently conflated with recognition, which refers to the process of

identifying and comprehending objects or patterns within an image or scene. Unlike

detection, recognition entails a more profound analysis of visual content, which may

include grasping the context, identifying specific object features or traits, and drawing

higher-level associations or inferences based on observed patterns.

Figure 2.4: Sample result for object detection by ImageAI library

Nico
las

 N
ico

lao
u

24

In the above figure a sample result of object detection implementation is provided through

the usage of ImageAI [12] Python library. In contrast to image classification, in this

activity, separate probabilities are provided, rather than complementary ones, for each

object detected, along with additional information regarding the inclusion of the

corresponding bounding boxes. Similarly, higher prediction percentages indicate greater

confidence in the relevant model for successful localization, prediction, and classification

of each respective object.

Nico
las

 N
ico

lao
u

25

3. RESEARCH METHODOLOGY

3.1 Overview

The research work discussed herein focuses on the automated detection and classification

of construction objects, and the applied research methodology was based on utilizing the

Python programming language along with machine vision and deep learning technologies.

The goal was to create software, or leverage existing tools, capable of learning a series of

construction objects present on a construction site. Subsequently, the software should

successfully detect and classify these objects using either images from a dataset or random

images. To achieve this objective, ImageAI (v.3.0.3) [12] was employed. ImageAI (Moses,

2018) is an open-source Python library that simplifies machine vision and deep learning

tasks. It is built on other libraries such as TensorFlow and Keras. From the array of tasks

offered by ImageAI, specific code libraries related to image classification and object

detection were utilized - activities directly aligned with the focus of this research. The

codes were divided into those dedicated to image classification and those dedicated to

object detection. For each of the two tasks, a code was used for custom model training

process based on the custom classes, resulting in the creation of a model. Additional codes

were employed for result extraction, verification of the resulting accuracy-performance,

and broader evaluation of the respective trained models, primarily through the utilization

of unseen data.

Furthermore, a dataset was created for each task, incorporating photos of all the examined

classes. These data resulted from a combination of own photos from construction sites,

ready-made datasets from Kaggle [14] [15] [16] [17], which is a platform for data science

and machine learning competitions, the GitHub web-based platform [18], and generally

photos obtained by the Google Images search service. In the context of this research, the

decision was made to initially explore two distinct classes to clarify the operational mode

and compatibility of ImageAI with the research goals. These objects were the ‘column’ and

the ‘excavator’. However, at a later stage, seven more classes (totaling 9) were added,

which were as follows: ‘beam’, ‘masonry’, ‘slab’, ‘window’, ‘person’, ‘safety helmet’, and

Nico
las

 N
ico

lao
u

26

‘reflective jacket’. The choice of some of these object classes relates to the intent of using

the developed algorithms and trained models for use in health & safety applications at

construction sites. Furthermore, for the purpose of custom object detection training,

numerical codes needed to be implemented for each class, as illustrated in the following

table.

Table 3.1: Numerical codes of examined construction objects’ classes

EXAMINED CONSTRUCTION OBJECTS’ CLASSES

Numerical Code Object Class

0: Column

1: Excavator

2: Beam

3: Masonry

4: Slab

 5: Window

6: Person

7: Safety Helmet

8: Reflective Jacket

3.2 Image Classification Framework

For this task, a set of 6000+ images of the object classes to be examined was collected.

Initially, a general folder was created, which contained two additional folders named ‘train’

and ‘test,’ respectively. Within each folder, a subfolder was created for each prediction

class. The training photos, used to train the classification model, and the corresponding test

photos, used to evaluate it, were placed in these subfolders.

In the ‘train’ folder/dataset, 500 photos were included for each class, while in the ‘test’

folder/dataset, 200 photos were included. This dataset was then utilized in the training code

(Appendix) as provided by ImageAI [12], where various tasks were performed, including

the selection of the algorithm. ImageAI offers the option to use four different algorithms

for training custom image prediction models (MobileNetV2, ResNet50, InceptionV3, and

DenseNet), each with different speed and prediction accuracy characteristics.

Nico
las

 N
ico

lao
u

27

Additionally, other parameters such as ‘batch_size’ (the number of images the network will

process simultaneously) and ‘num_experiments’ (the number of network training iterations

on all training images) were set in this code. For the purposes of this work, the

MobileNetV2 algorithm was chosen due to its fastest prediction speed in compare with

other algorithms.

Upon each execution of training code, the model attaining the highest accuracy was

generated and subsequently stored in the dataset folder, accompanied by its corresponding

generated JSON file. In this scenario, a JSON (JavaScript Object Notation) file functions

as a structured data format for the storage and exchange of information pertaining to the

custom detection and classification tasks conducted utilizing ImageAI or analogous

frameworks. Additionally, the other parameters mentioned above were systematically

varied during each run to elucidate their impact on the accuracy of the respective model.

This measure was undertaken to facilitate the incremental enhancement of the model,

which became evident with each successive iteration. In this context, accuracy represents

the percentage probability that a detected object belongs to a specific class. The accuracy

is calculated using the following formula:

Accuracy =
Number of Correctly Classified Images

Total Number of Images
∗ 100

[3.1]

This percentage reflects the model’s confidence in the correctness of its prediction. Higher

percentage probabilities generally indicate that the model is more confident in recognizing

a particular class of object in the image.

At a later stage, this model was employed in another code, where its effectiveness in

predicting the examined and subsequently trained classes was evaluated using both trained

and random photos. In this code, the trained model, along with its corresponding JSON

file, was imported, alongside the algorithm used for training the said model. Subsequently,

the photograph to be examined by the image classification model was selected,

concurrently with the configuration of certain parameters (some of which are optional).

Among other settings, the number of classes to be displayed in the results was chosen, as

well as the limitation of prediction display by setting a minimum threshold percentage for

Nico
las

 N
ico

lao
u

28

predictions. By default, for the aforementioned code provided by ImageAI, this threshold

is set at 30%. A schematic overview of this methodology is depicted in Figure 3.1.

Figure 3.1: Custom image classification methodology flowchart

3.3 Object Detection Framework

For this task, a set of 2700+ images was collected for the examined classes. Initially, a

general folder was created, which included two subfolders named ‘train’ and ‘validation,’

respectively. Within each of these folders, two additional subfolders were created. The

first, named ‘images,’ contained photos - in jpg format - of the examined classes without

separating them based on the object they depict. The second, named 'annotations,'

contained the corresponding assignments for these classes, in txt format. The number of

instances and images used for each class is given in Figure 3.2, although it is important to

indicate that some images used for multiple classes.

For this task, a set of photos from the dataset collected for image classification was utilized.

This dataset was then input into the training code as is given by ImageAI, where, among

other tasks, algorithm selection was performed. ImageAI provides the option to use two

different algorithms to train custom image object detection models, namely YOLOv3 and

TinyYOLOv3, each with varying speed and accuracy characteristics for prediction. In this

Create Custom Image Classification

Dataset

Train Image Classification

Model on Custom Dataset

Test Image Classification

Model on Custom Dataset

Test Image Classification

Model on random images

Nico
las

 N
ico

lao
u

29

code, additional parameters such as ‘batch_size’ and ‘num_experiments’ were set, as

previously explained.

Figure 3.2: Instance and image distribution across custom classes

During the training process for object detection, the initial model used did not include

specific objects such as those found on construction sites. The model training with

additional construction site objects enriches the utilized pre-trained model and facilitates

its use on construction-related image detection applications. Additionally, the option for

training using a pre-trained YOLOv3 model was specified. For the purposes of this work,

both algorithms were employed. Future work shall aim the incorporation of newer releases

of YOLO models (e.g., YOLOv8) and training datasets (e.g., SODA).

To create the assignments, an open-source graphic annotation tool for images, Labelimg

[19], was employed. The process involved creating bounding boxes and labels in each

photo and assigning them to each of the examined objects for the purpose of custom object

detection training process. The associated annotation .txt files were generated in YOLO

Nico
las

 N
ico

lao
u

30

format, wherein each row signifies a detected object and includes specific details such as

the numerical class code and its corresponding coordinates. In Figure 3.3, an example of

annotation creation in the LabelImg [19] interface is provided. As part of this task, 300+

photos were collected for each object, with 70-80% stored in the ‘train’ folder for training

the detection model and the remainder in the 'validation' folder for evaluating the model’s

performance during training.

Figure 3.3: Labelimg workspace during annotation process

Each time the code was executed, the model with the highest accuracy in terms of mAP50

(mean Average Precision at 50%), along with its corresponding JSON file were generated

and stored in the dataset folder. Additionally, the other parameters mentioned above were

systematically varied - in conjunction with the practical application of non-maximum

suppression (NMS) - during each run to elucidate their impact on the accuracy of the

respective model. NMS is a technique applied after object detection to sift through

numerous overlapping bounding boxes generated by a model, retaining only the most

assured ones.

In the context of object detection, Non-Maximum Suppression (NMS) is crucial for

refining the predictions made by a model. When an object detection model analyzes an

Nico
las

 N
ico

lao
u

31

image, it often generates multiple bounding boxes that overlap, resulting in redundant

detections of the same object. NMS addresses this issue by filtering out less accurate

bounding boxes and retaining only the most confident ones.

The NMS process involves several steps. First, the model assigns a confidence score to

each bounding box, and these boxes are then sorted from highest to lowest based on their

scores. Starting with the highest-scoring box, NMS iteratively selects this box and

suppresses all other overlapping boxes whose Intersection over Union (IoU) with the

selected box exceeds a certain threshold. This suppression process continues until all boxes

are either selected or discarded.

NMS is significant for several reasons. It reduces redundancy by eliminating overlapping

bounding boxes, thus enhancing the model's precision. Retaining only the most confident

detections helps improve the overall accuracy of the model. This is particularly important

in construction site monitoring, where accurately detecting objects such as safety helmets

and reflective jackets is critical. Furthermore, applying NMS can lead to significant

improvements in performance metrics like mean Average Precision (mAP) and F1 score,

as it ensures that detections are more reliable and less cluttered.

In this research work, the NMS threshold was systematically varied to observe its impact

on model performance. The results indicated that adjusting the NMS value could

significantly affect the precision, recall, and overall F1 score of the detection model. For

instance, selecting an NMS threshold of 0.4 resulted in a notable improvement in the

model's accuracy, highlighting the importance of fine-tuning this parameter.

In summary, NMS is an indispensable technique in object detection, enhancing the

reliability and accuracy of models by ensuring that only the most probable detections are

considered. This study's findings underscore the critical role of NMS in achieving robust

performance, particularly in the context of construction object detection models.

During the training of each model, several key metrics were evaluated, including mAP50,

precision, recall, and mAP50-95. These metrics provided valuable insights into the model's

performance. However, it is important to note that some of these metrics were not

automatically saved during the training process.

Nico
las

 N
ico

lao
u

32

Specifically, precision serves as a fundamental metric for evaluating the accuracy of

positive predictions made by the model. It quantifies the model's ability to correctly

identify positive instances among all instances predicted as positive. In the context of

construction object detection, precision is crucial as it helps ensure that identified objects

such as beams, columns, and safety gear are indeed present, thereby reducing false alarms

that could lead to unnecessary inspections or safety checks. Precision is derived from the

following relationship:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

[3.2]

On the other hand, recall, also known as sensitivity or true positive rate, assesses the

model's capacity to identify all relevant instances of a particular class. It measures the

proportion of true positives that the model correctly identifies out of all actual positives.

The recall score is computed by dividing the number of true positives by the sum of true

positives and false negatives (Equation 3.3). High recall is essential in construction

applications where missing a true positive, such as failing to detect a safety hazard, could

have significant implications for site safety and compliance.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

[3.3]

By using these two terms, it is possible to calculate another widely used metric for

evaluating classification models. The F1 score, often referred to as the harmonic mean of

precision and recall, provides a balanced assessment of the model's performance. It

captures the trade-off between precision and recall, offering a single metric to evaluate a

model's effectiveness. This metric is particularly useful in construction applications where

both precision and recall are equally critical, ensuring the model accurately identifies and

classifies construction objects and hazards. The F1 score is computed using the formula:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

[3.4]

Nico
las

 N
ico

lao
u

33

The term ‘mAP’ (mean Average Precision) is a metric that assesses the precision-recall

tradeoff of a model. It evaluates how well a model performs at different confidence levels

in its predictions. Specifically, ‘mAP50’ evaluates the model’s precision and recall at a

specific 50% Intersection over Union (IoU) threshold. Higher mAP50 values indicate

better performance, with a maximum value of 1.0 representing perfect precision and recall

at the specified IoU threshold. IoU is a metric that measures the overlap between the

predicted bounding box and the actual location of the object. A 50% IoU means there is at

least a 50% overlap between the predicted and actual contexts. The accuracy metric of

mAP offers insights into the model's ability to detect construction objects of varying sizes

and complexities within an image, such as identifying smaller items like safety helmets in

addition to larger objects like excavators.

Understanding and optimizing these metrics are essential for improving the effectiveness

of custom trained models in practical applications. Precision, recall, and the F1 score allow

for a balance between minimizing false positives and false negatives, while mAP provides

a comprehensive evaluation of the object detection models' performance under various

detection challenges. Utilizing these metrics enables the refinement of the models, ensuring

they are well-suited for a range of use cases and environments.

This evaluation system is commonly used in assessing object detection models, including

those trained for custom object detection tasks. At a later stage, this model was employed

in another code, where its effectiveness in custom object detection examined and

subsequently trained classes was evaluated using mainly unseen data, alongside the

selection of a specific value for NMS and the adjustment of various rendering options. A

summary flowchart of this methodology is presented in Figure 3.4.

Nico
las

 N
ico

lao
u

34

Figure 3.4: Custom object detection methodology flowchart

Additionally, the capability was provided by creating a Python code in combination with

trained detection models to identify health and safety issues in photographs from

construction sites, specifically printing a relevant warning message for the absence of a

part or of all of the necessary safety equipment (protective helmet and reflective jacket) in

case a person is detected in those areas. Specifically, the code initially examined the

presence or absence of the aforementioned objects, and then examined the potential high

overlap (IoU > 90%) of their defined bounding boxes with those of the detected human

figure/s (indicating the adoption of this specific security measure by the individual). The

high effectiveness of this additional function was verified through the execution of various

tests on trained and random photos including some or all of the relevant classes.

Dataset & Training Process

Train

Object

Detection

Model

on

Set training

parameters

(algorithm, pre-

trained model,

batch size &

num. epochs)

Apply labels

& bounding

boxes on

presented

custom

classes

Collect

pictures for

each

custom

class

Custom Model Evaluation

NMS

implemen

tation

Export

confusion

matrix &

accuracy

metrics

Test Trained

Model on

Custom

Dataset

Test Trained

Model on

random

images

Export

improved

confusion

matrix &

accuracy

metrics

Export

custom

trained

detection

model

Nico
las

 N
ico

lao
u

35

4. ANALYSIS AND RESULTS

In the pursuit of fulfilling the objectives of this work, a series of tests were conducted

through the execution of custom training Python programming language codes, as

previously described. Throughout these tests, specific parameters were systematically

varied in each training code, including the dataset itself, to generate two models - one for

each task - with the highest accuracy and optimal performance. These models aimed to best

fulfill the intended purpose for which they were created.

4.1 Image Classification Results

The final analysis results for the nine classes described in the previous stage are as follows.

For image prediction, considering the case of nine classes, a MobileNetV2 model achieved

an accuracy of 81.06%. This relatively high accuracy indicates the near certainty of the

model in the correctness of its predictions, specifically in successfully predicting the nine

trained classes in any given photo. This result was further validated by the model’s

performance on various photos, consistently yielding generally high probabilities for

correctly predicting the depicted object. The model was tested on both trained and random

images, and during the conducted tests, no significant change in performance was observed

between these two categories of images. It is thus evident that the model’s performance

was proportional to its accuracy rate. It should be noted that the listed per image object-

classification probabilities add up to 100%. Thus, when multiple object classes are detected

within an image, the reported class probabilities are lower in value compared to cases

where object classes are fewer. As a result, in several tests performed on both trained and

random images, notable fluctuations were observed in the prediction rates between the

displayed classes, with some classes showing low rates. Some example results are provided

below.

Nico
las

 N
ico

lao
u

36

EXAMPLE 1:

Figure 4.1: Prediction percentages per class by custom IC model (example 1)

Nico
las

 N
ico

lao
u

37

Discussion:

In the initial instance of image classification, the presented figure depicts the outcomes

derived from analyzing a random image showcasing various objects on a construction site,

notably columns, beams, and slabs. Employing the aforementioned image classification

model, probabilities were assigned to the objects identified in the photo, with a beam

receiving a probability of 52.24%, a column 26.02%, and a slab 21.38%. Predictions for

the remaining classes were notably low, aligning with expectations given that only these

three classes were prominently featured in the image under examination.

The variance in probabilities assigned to the three main predicted classes can be attributed

to factors such as the viewing angle of each class within the photo and the inherent

similarity between certain classes in appearance or features (e.g., beam versus column).

Such similarities may challenge the model's ability to accurately distinguish between them,

resulting in lower confidence scores for certain classes.

Nevertheless, the overall outcome underscores the model's robust predictive capabilities,

despite the nuanced challenges presented by the image's composition and the similarities

between certain classes.

Nico
las

 N
ico

lao
u

38

EXAMPLE 2:

Discussion:

Figure 4.2 presents the outcomes derived from analyzing a random photograph featuring

masonry and window elements, both of which are equally prominent. Notably, the

prediction percentage for these two primary classes is relatively high and nearly equal,

while predictions for other classes not represented in the image are minimal. Specifically,

the model assigned a probability of 50.79% to the window class and 44.41% to the masonry

class. In this instance, the custom image classification model demonstrated its

commendable accuracy, maintaining balance in the prediction probabilities between the

two primary classes, due to the absence of significant similarities in appearance or features

between masonry and window elements, along with the low number of detected classes.

Figure 4.2: Prediction percentages per class by custom IC model (example 2)

Nico
las

 N
ico

lao
u

39

EXAMPLE 3:

Figure 4.3: Prediction percentages per class by custom IC model (example 3) Nico
las

 N
ico

lao
u

40

Discussion:

The image depicted in Figure 4.3 pertains to the presence of a worker adorned with

appropriate personal protective equipment at a construction site. The model's analysis of

this scenario yielded successful predictions for the three primary classes evident in the

photograph, albeit with notable fluctuations in prediction percentages.

Specifically, the reflective jacket class garnered the highest prediction percentage at

49.10%, followed by the person class at 38.31%, and the safety helmet class registering a

significantly lower percentage at 12.34% among these three categories. The substantial

variance in these probability values can be attributed to the inherent similarity between the

images used for training the model across these three classes. Notably, person, safety

helmet, and reflective jacket are classes frequently observed together within a construction

site environment.

However, it is to some extent expected that there will be significant variations in percentage

values and relatively low prediction rates for some classes. This occurs because the

prediction rates for all detected objects in an image collectively add up to 100%, leading

to lower individual prediction rates when multiple objects are present.

Nico
las

 N
ico

lao
u

41

EXAMPLE 4:

Figure 4.4: Prediction percentages per class by custom IC model (example 4) Nico
las

 N
ico

lao
u

42

Discussion:

Figure 4.4 illustrates the outcomes derived from an image featuring a worker equipped with

appropriate personal protective gear in proximity to an excavator. The model accurately

identified the presence of the excavator and the safety vest; however, it failed to recognize

the worker and the safety helmet.

One potential explanation for the notably low prediction rates pertaining to the

aforementioned classes within the corresponding photograph could be attributed to intense

lighting conditions, particularly around the area where the safety helmet is situated,

compounded by the posture of the human subject. Additionally, the similarity between the

classes "person," "safety helmet," and "reflective jacket" may pose a challenge for the

model in distinguishing between them, consequently resulting in diminished confidence

scores for some of these classes.

Nico
las

 N
ico

lao
u

43

4.2 Object Detection Results

Accordingly, for object detection, a YOLOv3 model with an average accuracy (mAP) of

67.41 % was achieved. The obtained model recorded also F1-Score accuracy roughly

above 65% as shown in Table 4.1. This figure indicates the relatively average to good

accuracy of the specific model in terms of detecting, bounding and successfully classifying

the objects under study in examined photographs, however efforts are being made to

enhance the performance of this model to achieve even higher success rates. This result

was further validated by the model’s performance on various photos, where several

satisfactory results were observed in terms of the true positive detection and classification

of objects. The YOLOv3 model was tested on both trained and random images, and during

the conducted tests, no significant change was observed in terms of the model’s

performance between these two categories of images. Therefore, in this case as well, it is

evident that the performance of the model is proportional to its accuracy rate. Some

example results are provided below.

In object detection models, it is common to encounter overlapped bounding boxes for each

detected object. To address this issue, a common practice is the implementation of Non-

Maximum Suppression (NMS), which, according to its threshold, removes overlapped

bounding boxes and retains only those with the highest confidence scores for each detected

object. To improve the outcomes with the implementation of the custom object detection

model, various NMS thresholds were applied, either to each image result or to the overall

validation set. This was done to understand how different values of NMS affect the

performance and accuracy of the trained model across different metrics.

Table 4.1: Custom object detection model’s metrics

MODEL

ALGORITHM

PRECISION

(%)
RECALL (%)

F1-SCORE

(%)
mAP0.5 (%)

YOLOV3 61.82 68.99 65.21 67.41

Nico
las

 N
ico

lao
u

44

EXAMPLE 1:

(a)

(b)

Figure 4.5: Custom OD model implementation (example 1): (a) Initial random photo, (b)

Detected objects by custom OD model

Nico
las

 N
ico

lao
u

45

Discussion:

The figure above presents the results derived from a random image depicting various

objects observed within a construction site, encompassing columns, beams, and slabs.

Employing the aforementioned object detection model, the analysis revealed the successful

detection of four columns, three beams, and one slab, each with a classification probability

exceeding 97%, thus affirming the model's robust performance. Notably, only one column

yielded a positive detection probability below 97%; however, even in this case, the

probability remains relatively high, indicating a favorable outcome.

However, certain other objects anticipated to be detected by the model were not identified.

This discrepancy could potentially be attributed to occlusion phenomena resulting from the

specific angle at which the photograph was captured. Nonetheless, the overall results

remain largely consistent with those obtained using the classification model, thus

warranting a satisfactory evaluation. NMS application with a threshold value of 0.05 was

also necessary for obtaining the presented results.

Table 4.2: Detected objects by custom OD model (example 1)

No. OBJECT

DETECTED

CLASS CONFIDENCE SCORE

(%)

1 COLUMN 99.65

2 COLUMN 99.77

3 COLUMN 81.92

4 COLUMN 97.17

5 BEAM 98.98

6 BEAM 99.14

7 BEAM 99.43

8 SLAB 99.22

Nico
las

 N
ico

lao
u

46

EXAMPLE 2:

(a)

(b)

Figure 4.6: Custom OD model implementation (example 2): (a) Initial random photo, (b)

Detected objects by custom OD model

Nico
las

 N
ico

lao
u

47

Table 4.3: Detected objects by custom OD model (example 2)

No. OBJECT

DETECTED

CLASS CONFIDENCE

SCORE (%)

1 SAFETY HELMET 98.90

2 REFLECTIVE JACKET 98.76

3 PERSON 96.94

Discussion:

Figure 4.6 illustrates the outcomes derived from a random photo capturing a worker on a

construction site equipped with appropriate personal protection measures. The model

successfully detected the three main classes depicted in the photo, with corresponding

confidence scores exceeding 96%. This aligns with the results obtained from the

classification model applied to the same photo, as previously presented. Notably, in the

case of custom object detection, no issues were observed with the trained model, despite

the inherent similarity among photos featuring these three classes in the training dataset.

During the annotation process, all objects of different classes observed in each photo were

duly annotated, contributing to the model’s effective performance. Additionally, the NMS

technique was applied with a threshold set to 0.35 to enhance the model’s outcomes.

Nico
las

 N
ico

lao
u

48

EXAMPLE 3:

(a) (b)

Figure 4.7: Custom OD model implementation (example 3): (a) Initial random photo, (b) Detected

objects by custom OD model

Discussion:

The image showcased in Figure 4.7 captures a scene from a construction site, focusing on

a window encased by brickwork. Through the utilization of the trained object detection

model on this photo, both masonry structures and the window were successfully identified,

each boasting a confidence score surpassing 94%. This outcome underscores the

effectiveness of the model under these particular conditions, reaffirming its capability to

accurately discern and classify objects within complex and detailed construction

environments. The overall result mentioned above was achieved in conjunction with the

implementation of NMS with a threshold value of 0.2.

Table 4.4: Detected objects by custom OD model (example 3)

No. OBJECT

DETECTED

CLASS CONFIDENCE

SCORE (%)

1 MASONRY 99.78

2 MASONRY 99.74

3 MASONRY 94.82

4 WINDOW 98.13

Nico
las

 N
ico

lao
u

49

EXAMPLE 4:

(a)

(b)

Figure 4.8: Custom OD model implementation (example 4): (a) Initial random photo, (b)

Detected objects by custom OD model.

Nico
las

 N
ico

lao
u

50

Table 4.5: Detected objects by custom OD model (example 4)

No. OBJECT

DETECTED

CLASS CONFIDENCE

SCORE (%)

1 SAFETY HELMET 99.39

2 REFLECTIVE JACKET 95.24

3 PERSON 72.86

4 EXCAVATOR 97.94

Discussion:

The preceding figure illustrates an example portraying various objects pertinent to the

examination, with the custom-trained object detection model delivering commendable

outcomes for the majority of these objects. Particularly, it demonstrates a moderate to good

result for a singular class, namely "person." Notably, an enhanced performance of the

detection model is discernible in this image when juxtaposed with its classification

counterpart (Figure 4.4), showcasing notably higher prediction rates. This instance serves

as additional confirmation that the trained detection model remains unaffected by the

resemblance among the train photos used for three of the four identified classes above

(“safety helmet”, “reflective jacket” and “person”). In the aforementioned case, a NMS

threshold of 0.3 was implemented to attain sharper results.

Nico
las

 N
ico

lao
u

51

NMS CORRECTION EXAMPLE:

(a)

(b)

(c)

Figure 4.9: Custom OD model implementation (NMS example): (a) Initial random photo, (b)

Detected objects by custom OD model without NMS, (c) Detected objects by custom OD model with

NMS and rendering settings

Nico
las

 N
ico

lao
u

52

Discussion:

In Figure 4.9, a comparison is made between the output of a custom object detection model

on a random image with and without the application of NMS (Non-Maximum

Suppression). The initial output exhibits numerous predicted bounding boxes overlapping

multiple times on the detected objects, each bearing a high confidence score for the

overlapping detected object, labeled with the same class and accompanied by reduced

readability of the results. To refine the final outcome, NMS was applied in conjunction

with several rendering settings to achieve sharper and accurately adjusted results on the

specified image. In this particular case, the NMS threshold was set to 0.2 to attain the clear

and satisfactory result.

In more detail, the initial output without NMS shows a cluttered visualization, where some

of the detected object are surrounded by multiple bounding boxes. This can cause

confusion and makes it difficult to accurately interpret the results, as the same object might

appear multiple times in different positions, each with a slight variation in the bounding

box coordinates. This issue arises because the object detection model, by default, generates

bounding boxes for every potential detection with a confidence score above a certain

threshold. However, these overlapping boxes can obscure the true position and scale of the

detected objects. To mitigate this problem, NMS is employed. This technique works by

retaining the bounding box with the highest confidence score for each detected object and

suppressing all other overlapping boxes with lower confidence scores. In addition, NMS

ensures that only the most relevant and accurate bounding boxes are displayed,

significantly improving the readability and interpretability of the results. By setting the

NMS threshold to 0.2, the model discards any bounding boxes that overlap significantly

with the highest confidence box, ensuring a cleaner and more precise detection.

Moreover, the rendering settings were fine-tuned to complement the NMS application.

These settings include adjusting the line thickness, color, and transparency of the bounding

boxes and labels to enhance visibility. As a result, the final output provides a clear, concise,

and accurate representation of the detected objects, making it easier to assess the model's

performance. The approach of using NMS with varying thresholds and rendering settings

was consistently applied across other images analyzed in this section.

Nico
las

 N
ico

lao
u

53

HEALTH & SAFETY EXAMPLE:

(a) (b)

Figure 4.10: Custom OD model implementation (H&S example): (a) Initial random photo, (b)

Detected objects by custom OD model.

Figure 4.11: Python code output (H&S example) Nico
las

 N
ico

lao
u

54

Discussion:

Using the same detection model, results were obtained from other construction site

photographs, with an additional capability introduced: the detection and notification of

safety and health issues concerning the necessary and recommended personal protective

measures on the construction site. Specifically, if a person was detected in these

photographs without either or both of the reflective jacket and safety helmet, a

corresponding warning was issued, as effectively demonstrated in the subsequent figure.

In Figure 4.10, two persons are depicted within a construction site, one wearing a protective

helmet and the other not wearing any personal protective equipment. Therefore, this case

serves as a prime example of a situation where issues regarding compliance with safety

and health regulations may arise on the construction site. Upon the introduction of the

photograph and the utilization of the trained object detection model, the two individuals

and the protective helmet were correctly identified, with classification success rates

exceeding 98%. Through the execution of the specialized Python code tailored for cases

such as this, utilizing the aforementioned photograph, a warning (Figure 4.11) was

appropriately issued regarding the presence of safety and health concerns, as one or more

individuals failed to adhere to all required measures of personal protection (i.e., "safety

helmet" and "reflective jacket").

Table 4.6: Detected objects by custom OD model (H&S example)

No. OBJECT

DETECTED

CLASS CONFIDENCE

SCORE (%)

1 SAFETY HELMET 99.01

2 PERSON 98.62

3 PERSON 99.59

Nico
las

 N
ico

lao
u

55

CONFUSION MATRIX:

Figure 4.12: Results of confusion matrix based on custom OD model

Discussion:

Figure 4.12 presents the confusion matrix of the detection model examined in the study. In

a confusion matrix, each row represents the actual labels depicted in the validation set

images, while the columns represent the corresponding labels predicted by the detection

model. From the presented matrix, it is observed that some classes are positively evaluated

due to a high number of true positive detections (e.g., excavator, window, etc.), while

others are characterized as moderate to negative. The results of the matrix are to some

extent expected, as the examined detection model did not achieve particularly high levels

of accuracy. Essentially, τhe matrix provides insights into which classes the model

Nico
las

 N
ico

lao
u

56

struggles to predict accurately and can guide further improvements in the model, such as

fine-tuning class-specific features or collecting more diverse training data for those classes.

Therefore, there is room for significant future improvements.

Figure 4.13: Custom object detection model’s metrics (per class and overall)

A better visualization of the results and information contained in the confusion matrix

presented in Figure 12 is provided in Figure 13. Using the extracted matrix and a specially

configured Python code, the precision values of the trained model against each class were

calculated, utilizing measurement metrics such as precision, recall, and the derived F1-

Score. Specifically, a higher F1-Score value was recorded for the class "excavator" (94%),

while the lowest was for the class "Reflective Jacket". High precision values were also

recorded for the classes "window" and "masonry", moderate values for the classes

"column", "person", and "beam", while low precision F1-Score values were recorded for

the remaining classes. From the above prediction graph of the trained model against the

true labels of the validation set used for training purposes, an overall F1-Score of 61.11%

was obtained, a result deemed moderate to good.

With the aim of improving the accuracy and performance of the custom object detection

trained model, the practice of NMS was applied—initially at various values—on the initial

Nico
las

 N
ico

lao
u

57

predictions of the model on the validation set. The use of different NMS values aimed at a

deeper understanding of its impact on the number of model predictions as well as the

overall accuracy in terms of precision, recall, and F1-Score, and consequently by extracting

corresponding confusion matrices.

From the experiments conducted for this particular model, an increase in its accuracy

values was observed with the decrease in NMS values, which is highly positive and entirely

expected. However, this positive impact of low NMS values was counteracted by the

dramatic decrease in the instances for each class, as this practice removes a large number

of instances and leaves only those with the highest confidence scores, resulting in even

fewer instances than the truth labels.

Upon the conclusion of the experiments, the decision was made to select an NMS value of

0.4. This value led to an increase in the overall accuracy of the model in terms of F1-Score

by approximately 30%. As we can see in graph below, instantly the predicted labels for

each class and overall were more than truth labels, especially for some classes like column

and person.

Although, after the implementation of NMS practice with a threshold = 0.4, a significant

drop of instances per class was observed as many overlapped bounding boxes and mainly

those with the relatively lowest confidence scores were removed. However, the certain

value of NMS has led to have less predicted instances than truth labels. This drop between

truth and NMS predicted labels was relatively high for all classes, except class “excavator”.

Nico
las

 N
ico

lao
u

58

Figure 4.14: Instance distribution before and after NMS application

The impact of applying NMS with a threshold of 0.4 on the accuracy and performance of

the custom trained model was observed through the confusion matrix and the resulting

metrics derived from its values. As illustrated in Figure 4.14, the total instances per class

are notably fewer compared to the confusion matrix depicted in Figure 4.12. Additionally,

the matrix exhibits a more diagonal pattern (Figure 4.15), indicating that more classes have

predominantly higher accuracies (around 70%), while fewer classes exhibit moderate

accuracies (around 50-60%). This observation suggests that the application of NMS with a

threshold of 0.4 has led to a refinement in the model's performance, with a clearer

delineation between classes and improved overall accuracy.

The analysis of the confusion matrix shown in Figure 4.15, reveals a noteworthy

enhancement in the model's overall performance, quantified by an F1-Score of 79.69%

(Figure 4.16). This improvement is particularly significant when considering the individual

classes. Notably, classes that previously exhibited lower accuracy with the model's initial

predictions experienced substantial boosts in their F1-Score values. Specifically, both

"masonry" and "window" classes achieved notably higher F1-Score values, reaching an

impressive 94%. This indicates a marked improvement in the model's ability to accurately

detect and classify these objects within the images. Furthermore, the majority of the

Nico
las

 N
ico

lao
u

59

remaining classes also demonstrated commendable F1-Score values, surpassing the 70%

threshold. This indicates a consistent improvement across multiple object categories,

reflecting the efficacy of the adjustments made to the model.

However, it is worth noting that the class "safety helmet" registered the lowest F1-Score

value in this analysis, recording a value of 58%. While this falls within the realm of

moderate accuracy, it underscores the ongoing need for refinement, particularly in

accurately detecting and classifying instances of safety helmets within the images. Overall,

these findings underscore the effectiveness of the model refinement efforts, leading to

substantial enhancements in accuracy across various object classes.

Figure 4.15: Results of confusion matrix based on custom OD model after NMS application

Nico
las

 N
ico

lao
u

60

Figure 4.16: Custom object detection model’s metrics after NMS application (per class and

overall)

Nico
las

 N
ico

lao
u

61

5. SUMMARY OF FINDINGS

Upon examining the results derived from the two trained models (image classification &

object detection) in the previous section, several observations and conclusions regarding

their accuracy, performance, and reliability can be made.

Firstly, in the image classification model, which achieved a high accuracy rate (81%)

during training, a significant validation of this accuracy was observed in the four examples

examined. Specifically, in all cases except Example 4, the depicted objects exhibited

significant prediction rates, with each object class receiving the majority share of the one

unit of prediction (100%) available each time, thereby avoiding the presence of significant

percentages in classes that were not depicted in each photograph.

Some significant challenges identified during the application of the trained model included

the notable fluctuations in prediction rates among the depicted classes, and more

specifically, false negative predictions of classes in the photographs. One possible

explanation for both phenomena appears to be the model's inability to accurately describe

the content of the examined photograph when depicting classes with similar characteristics,

such as beams and columns, or the combination of classes for which similar photographs

were used in the trained dataset, as they often coexist on the construction site, such as the

classes "safety helmet", "reflective jacket", and "person". Another possible explanation

seems to be the presence of obstacles in front of the depicted objects, specific lighting

conditions of the images, and even the angle of capture. Another significant factor that

influenced both the degree of variation and the prediction percentages for each class was

that these percentages cumulatively summed to 100% for the entire content of each

examined photograph. This effect became more pronounced as the number of identified

classes increased.

 In any case, to address the aforementioned issues in the results of the trained image

classification model, it is recommended, as part of future work, to modify or add to the

existing trained dataset in order to achieve a better balance between the number of instances

and greater variety of images for each class.

Nico
las

 N
ico

lao
u

62

Similarly, with the implementation of the trained object detection model with an accuracy

in terms of mAP0.5 of 67.41%, which is considered moderate to high, a plethora of results

emerged that significantly validated the reliability and effectiveness of the model using

random photographs, most of which were also used in image classification for result

comparison. In this model, very positive results were recorded as the highest number of

depicted classes were identified in all examples, even in cases where a large number of

classes were depicted, and objects of the same class were identified in the same photograph.

Additionally, prediction rates for each detected object exceeded 90% in the majority of

cases.

However, similar to the image classification model, the object detection model also

encountered a series of issues, comparable in magnitude to the accuracy of the model.

Specifically, it was found that objects covering a smaller portion of the examined

photograph or objects with significant obstacles preventing their full depiction recorded

lower rates of successful prediction compared to other objects of the same class, or worse,

were not detected at all (see windows in example 1). One possible explanation appears to

be the methodology followed during the process of assigning bounded boxes during the

preparation of the training data, where objects under poor lighting conditions, with

obstacles, or with relatively small covering surface areas were avoided in order to simplify

and facilitate the model training on the examined objects.

Nonetheless, unlike the image classification model, the results of the object detection

model were not influenced by similar characteristics or training images among the detected

classes. This was mainly because, for this activity, the training images were not separated

per object; instead, bounding boxes were applied to objects of all depicted classes

simultaneously. Additionally, this model was used for detecting safety and health issues on

construction sites, achieving satisfactory results.

Furthermore, an extensive application of the Non-Maximum Suppression (NMS) technique

was conducted on the extracted results to remove any overlapping bounding boxes of the

same class and to achieve more distinct results. Moreover, precision, recall, and F1-Score

were evaluated on the validation set using various NMS values, where it was demonstrated

Nico
las

 N
ico

lao
u

63

that using NMS=0.4 achieves the optimal precision result and number of instances for this

trained model.

In conclusion, both prediction models, one for each activity, demonstrate relatively good

accuracy values, as verified by their application to random photographs. However, they are

accompanied by a significant number of challenges and observations that require thorough

study and addressing in future work. This aims to simultaneously increase the achieved

accuracies and utilize more recent and advanced learning algorithms (e.g., YOLOv8).

Nico
las

 N
ico

lao
u

64

6. CONCLUSIONS

The utilization of artificial intelligence, particularly technologies such as Machine Vision

(MV) and Deep Learning (DL), in the construction industry is deemed imperative. The

applications and benefits that can arise from these technologies are crucial, especially

during the transition to a new era fraught with challenges. Activities such as image

classification and object detection consistently prove to be extremely valuable tools,

enhancing, improving, and facilitating numerous practical and technical tasks on

construction sites. The real-time application of these technologies can enhance the

monitoring of safety and health issues on construction sites, extending to the broader and

more essential oversight of labor management, mechanical equipment, vehicles, and

materials, all while considering the relatively low costs resulting from the use of these

technologies.

The present study focused on the automated detection and classification of construction

elements at construction sites using the ImageAI library, built on the foundation of Python’s

TensorFlow and Keras libraries. The entire process was based on the integration of

Machine Vision and Deep Learning technologies, combined with a dataset collected for

the objects under consideration. The extracted results were analyzed in relation to the

accuracy of the corresponding models from which they were derived.

As part of future work, the following actions are to be taken to enhance the performance

and accuracy of the relevant models based on ImageAI:

• Quantitative and qualitative expansion of the dataset, encompassing a greater

variety of objects. To incorporate more construction classes, the methodology

employed for the nine classes examined in this research could be extended. These

additional classes might encompass various items categorized into groups such as

mechanical equipment, construction materials, vehicles, and personnel. Procuring

images depicting these new classes would be essential. However, this endeavor

would entail augmented computational resources and incur higher costs,

particularly contingent upon the quantity of additional classes. Mitigating this,

existing training images featuring these classes could be utilized, or new images

Nico
las

 N
ico

lao
u

65

could be generated using the Augmentor Python library (a code example is

provided in the Appendix), ensuring diversity within the dataset without

redundancy. Additionally, the use of a balanced dataset with respect to all examined

objects would be crucial to prevent overfitting and the memorization of specific

objects by the trained model for each task.

• In future research, a systematic approach could categorize object classes into

purpose-specific groups, enhancing model applicability in construction

management. For instance, machinery items like excavators, cranes, and bulldozers

could be tracked for productivity analysis, while materials such as bricks, steel

beams, and piping could aid in quantity/cost estimation. Additionally, structural

elements like columns and walls could be monitored for construction scheduling

purposes. All these applications can complement the existing capability of health

and safety object tracking provided by this research, to ensure adherence to safety

protocols on construction sites, which can also be expanded including more health

& safety classes.

• Improvement of the annotation functions for bounded frames and labels, using

advanced rendering practices in conjunction with the practical application of non-

maximum suppression (NMS) to produce sharper and accurately adjusted results.

Additionally, exploration and testing of other custom activities offered by the

ImageAI library for accuracy and usefulness, particularly by using video streams

of related content, would be beneficial.

• Exploring alternative methods, software libraries, and datasets to enhance speed

and accuracy is a pivotal aspect of future research. This entails delving into newer

iterations of object detection algorithms, like YOLOv8, and exploring cutting-edge

architectures such as feature pyramid networks (FPN) and EfficientDet.

Additionally, integrating diverse training datasets like SODA can enrich the

model's capabilities by offering a broader range of training examples. Continuously

assessing and adopting the latest techniques, libraries, and datasets ensures that

custom object detection models remain at the forefront of innovation, delivering

optimal results in terms of speed, accuracy, and reliability.

Nico
las

 N
ico

lao
u

66

REFERENCES

[1] Lambrides, E., & Christodoulou, S.E. (2023). Human action detection and

ergonomic risk assessment at construction sites, by use of machine vision and

deep learning. In: EC3 Conference 2023 (Vol. 4). European Council on

Computing in Construction, Crete, Greece.

[2] Market.US (2024). Specializes in in-depth market research and analysis.

https://market.us/report/generative-ai-in-construction-market/

[3] Brilakis, I., Lourakis, M., Sacks, R., Savarese, S., Christodoulou, S., Teizer, J. and

Makhmalbaf, A. (2010). Toward automated generation of parametric BIMs based

on hybrid video and laser scanning data. Advanced Engineering Informatics,

24(4), pp.456-465.

[4] Czerniawski, T. & Leite, F. (2020). Automated digital modeling of existing

buildings: A review of visual object recognition methods. Automation in

Construction, 113, p.103131.

[5] Nath, N. & Behzadan, A.H. (2020). Deep generative adversarial network to

enhance image quality for fast object detection in construction sites. In: 2020

Winter Simulation Conference (WSC) (pp. 2447-2459). IEEE.

[6] Paneru, S. & Jeelani, I. (2021). Computer vision applications in construction:

Current state, opportunities & challenges. Automation in Construction, 132,

p.103940.

[7] Duan, R., Deng, H., Tian, M., Deng, Y. & Lin, J. (2022). SODA: site object

detection dataset for deep learning in construction. arXiv preprint

arXiv:2202.09554.

[8] Wang, Y., Xiao, B., Bouferguene, A., Al-Hussein, M. & Li, H. (2022). Vision-

based method for semantic information extraction in construction by integrating

deep learning object detection and image captioning. Advanced Engineering

Informatics, 53, p.101699.

[9] Hou, L., Chen, C., Wang, S., Wu, Y. & Chen, X. (2022). Multi-object detection

method in construction machinery swarm operations based on the improved

YOLOv4 model. Sensors, 22(19), p.7294.

[10] Zhou, Q., Liu, H., Qiu, Y. & Zheng, W. (2022). Object Detection for Construction

Waste Based on an Improved YOLOv5 Model. Sustainability, 15(1), p.681.

[11] Jog, G.M., Brilakis, I.K. & Angelides, D.C. (2011). Testing in harsh conditions:

Tracking resources on construction sites with machine vision. Automation in

construction, 20(4), pp.328-337.

[12] Moses, O. (2018). ImageAI, an open source python library built to empower

developers to build applications and systems with self-contained computer vision

capabilities. https://github.com/

OlafenwaMoses/ImageAI.

[13] Turing (2024). A combination of internal experts, global talent, and proprietary AI

technology working together to accelerate and innovate companies and careers

more efficiently. https://www.turing.com/kb/ultimate-battle-between-deep-

learning-and-machine-learning

Nico
las

 N
ico

lao
u

https://market.us/report/generative-ai-in-construction-market/
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning
https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning

67

[14] Umer Yasin, M. (2022). Bricks Under Construction or Old Building / Houses, an

image dataset that contains pictures of buildings and houses under construction.

https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-

building-houses/data

[15] Ahmadzada, A. (2020). People Image Dataset, many pictures of people

performing different activities.

https://www.kaggle.com/datasets/ahmadahmadzada/images2000/data

[16] B Naik, N. (2023). Safety Helmet and Reflective Jacket, images of Individuals

Wearing Safety Helmets and Reflective Jackets.

https://www.kaggle.com/datasets/niravnaik/safety-helmet-and-reflective-jacket

[17] Deshmukh, R., Wenguang, M. & Wei, M. (2020). Window Detection in Street

Scenes, selected images from Paris Street-View Dataset with Window

Annotations. https://www.kaggle.com/datasets/rude009/window-detection-in-

street-scenes

[18] B Naik, N. (2022). PPU1dataset, a test dataset of concrete column and concrete

beam annotated images for developing custom column and beam object detection

model. https://github.com/febrifahmi/PPU1dataset

[19] Tzutalin (2015). LabelImg, a graphical image annotation tool.

https://github.com/HumanSignal/labelImg

Nico
las

 N
ico

lao
u

https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-building-houses/data
https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-building-houses/data
https://www.kaggle.com/datasets/ahmadahmadzada/images2000/data
https://www.kaggle.com/datasets/niravnaik/safety-helmet-and-reflective-jacket
https://www.kaggle.com/datasets/rude009/window-detection-in-street-scenes
https://www.kaggle.com/datasets/rude009/window-detection-in-street-scenes
https://github.com/febrifahmi/PPU1dataset
https://github.com/HumanSignal/labelImg

68

APPENDIX

Python code for custom image classification training

from imageai.Classification.Custom import ClassificationModelTrainer

model_trainer = ClassificationModelTrainer()

model_trainer.setModelTypAsMobileNetV2()

model_trainer.setDataDirectory("structural elements - ver.2 - IP9")

model_trainer.trainModel(num_experiments=1000, batch_size=4)

Python code for custom image classification prediction

from imageai.Classification.Custom import CustomImageClassification

import os

execution_path = os.getcwd()

prediction = CustomImageClassification()

prediction.setModelTypeAsMobileNetV2()

prediction.setModelPath(os.path.join(execution_path, " mobilenet_v2-
structural elements - ver.2 - IP9-test_acc_0.81056_epoch-257.pt"))

prediction.setJsonPath(os.path.join(execution_path, " structural
elements - ver.2 - IP9_model_classes.json"))

prediction.loadModel()

predictions, probabilities =

prediction.classifyImage(os.path.join(execution_path,

"IMG_20240410_101352.jpg"), result_count=9)

for eachPrediction, eachProbability in zip(predictions, probabilities):

 print(eachPrediction + " : " + str(eachProbability))

Python code for custom object detection training

from imageai.Detection.Custom import DetectionModelTrainer

trainer = DetectionModelTrainer()

trainer.setModelTypeAsYOLOv3()

trainer.setDataDirectory(data_directory="CustomObjectDetection")

trainer.setTrainConfig(object_names_array=['column','excavator','beam',

'masonry','slab','window','person','Safety_Helmet','Reflective_Jacket']

, batch_size=4

 , num_experiments=200,

train_from_pretrained_model="yolov3_hololens-yolo_mAP-0.82726_epoch-

73.pt")

#download pre-trained model via

https://github.com/OlafenwaMoses/ImageAI/releases/download/3.0.0-

pretrained/yolov3.pt

If you are training to detect more than 1 object, set names of

objects above like object_names_array=["hololens", "google-glass",

"oculus", "magic-leap"]

trainer.trainModel()

Nico
las

 N
ico

lao
u

69

Python code for augmented pictures production

import os

import Augmentor

Specifies the path to the directory containing original images

input_directory = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\final_entry\BEAM\RENAME JPG"

Specifies the output directory where augmented images will be saved

output_directory = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\final_entry\BEAM\aug2"

Checks if the output directory exists, otherwise creates it

if not os.path.exists(output_directory):

 os.makedirs(output_directory)

Creates an Augmentor pipeline for the input directory

pipeline = Augmentor.Pipeline(input_directory, output_directory)

Defines augmentation operations

pipeline.rotate(probability=0.7, max_left_rotation=3,

max_right_rotation=3)

pipeline.flip_left_right(probability=0.7)

pipeline.flip_top_bottom(probability=0.7)

pipeline.zoom_random(probability=0.7, percentage_area=0.8)

pipeline.flip_random(probability=0.7)

Color Jittering

pipeline.random_color(probability=0.7, min_factor=0.7, max_factor=1.3)

Brightness Adjustment

pipeline.random_brightness(probability=0.7, min_factor=0.7,

max_factor=1.3)

Contrast Adjustment

pipeline.random_contrast(probability=0.7, min_factor=0.7,

max_factor=1.3)

Sets the number of augmented images to generate

num_augmented_images = 100

Executes the augmentation process

pipeline.sample(num_augmented_images)

Nico
las

 N
ico

lao
u

70

Python code for custom object detection with NMS and rendering settings

import cv2

from imageai.Detection.Custom import CustomObjectDetection

Defines rendering settings for each class

class_rendering_settings = {

 "excavator": {"color": (255, 0, 0), "label_position": "top_left"},

 "person": {"color": (204, 204, 0), "label_position":

"bottom_right"},

 "Safety_Helmet": {"color": (0, 255, 0), "label_position":

"bottom_left"},

 "Reflective_Jacket": {"color": (0, 0, 255), "label_position":

"top_right"},

}

detector = CustomObjectDetection()

detector.setModelTypeAsYOLOv3()

detector.setModelPath("yolov3_CustomObjectDetection_mAP-0.67410_epoch-

20.pt")

detector.setJsonPath("CustomObjectDetection_yolov3_detection_config.jso

n")

detector.loadModel()

Detection with adjusted rendering options

detections = detector.detectObjectsFromImage(

 input_image="ud6.jpg",

 output_image_path="ud6_output.jpg",

 minimum_percentage_probability=30,

 display_percentage_probability=False, # Disables displaying

percentage probability

 display_object_name=False, # Disables displaying object names

 display_box=True,

 nms_treshold=0.35

)

Loads the image

image = cv2.imread("ud6_output.jpg")

Iterates through detections

for detection in detections:

 class_name = detection["name"]

 rendering_settings = class_rendering_settings.get(class_name, {})

Gets rendering settings for the class

 color = rendering_settings.get("color", (255, 255, 255))

 label_position = rendering_settings.get("label_position",

"top_left")

 # Draws the bounding box

 left, top, right, bottom = detection["box_points"]

 cv2.rectangle(image, (left, top), (right, bottom), color, 2)

 # Calculates the center of the bounding box

 center_y = (top + bottom) // 2

Nico
las

 N
ico

lao
u

71

 # Draws the label

 label = detection["name"] + " :

{:.2f}%".format(detection["percentage_probability"])

 label = detection["name"] + " :

{:.2f}%".format(detection["percentage_probability"])

 label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 1,

1)

 if label_position == "bottom_right":

 label_position = (right -95, top-(-60))

 elif label_position == "bottom_left":

 label_position = (right , top)

 elif label_position == "top_left":

 label_position = (right -95, center_y + label_size[1] // 2)

 elif label_position == "top_right":

 label_position = (right - 125, center_y + label_size[1] // 2)

 else:

 label_position = (right, top - 100)

 cv2.putText(image, label, label_position, cv2.FONT_HERSHEY_SIMPLEX,

0.3, color, 1)

Saves the image with modified rendering

cv2.imwrite("ud6-detected-labeled.jpg", image)

Nico
las

 N
ico

lao
u

72

Python code for custom object detection on .txt format (class, bounding boxes

coordinates, confidence score)

from imageai.Detection.Custom import CustomObjectDetection

import os

from PIL import Image

Creates a CustomObjectDetection instance

detector = CustomObjectDetection()

Sets the model type to YOLOv3

detector.setModelTypeAsYOLOv3()

Sets the path to the trained YOLOv3 model file

detector.setModelPath("yolov3_CustomObjectDetection_mAP-0.67410_epoch-

20.pt")

Sets the path to the JSON file containing detection configuration

detector.setJsonPath("CustomObjectDetection_yolov3_detection_config.jso

n")

Loads the YOLOv3 model

detector.loadModel()

Path to the directory containing validation set images

validation_set_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\images"

Path to the directory where the output text files with bounding box

annotations will be saved

output_annotations_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions"

Dictionary to map class names to numerical codes

class_mapping = {"column": 0, "excavator": 1, "beam": 2, "masonry": 3,

"slab": 4, "window": 5, "person": 6,

 "Safety_Helmet": 7, "Reflective_Jacket": 8}

Iterates over each image in the validation set

for image_filename in os.listdir(validation_set_path):

 if image_filename.endswith(".jpg"):

 # Builds the full path to the input image

 input_image_path = os.path.join(validation_set_path,

image_filename)

 # Opens the image and gets its dimensions

 with Image.open(input_image_path) as img:

 image_width, image_height = img.size

 # Performs object detection on the current image

 detections =

detector.detectObjectsFromImage(input_image=input_image_path,

output_image_path=None)

 # Builds the full path to save the output text file with

bounding box annotations

Nico
las

 N
ico

lao
u

73

 annotation_filename = image_filename.replace(".jpg", ".txt")

 output_annotation_path = os.path.join(output_annotations_path,

annotation_filename)

 # Opens the output text file for writing

 with open(output_annotation_path, 'w') as annotation_file:

 # Writes each detection in YOLO format to the text file

 for detection in detections:

 class_label = detection["name"]

 numerical_code = class_mapping.get(class_label)

 if numerical_code is not None and numerical_code in

range(9):

 x_min, y_min, x_max, y_max =

detection["box_points"]

 x_center = (x_min + x_max) / 2 / image_width

 y_center = (y_min + y_max) / 2 / image_height

 box_width = (x_max - x_min) / image_width

 box_height = (y_max - y_min) / image_height

 confidence_score =

detection["percentage_probability"] / 100.0

 annotation_str = f"{numerical_code} {x_center:.6f}

{y_center:.6f} {box_width:.6f} {box_height:.6f}

{confidence_score:.6f}\n"

 annotation_file.write(annotation_str)

 else:

 print(f"Invalid class label '{class_label}' for

{image_filename}. Skipping annotation.")

 Nico
las

 N
ico

lao
u

74

Python code for custom object detection on .txt format (NMS implementation)

import numpy as np

import os

def non_max_suppression(boxes, scores, threshold):

 # If no boxes, returns an empty list

 if len(boxes) == 0:

 return []

 # Converts boxes to numpy array

 boxes = np.array(boxes)

 # Initializes list to store the picked boxes

 picked_boxes = []

 # Extracts coordinates of bounding boxes

 x1 = boxes[:, 0]

 y1 = boxes[:, 1]

 x2 = boxes[:, 2]

 y2 = boxes[:, 3]

 # Computes the area of each bounding box

 area = (x2 - x1 + 1) * (y2 - y1 + 1)

 # Sorts the bounding boxes by their confidence scores (in

descending order)

 idxs = np.argsort(scores)[::-1]

 while len(idxs) > 0:

 # Picks the bounding box with the highest confidence score

 last = len(idxs) - 1

 i = idxs[last]

 picked_boxes.append(i)

 # Calculates the intersection over union (IoU) of the picked

box with other boxes

 xx1 = np.maximum(x1[i], x1[idxs[:last]])

 yy1 = np.maximum(y1[i], y1[idxs[:last]])

 xx2 = np.minimum(x2[i], x2[idxs[:last]])

 yy2 = np.minimum(y2[i], y2[idxs[:last]])

 w = np.maximum(0, xx2 - xx1 + 1)

 h = np.maximum(0, yy2 - yy1 + 1)

 intersection = w * h

 iou = intersection / (area[i] + area[idxs[:last]] -

intersection)

 # Discards the boxes with IoU greater than the threshold

 idxs = np.delete(idxs, np.concatenate(([last], np.where(iou >

threshold)[0])))

 # Returns the indices of the picked boxes

 return picked_boxes

Nico
las

 N
ico

lao
u

75

Function to apply NMS to bounding box predictions in a TXT file

def apply_nms_to_txt_file(txt_file_path, output_file_path,

nms_threshold):

 # Opens the input TXT file

 with open(txt_file_path, 'r') as input_file:

 lines = input_file.readlines()

 # Parses each line in the input file and apply NMS

 refined_lines = []

 boxes = []

 scores = []

 for line in lines:

 # Parses the line to extract bounding box coordinates and

confidence score

 class_label, x_center, y_center, box_width, box_height,

confidence_score = map(float, line.strip().split())

 # Appends the bounding box details to the lists

 boxes.append([x_center - box_width / 2, y_center - box_height /

2, x_center + box_width / 2, y_center + box_height / 2])

 scores.append(confidence_score)

 # Applies NMS to the bounding box predictions

 picked_boxes = non_max_suppression(boxes, scores, nms_threshold)

 # Writes the refined bounding box predictions to the output TXT

file

 with open(output_file_path, 'w') as output_file:

 for idx in picked_boxes:

 output_file.write(' '.join(map(str,

lines[idx].strip().split())) + '\n')

Path to the folder containing the TXT files with bounding box

predictions

input_folder_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions"

Path to the folder to save the refined TXT files with NMS applied

output_folder_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions-

nms0.4"

NMS threshold

nms_threshold = 0.4 # Adjust as needed

Iterates over each TXT file in the input folder

for txt_file_name in os.listdir(input_folder_path):

 if txt_file_name.endswith(".txt"):

 # Builds the full path to the input TXT file

 input_txt_file_path = os.path.join(input_folder_path,

txt_file_name)

 # Builds the full path to the output TXT file

 output_txt_file_path = os.path.join(output_folder_path,

txt_file_name)

 # Applies NMS to the bounding box predictions in the current

TXT file

 apply_nms_to_txt_file(input_txt_file_path,

output_txt_file_path, nms_threshold)

Nico
las

 N
ico

lao
u

76

Python code for custom object detection model confusion matrix

from sklearn.metrics import confusion_matrix

import os

from collections import Counter

import numpy as np

import matplotlib.pyplot as plt

Custom class labels

class_labels = {

 0: "column", 1: "excavator", 2: "beam", 3: "masonry",

 4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8:

"Reflective_Jacket"

}

Paths

ground_truth_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\annotations"

predictions_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions-

nms0.4"

Initializes variables to store confusion matrices

conf_matrices = []

Processes files one by one

for batch_index in range(0, len(os.listdir(ground_truth_path)), 1):

 batch_ground_truth_labels, batch_predicted_labels = [], []

 # Loads ground truth and predicted labels for the current batch

 for filename in

os.listdir(ground_truth_path)[batch_index:batch_index + 1]:

 if filename.endswith(".txt"):

 with open(os.path.join(ground_truth_path, filename), 'r')

as annotation_file:

 # Reads ground truth labels

 batch_ground_truth_labels.extend(int(line.split()[0])

for line in annotation_file.readlines())

 with open(os.path.join(predictions_path, filename), 'r') as

prediction_file:

 # Reads predicted labels

 batch_predicted_labels.extend(int(line.split()[0]) for

line in prediction_file.readlines())

 # Counts occurrences of each class in ground truth and predicted

labels

 ground_truth_counts = Counter(batch_ground_truth_labels)

 predicted_counts = Counter(batch_predicted_labels)

 # Determines the minimum count for each class

 class_min_counts = {cls: min(ground_truth_counts[cls],

predicted_counts[cls]) for cls in class_labels.keys()}

 # Creates lists to store filtered ground truth and predicted labels

 filtered_ground_truth_labels = []

Nico
las

 N
ico

lao
u

77

 filtered_predicted_labels = []

 # Iterates over each label and keep only the required number of

instances for each class

 for label, cls in zip(batch_predicted_labels,

batch_ground_truth_labels):

 if class_min_counts[cls] > 0:

 filtered_ground_truth_labels.append(cls)

 filtered_predicted_labels.append(label)

 class_min_counts[cls] -= 1

 # Updates batch lists with filtered ones

 batch_ground_truth_labels = filtered_ground_truth_labels

 batch_predicted_labels = filtered_predicted_labels

 # Computes confusion matrix for the current batch

 conf_matrices.append(confusion_matrix(batch_ground_truth_labels,

batch_predicted_labels, labels=range(9)))

Merges confusion matrices to create the complete confusion matrix

complete_conf_matrix = sum(conf_matrices)

Displays confusion matrix with numbers in each cell

plt.figure(figsize=(10, 8))

plt.imshow(complete_conf_matrix, interpolation='nearest',

cmap=plt.cm.Blues)

Adds color bar

plt.colorbar()

Adds numbers in each cell

thresh = complete_conf_matrix.max() / 2.

for i in range(complete_conf_matrix.shape[0]):

 for j in range(complete_conf_matrix.shape[1]):

 plt.text(j, i, format(complete_conf_matrix[i, j], 'd'),

 horizontalalignment="center",

 color="white" if complete_conf_matrix[i, j] > thresh

else "black")

Sets axis labels and title

plt.xlabel('Predicted labels')

plt.ylabel('True labels')

plt.title('Complete Confusion Matrix')

Sets x and y axis ticks and labels

plt.xticks(np.arange(len(class_labels)), class_labels.values(),

rotation=45)

plt.yticks(np.arange(len(class_labels)), class_labels.values(),

rotation=45)

plt.tight_layout()

plt.show()

Nico
las

 N
ico

lao
u

78

Python code for custom object detection model accuracy metrics

import numpy as np

import matplotlib.pyplot as plt

Custom class labels

class_labels = {

 0: "column", 1: "excavator", 2: "beam", 3: "masonry",

 4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8:

"Reflective_Jacket"}

def calculate_metrics(conf_matrix):

 num_classes = conf_matrix.shape[0]

 # Initializes arrays to store precision, recall, and F1 score for

each class

 precision = np.zeros(num_classes)

 recall = np.zeros(num_classes)

 f1_score = np.zeros(num_classes)

 for i in range(num_classes):

 # True positives: diagonal element

 tp = conf_matrix[i, i]

 # False positives: sum of column i (excluding tp)

 fp = np.sum(conf_matrix[:, i]) - tp

 # False negatives: sum of row i (excluding tp)

 fn = np.sum(conf_matrix[i, :]) - tp

 # True negatives: sum of all values except row i and column i

 tn = np.sum(conf_matrix) - tp - fp - fn

 # Calculates precision

 precision[i] = tp / (tp + fp) if (tp + fp) > 0 else 0

 # Calculates recall

 recall[i] = tp / (tp + fn) if (tp + fn) > 0 else 0

 # Calculates F1 score

 f1_score[i] = 2 * (precision[i] * recall[i]) / (precision[i] +

recall[i]) if (precision[i] + recall[i]) > 0 else 0

 # Calculates overall metrics

 overall_precision = np.mean(precision)

 overall_recall = np.mean(recall)

 overall_f1_score = np.mean(f1_score)

 return precision, recall, f1_score, overall_precision,

overall_recall, overall_f1_score

Provided confusion matrix

conf_matrix = np.array([

 [122, 0, 10, 2, 28, 0, 1, 0, 0],

 [0, 65, 0, 0, 0, 0, 5, 1, 0],

 [7, 0, 48, 0, 1, 1, 0, 2, 0],

 [0, 0, 1, 67, 0, 1, 1, 0, 0],

 [2, 0, 0, 0, 35, 0, 1, 0, 0],

 [1, 0, 0, 1, 0, 108, 9, 0, 0],

 [0, 5, 0, 1, 1, 1, 77, 1, 0],

 [0, 1, 0, 0, 0, 0, 12, 30, 16],

 [0, 0, 0, 1, 0, 0, 11, 10, 47]])

Nico
las

 N
ico

lao
u

79

Calculates precision, recall, and F1 score

precision, recall, f1_score, overall_precision, overall_recall,

overall_f1_score = calculate_metrics(conf_matrix)

Plots the results for each class

classes = list(class_labels.values())

x = np.arange(len(classes))

width = 0.2

space = 0.1

fig, ax = plt.subplots(figsize=(12, 6))

Calculates the maximum value among precision, recall, and f1_score

arrays

max_value = max(max(precision), max(recall), max(f1_score))

Sets the upper limit of the y-axis slightly higher than the maximum

value

ax.set_ylim(0, max_value + 0.1)

rects1 = ax.bar(x - width - space, precision, width, label='Precision',

color='cyan')

rects2 = ax.bar(x, recall, width, label='Recall',

color='mediumseagreen')

rects3 = ax.bar(x + width + space, f1_score, width, label='F1 Score',

color='#FFB6C1') # Light pink color

Adds labels, title, and legend

ax.set_ylabel('Scores', fontsize=14)

ax.set_title('Precision, Recall, and F1 Score by Class', fontsize=18)

ax.set_xticks(np.arange(len(classes)))

plt.yticks(fontsize=12)

ax.set_xticklabels(list(class_labels.values()), rotation=45,

ha='right', fontsize=14)

ax.legend(fontsize=13)

Adds value annotations to each bar

def autolabel(rects):

 for rect in rects:

 height = rect.get_height()

 ax.annotate('{}'.format(round(height, 2)),

 xy=(rect.get_x() + rect.get_width()/2, height),

 xytext=(0, 3),

 textcoords="offset points",

 ha='center', va='bottom', fontsize=11)

autolabel(rects1)

autolabel(rects2)

autolabel(rects3)

Shows the plot

plt.tight_layout()

plt.show()

Prints overall metrics

print(f"\nOverall Precision = {overall_precision:.4f}, Overall Recall =

{overall_recall:.4f}, Overall F1 Score = {overall_f1_score:.4f}")

Nico
las

 N
ico

lao
u

80

Python code for custom object detection (H&S VERSION)

import cv2

from imageai.Detection.Custom import CustomObjectDetection

def calculate_iou(box1, box2, image_width, image_height):

 x1, y1, w1, h1 = box1

 x2, y2, w2, h2 = box2

 # Converts YOLO coordinates to pixel coordinates

 x1, y1 = int(x1 * image_width), int(y1 * image_height)

 w1, h1 = int(w1 * image_width), int(h1 * image_height)

 x2, y2 = int(x2 * image_width), int(y2 * image_height)

 w2, h2 = int(w2 * image_width), int(h2 * image_height)

 # Calculates intersection rectangle coordinates

 x_start = max(x1, x2)

 y_start = max(y1, y2)

 x_end = min(x1 + w1, x2 + w2)

 y_end = min(y1 + h1, y2 + h2)

 # Calculates width and height of intersection rectangle

 intersection_width = max(0, x_end - x_start)

 intersection_height = max(0, y_end - y_start)

 # Calculates area of intersection rectangle

 intersection_area = intersection_width * intersection_height

 # Calculates areas of individual bounding boxes

 area_box1 = w1 * h1

 area_box2 = w2 * h2

 # Calculates area of union

 union_area = area_box1 + area_box2 - intersection_area

 # Calculates IoU

 iou = intersection_area / union_area if union_area > 0 else 0

 return iou

detector = CustomObjectDetection()

detector.setModelTypeAsYOLOv3()

detector.setModelPath("yolov3_CustomObjectDetection_mAP-0.67410_epoch-

20.pt")

detector.setJsonPath("CustomObjectDetection_yolov3_detection_config.jso

n")

detector.loadModel()

Loads the image to get its dimensions

input_image_path = "hj93.jpg"

image = cv2.imread(input_image_path)

image_height, image_width, _ = image.shape

Detection with adjusted rendering options

detections = detector.detectObjectsFromImage(

 input_image=input_image_path,

 output_image_path="hj93_output.jpg",

Nico
las

 N
ico

lao
u

81

 minimum_percentage_probability=30,

 display_percentage_probability=False, # Disable displaying

percentage probability

 display_object_name=True, # Disable displaying object names

 display_box=True,

 nms_treshold=0.05)

class_6_detected = False

class_7_detected = False

class_8_detected = False

Count of objects for each class

class_6_count = 0

class_7_count = 0

class_8_count = 0

Stores bounding boxes for each class

class_6_boxes = []

class_7_boxes = []

class_8_boxes = []

Counters for checkpoints

warning_count_1 = 0

warning_count_2 = 0

warning_count_3 = 0

Iterates through detections

for detection in detections:

 class_name = detection["name"]

 bbox = detection["box_points"]

 if class_name == "person":

 class_6_detected = True

 class_6_count += 1

 class_6_boxes.append(bbox)

 elif class_name == "Safety_Helmet":

 class_7_detected = True

 class_7_count += 1

 class_7_boxes.append(bbox)

 elif class_name == "Reflective_Jacket":

 class_8_detected = True

 class_8_count += 1

 class_8_boxes.append(bbox)

if not class_6_detected:

 print("No action required")

else:

 if not class_7_detected or not class_8_detected:

 warning_count_1 += class_6_count

 else:

 if class_7_count < class_6_count or class_8_count <

class_6_count:

 warning_count_2 += class_6_count - min(class_7_count,

class_8_count)

 else:

 # Check for full overlapping

 full_overlap = True

 class_6_without_full_overlap = 0

Nico
las

 N
ico

lao
u

82

 for class_6_box in class_6_boxes:

 overlap_7 = False

 overlap_8 = False

 for class_7_box in class_7_boxes:

 if calculate_iou(class_6_box, class_7_box,

image_width, image_height) >= 0.9:

 overlap_7 = True

 break

 for class_8_box in class_8_boxes:

 if calculate_iou(class_6_box, class_8_box,

image_width, image_height) >= 0.9:

 overlap_8 = True

 break

 if not overlap_7 or not overlap_8:

 full_overlap = False

 class_6_without_full_overlap += 1

 if not full_overlap:

 warning_count_3 += class_6_without_full_overlap

 else:

 print("No action required")

ANSI escape code for red color

RED = '\033[91m'

ANSI escape code for underlining text

UNDERLINE = '\033[4m'

ANSI escape code for resetting underline

RESET_UNDERLINE = '\033[24m'

Prints the checkpoint with the highest count

max_count = max(warning_count_1, warning_count_2, warning_count_3)

if max_count == 1:

 if max_count == warning_count_1:

 print(f"{RED}{UNDERLINE}HEALTH & SAFETY

ISSUE:{RESET_UNDERLINE}\n{warning_count_1} person without proposed

safety equipment\nin the construction site!!!")

 if max_count == warning_count_2:

 print(f"{RED}{UNDERLINE}HEALTH & SAFETY

ISSUE:{RESET_UNDERLINE}\n{warning_count_2} person without proposed

safety equipment\nin the construction site!!!")

 if max_count == warning_count_3:

 print(f"{RED}{UNDERLINE}HEALTH & SAFETY

ISSUE:{RESET_UNDERLINE}\n{warning_count_3} person without proposed

safety equipment\nin the construction site!!!")

else:

 if max_count == warning_count_1:

 print(f"{RED}{UNDERLINE}HEALTH & SAFETY

ISSUE:{RESET_UNDERLINE}\n{warning_count_1} persons without proposed

safety equipment\nin the construction site!!!")

 if max_count == warning_count_2:

 print(f"{RED}{UNDERLINE}HEALTH & SAFETY

ISSUE:{RESET_UNDERLINE}\n{warning_count_2} persons without proposed

safety equipment\nin the construction site!!!")

 if max_count == warning_count_3:

 print(f"{RED}{UNDERLINE}HEALTH & SAFETY

ISSUE:{RESET_UNDERLINE}\n{warning_count_3} persons without proposed

safety equipment\nin the construction site!!!")

Nico
las

 N
ico

lao
u

83

Python code for number of instances & images per class counter

import os

import matplotlib.pyplot as plt

import numpy as np

Custom class labels

class_labels = {

 0: "column", 1: "excavator", 2: "beam", 3: "masonry",

 4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8:

"Reflective_Jacket"

}

Function to parse YOLO format truth labels and count instances for

each class

def count_instances(truth_labels_dir):

 class_counts = {label: 0 for label in range(len(class_labels))}

 class_files = {label: 0 for label in range(len(class_labels))}

 # Iterates through each truth label file

 for filename in os.listdir(truth_labels_dir):

 if filename.endswith(".txt"):

 with open(os.path.join(truth_labels_dir, filename), 'r') as

file:

 # Reads lines and counts instances for each class

 lines = file.readlines()

 found_classes = set()

 for line in lines:

 class_id = int(line.split()[0])

 if class_id in class_labels:

 class_counts[class_id] += 1

 found_classes.add(class_id)

 # Counts the files that contain at least one instance

of each class

 for class_id in found_classes:

 class_files[class_id] += 1

 return class_counts, class_files

Function to plot bar graph of instance distribution

def plot_instance_distribution(class_counts, class_files):

 # Sorts class counts and class files by class ID

 sorted_counts = [class_counts[label] for label in

sorted(class_labels)]

 sorted_files = [class_files[label] for label in

sorted(class_labels)]

 class_names = [class_labels[label] for label in

sorted(class_labels)]

 # Sets bar width

 bar_width = 0.35

 # Sets position of bars on X axis

 r1 = np.arange(len(class_names))

 r2 = [x + bar_width for x in r1]

Nico
las

 N
ico

lao
u

84

 # Plots bars

 plt.figure(figsize=(10, 6))

 plt.bar(r1, sorted_counts, color='blue', width=bar_width,

edgecolor='grey', label='Number of Instances')

 plt.bar(r2, sorted_files, color='red', width=bar_width,

edgecolor='grey', label='Number of Images')

 # Adds labels and title with custom font size

 plt.xlabel('Class', fontweight='bold', fontsize=14) # Adjust

fontsize as needed

 plt.ylabel('Count', fontweight='bold', fontsize=14) # Adjust

fontsize as needed

 plt.xticks([r + bar_width / 2 for r in range(len(class_names))],

class_names, rotation=45,

 fontsize=12) # Adjust fontsize as needed

 # Sets y-axis scale

 plt.yticks(fontsize=12) # Adjust fontsize as needed

 plt.title('Instance and Image Distribution Across Classes',

fontweight='bold',

 fontsize=16) # Adjust fontsize as needed

 # Adds values on each bar

 for i, count in enumerate(sorted_counts):

 plt.text(i, count + 0.1, str(count), ha='center',

va='bottom',fontsize=11)

 for i, files in enumerate(sorted_files):

 plt.text(i + bar_width, files + 0.1, str(files), ha='center',

va='bottom',fontsize=11)

 # Adds legend

 plt.legend(fontsize=12)

 plt.tight_layout()

 plt.show()

Path to directory containing truth label files

truth_labels_dir = r'C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\totals'

Counts instances and files for each class

class_counts, class_files = count_instances(truth_labels_dir)

Plots instance and file distribution

plot_instance_distribution(class_counts, class_files)

Nico
las

 N
ico

lao
u

85

Python code for number of instances per class counter (3 folders comparison

version)

import os

import matplotlib.pyplot as plt

import numpy as np

Custom class labels

class_labels = {

 0: "column", 1: "excavator", 2: "beam", 3: "masonry",

 4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8:

"Reflective_Jacket"

}

Function to parse YOLO format truth labels and count instances for

each class

def count_instances(truth_labels_dir):

 class_counts = {label: 0 for label in range(len(class_labels))}

 class_files = {label: 0 for label in range(len(class_labels))}

 # Iterates through each truth label file

 for filename in os.listdir(truth_labels_dir):

 if filename.endswith(".txt"):

 with open(os.path.join(truth_labels_dir, filename), 'r') as

file:

 # Reads lines and counts instances for each class

 lines = file.readlines()

 found_classes = set()

 for line in lines:

 class_id = int(line.split()[0])

 if class_id in class_labels:

 class_counts[class_id] += 1

 found_classes.add(class_id)

 # Counts the files that contain at least one instance

of each class

 for class_id in found_classes:

 class_files[class_id] += 1

 return class_counts, class_files

Function to plot bar graph of instance distribution

def plot_instance_distribution(class_counts, class_files):

 # Sorts class counts and class files by class ID

 sorted_counts = [class_counts[label] for label in

sorted(class_labels)]

 sorted_files = [class_files[label] for label in

sorted(class_labels)]

 class_names = [class_labels[label] for label in

sorted(class_labels)]

 # Sets bar width

 bar_width = 0.35

 # Sets position of bars on X axis

 r1 = np.arange(len(class_names))

 r2 = [x + bar_width for x in r1]

Nico
las

 N
ico

lao
u

86

 # Plots bars

 plt.figure(figsize=(10, 6))

 plt.bar(r1, sorted_counts, color='blue', width=bar_width,

edgecolor='grey', label='Number of Instances')

 plt.bar(r2, sorted_files, color='red', width=bar_width,

edgecolor='grey', label='Number of Images')

 # Adds labels and title with custom font size

 plt.xlabel('Class', fontweight='bold', fontsize=14) # Adjust

fontsize as needed

 plt.ylabel('Count', fontweight='bold', fontsize=14) # Adjust

fontsize as needed

 plt.xticks([r + bar_width / 2 for r in range(len(class_names))],

class_names, rotation=45,

 fontsize=12) # Adjust fontsize as needed

 # Sets y-axis scale

 plt.yticks(fontsize=12) # Adjust fontsize as needed

 plt.title('Instance and Image Distribution Across Classes',

fontweight='bold',

 fontsize=16) # Adjust fontsize as needed

 # Adds values on each bar

 for i, count in enumerate(sorted_counts):

 plt.text(i, count + 0.1, str(count), ha='center',

va='bottom',fontsize=11)

 for i, files in enumerate(sorted_files):

 plt.text(i + bar_width, files + 0.1, str(files), ha='center',

va='bottom',fontsize=11)

 # Adds legend

 plt.legend(fontsize=12)

 plt.tight_layout()

 plt.show()

Path to directory containing truth label files

truth_labels_dir = r'C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\totals'

Counts instances and files for each class

class_counts, class_files = count_instances(truth_labels_dir)

Plots instance and file distribution

plot_instance_distribution(class_counts, class_files)

Nico
las

 N
ico

lao
u

