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ABSTRACT 
 

The construction industry represents a continuously evolving environment where there is 

always room for process improvement and modernization. Artificial intelligence, as well 

as other emerging technologies such as machine vision (MV) and machine learning (ML), 

are indispensable in such an environment. Indeed, in recent years, their usefulness has 

become increasingly evident, along with the various possibilities for their application. 

This research paper focuses on the detection and classification of objects at construction 

sites and analyzes the utility and potential of these detection and classification activities in 

the modern construction industry. Object detection and classification are performed by 

applying technologies such as machine vision (MV) and deep learning (DL) to image 

processing and/or in combination with object segmentation and labeling using bounding 

boxes. These activities have varied applications on construction sites, including but not 

limited to: (1) the monitoring of workers, machinery, and vehicles for productivity 

measurement and for the prevention of accidents and collisions; and (2) the monitoring and 

classification of procured of construction materials, to evaluate the progress of construction 

work. This serves as a valuable, low-cost measurement tool in the context of the 

management and monitoring of construction projects. 

First, the presented research work examines the knowledge base from past work on the 

application of the aforementioned technologies to similar problems across varying 

professional domains, focusing on the construction sector. An extensive evaluation of their 

accuracy, reliability, and effectiveness is conducted, along with the identification of 

potential advantages/disadvantages of their application. Further presented is the 

methodology followed in pursuit of the research’s scope of work. Specifically, nine 

specific ‘construction classes’ potentially found at a construction site are addressed. 

Subsequently, the corresponding results are provided and extensively discussed, along with 

an examination of any potential errors in the recognition and taxonomy of these classes.  

Finally, snippets (in the Python programming language) of the programming code used 

during various phases of the overall methodology are provided. 
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ΠΕΡΙΛΗΨΗ 
 

Ο κατασκευαστικός κλάδος αποτελεί ένα συνεχώς εξελισσόμενο περιβάλλον στο οποίο 

πάντα υπάρχει περιθώριο για ενέργειες βελτίωσης διεργασιών αλλά και εκσυγχρονισμού 

του. Η τεχνητή νοημοσύνη καθώς επίσης και άλλες νεοφανείς τεχνολογίες όπως είναι η 

μηχανική όραση (MV) και η μηχανική εκμάθηση (ML) δεν θα μπορούσαν να λείπουν από 

το περιβάλλον αυτό. Άλλωστε, τα τελευταία χρόνια γίνεται όλο και πιο εμφανής η 

χρησιμότητα τους αλλά και οι διάφορες δυνατότητες εφαρμογής τους. 

Η παρούσα ερευνητική εργασία επικεντρώνεται στον εντοπισμό και την ταξινόμηση 

αντικειμένων σε εργοτάξια και αναλύει τη χρησιμότητα και τη δυναμική αυτών των 

δραστηριοτήτων εντοπισμού και ταξινόμησης στη σύγχρονη κατασκευαστική 

«βιομηχανία». Ο εντοπισμός και η ταξινόμηση αντικειμένων πραγματοποιείται μέσω της 

εφαρμογής τεχνολογιών όπως η μηχανική όραση (MV) και η βαθιά εκμάθηση (DL) στην 

επεξεργασία εικόνας ή/και σε συνδυασμό με την ανάθεση ετικετών και οριοθετημένων 

πλαισίων σε αντικείμενα. Αυτές οι δραστηριότητες έχουν διάφορες εφαρμογές στα 

εργοτάξια, καθώς συμβάλουν μεταξύ άλλων, στον έλεγχο του εργατικού προσωπικού, των 

μηχανημάτων και των οχημάτων που διακινούνται σε αυτό με σκοπό την πρόληψη 

ατυχημάτων και συγκρούσεων, καθώς επίσης στην παρακολούθηση και κατηγοριοποίηση 

των προμηθευομένων κατασκευαστικών υλικών, προκειμένου να αξιολογηθεί η πρόοδος 

των κατασκευαστικών εργασιών. Αυτό λειτουργεί ως ένα χαμηλού κόστους πολύτιμο 

εργαλείο επιμέτρησης-αξιολόγησης στα πλαίσια της διαχείρισης και παρακολούθησης 

κατασκευαστικών έργων. 

Αρχικά, η παρούσα ερευνητική εργασία εξετάζει την ύπαρξη πρότερης εργασίας και 

εφαρμογής των εν λόγω τεχνολογιών για παρόμοιας φύσης ζητήματα σε οποιοδήποτε 

επάγγελμα και δη στον κατασκευαστικό τομέα. Γίνεται μία εκτενής αξιολόγηση της 

ακρίβειας, της αξιοπιστίας και της αποτελεσματικότητας τους καθώς και η διακρίβωση 

των πιθανών πλεονεκτημάτων/μειονεκτημάτων από την εφαρμογή τους. Επιπλέον, 

παρουσιάζεται η μεθοδολογία που ακολουθήθηκε στη βάση του σκοπού που περιεγράφηκε 

προηγουμένως. Συγκεκριμένα, εξετάζονται εννέα διαφορετικές κλάσεις αντικειμένων  οι 

οποίες δυνητικώς εντοπίζονται σε ένα εργοτάξιο. Ακολούθως, δίνονται τα αντίστοιχα 
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αποτελέσματα και σχολιάζονται εκτενώς καθώς επίσης εξετάζεται η ύπαρξη τυχών 

σφαλμάτων. 

Τέλος, δίνονται αποσπάσματα από κώδικα στη γλώσσα προγραμματισμού Python που 

χρησιμοποιήθηκε κατά τη διάρκεια διαφόρων φάσεων της μεθοδολογίας που 

ακολουθήθηκε. 

  

Nico
las

 N
ico

lao
u 



8 
 

TABLE OF CONTENTS 
 

ABSTRACT ................................................................................................................................... 5 

ΠΕΡΙΛΗΨΗ ................................................................................................................................... 6 

TABLE OF CONTENTS .............................................................................................................. 8 

LIST OF FIGURES ....................................................................................................................... 9 

LIST OF TABLES ....................................................................................................................... 10 

LIST OF ABBREVIATIONS ..................................................................................................... 11 

1. INTRODUCTION ................................................................................................................... 12 

1.1 Literature review ................................................................................................................. 12 

1.2 Thesis scope ......................................................................................................................... 17 

1.3 Thesis organization .............................................................................................................. 18 

2. RESEARCH BACKGROUND ............................................................................................... 20 

2.1 Machine Vision (MV) ............................................................................................................ 20 

2.2 Deep Learning (DL) .............................................................................................................. 21 

2.3 Image Classification (IC) ....................................................................................................... 22 

2.4 Object Detection (OD) ......................................................................................................... 23 

3. RESEARCH METHODOLOGY ....................................................................................... 25 

3.1 Overview .............................................................................................................................. 25 

3.2 Image Classification Framework .......................................................................................... 26 

3.3 Object Detection Framework .............................................................................................. 28 

4. ANALYSIS AND RESULTS .............................................................................................. 35 

4.1 Image Classification Results ................................................................................................ 35 

4.2 Object Detection Results ..................................................................................................... 43 

5. SUMMARY OF FINDINGS ............................................................................................... 61 

6. CONCLUSIONS .................................................................................................................. 64 

REFERENCES ............................................................................................................................ 66 

APPENDIX .................................................................................................................................. 68 

 

 

 

 

Nico
las

 N
ico

lao
u 



9 
 

LIST OF FIGURES 

 

Figure 1.1: The value of global Generative AI in the construction industry .................... 13 

Figure 2.1: Object detection using Machine Vision ......................................................... 20 

Figure 2.2: Functional difference between Machine Learning and Deep Learning ......... 21 

Figure 2.3: Sample result for image classification by ImageAI library ............................ 22 

Figure 2.4: Sample result for object detection by ImageAI library .................................. 23 

Figure 3.1: Custom image classification methodology flowchart .................................... 28 

Figure 3.2: Instance and image distribution across custom classes .................................. 29 

Figure 3.3: Labelimg workspace during annotation process ............................................ 30 

Figure 3.4: Custom object detection methodology flowchart .......................................... 34 

Figure 4.1: Prediction percentages per class by custom IC model (example 1) ............... 36 

Figure 4.2: Prediction percentages per class by custom IC model (example 2) ............... 38 

Figure 4.3: Prediction percentages per class by custom IC model (example 3) ............... 39 

Figure 4.4: Prediction percentages per class by custom IC model (example 4) ............... 41 

Figure 4.5: Custom OD model implementation (example 1): (a) Initial random photo, (b) 

Detected objects by custom OD model .......................................................... 44 

Figure 4.6: Custom OD model implementation (example 2): (a) Initial random photo, (b) 

Detected objects by custom OD model .......................................................... 46 

Figure 4.7: Custom OD model implementation (example 3): (a) Initial random photo, (b) 

Detected objects by custom OD model .......................................................... 48 

Figure 4.8: Custom OD model implementation (example 4): (a) Initial random photo, (b) 

Detected objects by custom OD model. ......................................................... 49 

Figure 4.9: Custom OD model implementation (NMS example): (a) Initial random photo, 

(b) Detected objects by custom OD model without NMS, (c) Detected objects 

by custom OD model with NMS and rendering settings ............................... 51 

Figure 4.10: Custom OD model implementation (H&S example): (a) Initial random 

photo, (b) Detected objects by custom OD model. ........................................ 53 

Figure 4.11: Python code output (H&S example) ............................................................ 53 

Figure 4.12: Results of confusion matrix based on custom OD model ............................ 55 

Figure 4.13: Custom object detection model’s metrics (per class and overall) ................ 56 

Figure 4.14: Instance distribution before and after NMS application .............................. 58 

Figure 4.15: Results of confusion matrix based on custom OD model after NMS 

application ...................................................................................................... 59 

Figure 4.16: Custom object detection model’s metrics after NMS application (per class 

and overall) .................................................................................................... 60 

 

  

Nico
las

 N
ico

lao
u 



10 
 

LIST OF TABLES 

 
Table 3.1: Numerical codes of examined construction objects’ classes ........................... 26 

Table 4.1: Custom object detection model’s metrics ........................................................ 43 

Table 4.2: Detected objects by custom OD model (example 1) ....................................... 45 

Table 4.3: Detected objects by custom OD model (example 2) ....................................... 47 

Table 4.4: Detected objects by custom OD model (example 3) ....................................... 48 

Table 4.5: Detected objects by custom OD model (example 4) ....................................... 50 

Table 4.6: Detected objects by custom OD model (H&S example) ................................. 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Nico
las

 N
ico

lao
u 



11 
 

LIST OF ABBREVIATIONS 
 

AI Artificial Intelligence 

MV Machine Vision 

DL Deep Learning 

IC Image Classification 

OD Object Detection 

NMS Non-Maximum Suppression 

IoU Intersection over Union 

mAP        mean Average Precision 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Nico
las

 N
ico

lao
u 



12 
 

1. INTRODUCTION 
 

1.1 Literature review 
 

The construction sector, even in modern times, faces numerous perennial problems and 

challenges related to the effective management and monitoring of construction projects.  

Some of these challenges are, for example, associated with safety and health on 

construction sites. Despite significant progress achieved through the introduction of 

regulatory frameworks and legislation, a considerable number of occupational accidents 

are still recorded today. These accidents are not exclusively personal but are often linked 

to the reckless use of mechanical equipment and vehicles, as well as insufficient 

coordination, organization, and monitoring at construction sites. Therefore, a system using 

machine vision (MV) and deep learning (DL) technologies could, in this case, detect a 

worker in a restricted zone of the construction site, or determine whether the worker is 

wearing appropriate safety equipment or, even better, continuously appraise the ergonomic 

risks to workers (Lambrides and Christodoulou, 2023) [1]. Additionally, the system could 

be used to ensure the proper operation of mechanical equipment in designated areas and 

the maintenance of safe distances by the working personnel at the construction site. 

Another critical issue commonly encountered at construction sites is resource management 

and construction progress monitoring. Delays, particularly in large construction projects, 

often occur due to material shortages and insufficient logistics in material delivery. 

Conflicts and construction delays are also frequent occurrences. Therefore, a mechanism 

based on the aforementioned technologies could be employed to monitor the transport of 

construction material to sites and visually document the construction process. This visual 

documentation can be valuable for reference and analysis. 

In light of the aforementioned and other challenges faced by the modern construction 

industry, the use of machine vision and deep learning technologies is imperative. These 

technologies enable the automation of numerous technical processes on the construction 

site while facilitating the monitoring and resolution of various problems within it. The 

investment of the construction industry in technologies related to artificial intelligence has 
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taken significant dimensions in recent years. Specifically, according to Market.us (Figure 

1.1) [2], for the year 2023, the value of Generative AI in the construction industry, on a 

global scale, has been estimated at around USD 142 million, while this value is expected 

to double by 2033, as depicted in the following graph. Additionally, a significant, if not the 

most significant, contribution to this value seems to be attributed to machine learning 

technology, something that is expected to continue happening in the immediate future. This 

once again confirms the prominent value of this technology in the activities of the 

construction sector. 

 

Figure 1.1: The value of global Generative AI in the construction industry 

 

In recent years, a significant volume of research studies have been conducted on the use of 

machine vision (MV) and deep learning (DL) technologies for detecting and classifying 

construction elements at construction sites. This trend began in the early 2010s, with works 

on the automated generation of parametric BIMs (Brilakis et al., 2010) [3], and despite the 

significant improvements in relevant applications, there is still room for further 

development. 
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The article by Czerniawski and Leite (2020) [4] introduces the automation of digital 

modeling of existing buildings through reality capture devices and computer vision 

algorithms. The goal is to facilitate the use of digital building representation technologies, 

promoting new forms of simulation, automation, and information provision. The article 

provides an overview of endeavors spanning the last decade (2010-2020), with a primary 

focus on object recognition methodologies. Addressing limitations identified in previous 

review literature, the authors meticulously dissect the structure and variations of object 

recognition systems, accompanied by thorough quantitative performance evaluations. The 

research results suggest that achieving a more complete semantic coverage of building 

infrastructures will require a revision and intensification of relevant efforts. In conclusion, 

the study advocates for a reevaluation and heightened dedication to bridging existing gaps 

in object recognition technologies to propel advancements in automated digital modeling 

for existing buildings. 

Nath and Behzadan (2020) [5] propose the validation of a genetic adversarial network 

(GAN) based on a deep convolutional neural network (CNN). The research involves photos 

taken, trained, and tested at the construction site from two internal datasets to increase 

image resolution when generating missing pixel information. Results demonstrate that 

using GAN-enhanced images can further improve the average accuracy of pre-trained 

models for object detection while maintaining overall processing time for real-time object 

detection. 

A key aspect in leveraging DL methods for construction site data interpretation is the 

accurate identification of objects of interest. Achieving this accuracy requirement is 

essential, albeit often at the expense of computational speed. While lightweight DL 

algorithms like Mask R-CNN offer high accuracy in visual recognition tasks, their 

processing efficiency may hinder real-time decision-making capabilities. Notably, the 

YOLO (you-only-look-once) algorithm emerges as a promising solution due to its ability 

to strike a balance between speed and accuracy. The study introduces the Pictor-v2 dataset, 

comprising approximately 3,500 images and 11,500 instances of common construction site 

objects. Through transfer learning, the researchers trained YOLO-v2 and YOLO-v3 
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variants, assessing their performance on various combinations of data sources, including 

crowdsourced and web-mined images. 

This review underscores the significance of employing DL-based approaches in 

construction site data interpretation and lays the groundwork for future research endeavors 

aimed at enhancing human capabilities through advanced assistive technology systems in 

complex visual data environments. 

Ιn a subsequent work, Paneru and Jeelani (2021) [6] provided an up-to-date and categorized 

overview of computer vision applications in construction by examining recent 

developments in the construction sector and the challenges that future research must 

address to maximize the benefits of computer vision. The authors focus on specific areas 

considered most likely to benefit significantly from computer vision, such as safety 

management on construction sites, progress and productivity monitoring, and work quality 

control. 

This work provides an insightful and categorized overview of computational vision 

applications in construction, highlighting recent advancements in the field and identifying 

opportunities and challenges for future research. The focus is narrowed down to four key 

areas where computer vision can significantly enhance construction management: Safety 

Management, Progress Monitoring, Productivity Tracking, and Quality Control. Overall, 

the article offers a comprehensive examination of the potential benefits of integrating 

computer vision into construction management practices, shedding light on the 

opportunities and obstacles that lie ahead in fully harnessing the capabilities of this 

technology. 

One year later, Duan et al. (2022) [7], focused on developing a large-scale image dataset 

specifically collected and processed for construction sites, named SODA (Site Object 

Detection Dataset). This dataset includes 15 types of objects categorized into mechanical 

means, materials, and labor personnel. Specifically, 20,000 images were collected from 

various construction sites, considering different construction site conditions, weather 

conditions, construction phases, and shooting angles. After careful examination and 

processing, 19,846 images were selected, containing 286,201 objects accompanied by 

corresponding labels from predefined categories. 
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An analysis conducted indicated that the developed dataset is advantageous in terms of 

diversity and volume. Further evaluation using two widely accepted object detection 

algorithms based on deep learning (YOLO v3 / YOLO v4) demonstrated the dataset’s 

effectiveness in visualizing typical construction scenarios, achieving a maximum mean 

Average Precision (mAP) of 81.47%. This research contributes a large-scale dataset for the 

development of deep learning applications in object detection within the construction 

industry. It serves as a reference point for the further evaluation of corresponding 

algorithms in this field.  

In their work, Wang et al. (2022) [8] proposed a new semantic method aiming to extract 

information by integrating deep learning object detection and image captioning. This 

method explores important information from construction images or videos. In the 

proposed approach, object detection serves as an encoder to extract features of construction 

objects and the holistic image. The image caption was selected as a decoder to extract the 

semantic information. A new post-processing technique has been suggested to assess 

semantic information in graph format, aiming to enhance accessibility and visualization. 

In experimental trials, the proposed approach yielded a Consensus Image Description 

Evaluation (CIDEr) score of 1.84, indicating its effectiveness. By adopting this method, 

semantic information from construction images can be presented to project managers as a 

valuable tool for making crucial decisions on the construction site. 

In the research work of Hou et al. (2022) [9], a multi-object detection method based on the 

improved YOLOv4 model is proposed to overcome the problem of low detection accuracy. 

The method involves several key optimizations, including the utilization of the K-means 

algorithm for anchor box initialization, replacing pooling operations with dilated 

convolution to preserve feature map resolution, and integrating focus loss to address 

sample imbalance during model training. Research results indicate that the average 

accuracy (mAP) of the improved YOLOv4 model for many objects can reach 97.03%, 

which is 2.16% higher than that of the original YOLOv4 detection network. At the same 

time, the detection speed reached 31.11 fps, a decrease of 0.59 fps, a result quite 

satisfactory for real-time detection data. 
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Overall, this research marks a notable advancement in environment perception for 

construction machinery swarm operations. By addressing critical limitations in detection 

accuracy and speed, the proposed method lays a solid foundation for the unmanned and 

intelligent evolution of construction machinery operations, promising enhanced efficiency 

and safety in complex construction environments. 

Zhou et al. (2022) [10] propose an object detection method based on an improved YOLOv5 

model with high sorting accuracy of construction waste. It involves creating a dataset from 

images of construction waste taken in situ at construction sites. This improved model was 

trained, validated, and tested based on the collected images and compared with other 

conventional models such as Faster-RCNN, YOLOv3, YOLOv4, and YOLOv7. The 

YOLOv5 model recorded an average accuracy (mAP) on the test dataset of 0.9480, 

indicating better performance than other conventional models in object detection. 

Overall, the study underscores the accuracy and practicality of the enhanced YOLOv5 

model for sorting construction waste. By outperforming existing models, the proposed 

approach holds significant potential for optimizing waste management processes in 

construction settings, ultimately contributing to improved efficiency and resource 

utilization. 

In a recent research paper by Jog et al. (2022) [11], full-scale validation experiments of a 

multi-object location tracking method for its application to resource tracking in large-scale, 

congested, outdoor construction sites are presented. The validation stage involved testing 

under harsh conditions on various large project sites. This research paper describes the 

process of data collection and testing, as well as the measurements and results obtained. 

The validation showed that the new vision tracking provides a good solution for tracking 

different entities in large and congested construction sites. 

1.2 Thesis scope 
 

As previously mentioned, this research work endeavor aims to achieve successful 

classification and detection of objects encountered at construction sites through the 

utilization of photographs and technologies in machine vision and deep learning. The 

object detection and classification tasks was focused on nine distinct classes of objects, 
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encompassing both load-bearing and non-load-bearing structural elements, excavators, 

human personnel, and individual protective equipment. Additionally, a capability was 

incorporated to examine safety and health issues at construction sites by issuing relevant 

warnings in case individuals without the required personal protective gear were identified 

in the photographs. For the training of classification and object detection models, two 

pertinent classes, namely "safety helmet" and "reflective jacket," were incorporated among 

the nine classes under examination to facilitate the aforementioned supplementary 

functionality. Furthermore, conclusions regarding the performance and accuracy of the 

new custom trained models were drawn through examples and confusion matrices, utilizing 

various measurement units and success rates. 

To accomplish the aforenamed objective, models, codes (in Python), and algorithms were 

employed, which undertake the activities under examination with the assistance of 

computer vision and deep learning technologies. Following this, in this thesis a dedicated 

chapter (“Research Background”) elucidates the operational mechanisms of these 

technologies and the pertinent tasks they undertake. Furthermore, a chapter entitled 

"Research Methodology" is dedicated to providing a detailed explanation of the preparation 

and training process of the two models under study, as well as the examination of other 

functions. Following this chapter, the presentation and discussion of the relevant results 

ensue, along with a further evaluation of the effectiveness of the resultant models. In 

conclusion, the research work concludes with chapters on findings summary and 

conclusions, where a comprehensive and overarching commentary on the relevant findings 

is provided. 

1.3 Thesis organization 
 

Further to this introductory and brief literature review chapter, the thesis discusses the 

research background (Chapter 2) on machine vision (MV), deep learning (DL), image 

classification (IC) and object detection (OD), and the research methodology (Chapter 3). 

Chapters 4 and 5 present the analysis performed and the findings, respectively, on object 

detection and classification at construction sites.  

Nico
las

 N
ico

lao
u 



19 
 

The thesis concludes with a chapter on key conclusions and an appendix with snippets of 

the programming code used for the analysis.  
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2. RESEARCH BACKGROUND 
 

2.1 Machine Vision (MV) 
 

Machine vision, also referred to as computer vision, pertains to a technological domain 

wherein computers are equipped to interpret and comprehend visual data, akin to the 

human visual system. It involves the development of algorithms, techniques, and systems 

that empower machines to extract, analyze, and understand meaningful insights from 

digital images or video feeds. 

Typically, machine vision setups encompass cameras or similar image-capturing devices 

for acquiring visual data, alongside software and hardware components tasked with 

processing this data to execute various functions. These functions may entail tasks such as 

detecting, recognizing, classifying, tracking, analyzing motion, enhancing images, and 

reconstructing 3D representations. The application scope of machine vision spans 

numerous industries and disciplines, encompassing manufacturing, healthcare, agriculture, 

automotive, surveillance, robotics, augmented reality, and beyond. Its significance lies in 

its pivotal role in automation, quality control, inspection, monitoring, and decision-making 

processes by granting machines the capability to autonomously "see" and interpret visual 

information. An example of object detection task as part of machine vision technology is 

given in Figure 2.1 [12]. 

 

Figure 2.1: Object detection using Machine Vision 
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2.2 Deep Learning (DL) 

 

Deep learning is a branch of machine learning technology focused on training complex 

artificial neural networks with multiple layers. These networks, inspired by the human 

brain's structure, process data through interconnected nodes called neurons across 

successive layers. Each layer extracts features from the input data, and through 

backpropagation, the network adjusts its internal parameters to minimize prediction errors 

during training. 

Deep learning is particularly effective in tasks like image and speech recognition, natural 

language processing, and recommendation systems. It automatically learns hierarchical 

representations of data, eliminating the need for manual feature engineering. 

Advancements in hardware and the availability of large datasets have propelled deep 

learning's popularity and impact. It has revolutionized fields such as computer vision, 

speech processing, healthcare, finance, and autonomous systems. The following figure [13] 

explains graphically the difference between machine and deep learning. 

 

 

Figure 2.2: Functional difference between Machine Learning and Deep Learning 
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2.3 Image Classification (IC) 
 

Image classification, a core concept in machine vision, refers to the process where images 

are sorted into predefined categories based on their visual features. By use of machine 

learning or deep learning algorithms, models are trained to discern patterns and 

characteristics that differentiate one category from another, such as shapes, colors, or 

textures. After training, these models can predict the most probable class for new images, 

often providing confidence scores or probability percentages for each predicted label. 

Image classification finds applications in various fields like object recognition, medical 

imaging, and satellite analysis. It serves as a foundational task in computer vision systems, 

providing essential insights into the content of images and enabling more complex tasks. 

In Figure 2.3 [12]  a sample result of image classification implementation is provided 

through the usage of ImageAI [12] Python library, in which this thesis is based. 

Specifically, the classes with their corresponding probabilities of successful prediction are 

provided. The class with the highest percentage is considered to be the one that explains 

the content of the respective image to a greater extent according to the relevant trained 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Sample result for image classification by ImageAI library 

 

  

Nico
las

 N
ico

lao
u 



23 
 

2.4 Object Detection (OD) 
 

Object detection is a machine vision process that identification and localization of specific 

objects within images or videos. In contrast to image classification, which categorizes 

whole images into predefined classes, object detection not only identifies objects within an 

image but also determines their exact positions by outlining bounding boxes around them.  

This task typically relies on machine learning or deep learning algorithms trained on 

datasets containing images labeled with annotated object bounding boxes. Object detection 

is vital for numerous applications, such as autonomous driving, surveillance, robotics, and 

medical imaging, as it allows machines to comprehend and interact with their environment 

by detecting and localizing relevant objects in visual data.  

However, detection is frequently conflated with recognition, which refers to the process of 

identifying and comprehending objects or patterns within an image or scene. Unlike 

detection, recognition entails a more profound analysis of visual content, which may 

include grasping the context, identifying specific object features or traits, and drawing 

higher-level associations or inferences based on observed patterns. 

 

Figure 2.4: Sample result for object detection by ImageAI library 
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In the above figure a sample result of object detection implementation is provided through 

the usage of ImageAI [12]  Python library. In contrast to image classification, in this 

activity, separate probabilities are provided, rather than complementary ones, for each 

object detected, along with additional information regarding the inclusion of the 

corresponding bounding boxes. Similarly, higher prediction percentages indicate greater 

confidence in the relevant model for successful localization, prediction, and classification 

of each respective object. 
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3. RESEARCH METHODOLOGY 
 

3.1 Overview  
 

The research work discussed herein focuses on the automated detection and classification 

of construction objects, and the applied research methodology was based on utilizing the 

Python programming language along with machine vision and deep learning technologies.  

The goal was to create software, or leverage existing tools, capable of learning a series of 

construction objects present on a construction site. Subsequently, the software should 

successfully detect and classify these objects using either images from a dataset or random 

images. To achieve this objective, ImageAI (v.3.0.3) [12] was employed. ImageAI (Moses, 

2018) is an open-source Python library that simplifies machine vision and deep learning 

tasks. It is built on other libraries such as TensorFlow and Keras. From the array of tasks 

offered by ImageAI, specific code libraries related to image classification and object 

detection were utilized - activities directly aligned with the focus of this research. The 

codes were divided into those dedicated to image classification and those dedicated to 

object detection. For each of the two tasks, a code was used for custom model training 

process based on the custom classes, resulting in the creation of a model. Additional codes 

were employed for result extraction, verification of the resulting accuracy-performance, 

and broader evaluation of the respective trained models, primarily through the utilization 

of unseen data. 

Furthermore, a dataset was created for each task, incorporating photos of all the examined 

classes. These data resulted from a combination of own photos from construction sites, 

ready-made datasets from Kaggle [14] [15] [16] [17], which is a platform for data science 

and machine learning competitions, the GitHub web-based platform [18], and generally 

photos obtained by the Google Images search service. In the context of this research, the 

decision was made to initially explore two distinct classes to clarify the operational mode 

and compatibility of ImageAI with the research goals. These objects were the ‘column’ and 

the ‘excavator’. However, at a later stage, seven more classes (totaling 9) were added, 

which were as follows: ‘beam’, ‘masonry’, ‘slab’, ‘window’, ‘person’, ‘safety helmet’, and 
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‘reflective jacket’. The choice of some of these object classes relates to the intent of using 

the developed algorithms and trained models for use in health & safety applications at 

construction sites. Furthermore, for the purpose of custom object detection training, 

numerical codes needed to be implemented for each class, as illustrated in the following 

table.  

Table 3.1: Numerical codes of examined construction objects’ classes 

EXAMINED CONSTRUCTION OBJECTS’ CLASSES 

Numerical Code Object Class 

0: Column 

1: Excavator 

2: Beam 

3: Masonry 

4: Slab 

  5: Window 

6: Person 

7: Safety Helmet 

8: Reflective Jacket 

 

3.2 Image Classification Framework  
 

For this task, a set of 6000+ images of the object classes to be examined was collected. 

Initially, a general folder was created, which contained two additional folders named ‘train’ 

and ‘test,’ respectively. Within each folder, a subfolder was created for each prediction 

class. The training photos, used to train the classification model, and the corresponding test 

photos, used to evaluate it, were placed in these subfolders. 

In the ‘train’ folder/dataset, 500 photos were included for each class, while in the ‘test’ 

folder/dataset, 200 photos were included. This dataset was then utilized in the training code 

(Appendix) as provided by ImageAI [12], where various tasks were performed, including 

the selection of the algorithm. ImageAI offers the option to use four different algorithms 

for training custom image prediction models (MobileNetV2, ResNet50, InceptionV3, and 

DenseNet), each with different speed and prediction accuracy characteristics. 
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Additionally, other parameters such as ‘batch_size’ (the number of images the network will 

process simultaneously) and ‘num_experiments’ (the number of network training iterations 

on all training images) were set in this code. For the purposes of this work, the 

MobileNetV2 algorithm was chosen due to its fastest prediction speed in compare with 

other algorithms. 

Upon each execution of training code, the model attaining the highest accuracy was 

generated and subsequently stored in the dataset folder, accompanied by its corresponding 

generated JSON file. In this scenario, a JSON (JavaScript Object Notation) file functions 

as a structured data format for the storage and exchange of information pertaining to the 

custom detection and classification tasks conducted utilizing ImageAI or analogous 

frameworks. Additionally, the other parameters mentioned above were systematically 

varied during each run to elucidate their impact on the accuracy of the respective model. 

This measure was undertaken to facilitate the incremental enhancement of the model, 

which became evident with each successive iteration. In this context, accuracy represents 

the percentage probability that a detected object belongs to a specific class. The accuracy 

is calculated using the following formula: 

Accuracy =
Number of Correctly Classified Images 

Total Number of Images
∗ 100 

[3.1] 

 

This percentage reflects the model’s confidence in the correctness of its prediction. Higher 

percentage probabilities generally indicate that the model is more confident in recognizing 

a particular class of object in the image. 

At a later stage, this model was employed in another code, where its effectiveness in 

predicting the examined and subsequently trained classes was evaluated using both trained 

and random photos. In this code, the trained model, along with its corresponding JSON 

file, was imported, alongside the algorithm used for training the said model. Subsequently, 

the photograph to be examined by the image classification model was selected, 

concurrently with the configuration of certain parameters (some of which are optional). 

Among other settings, the number of classes to be displayed in the results was chosen, as 

well as the limitation of prediction display by setting a minimum threshold percentage for 
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predictions. By default, for the aforementioned code provided by ImageAI, this threshold 

is set at 30%. A schematic overview of this methodology is depicted in Figure 3.1. 

 

Figure 3.1: Custom image classification methodology flowchart 

 

3.3 Object Detection Framework  
 

For this task, a set of 2700+ images was collected for the examined classes. Initially, a 

general folder was created, which included two subfolders named ‘train’ and ‘validation,’ 

respectively. Within each of these folders, two additional subfolders were created. The 

first, named ‘images,’ contained photos - in jpg format - of the examined classes without 

separating them based on the object they depict. The second, named 'annotations,' 

contained the corresponding assignments for these classes, in txt format. The number of 

instances and images used for each class is given in Figure 3.2, although it is important to 

indicate that some images used for multiple classes. 

For this task, a set of photos from the dataset collected for image classification was utilized. 

This dataset was then input into the training code as is given by ImageAI, where, among 

other tasks, algorithm selection was performed. ImageAI provides the option to use two 

different algorithms to train custom image object detection models, namely YOLOv3 and 

TinyYOLOv3, each with varying speed and accuracy characteristics for prediction. In this 

Create Custom Image Classification 

Dataset 

Train Image Classification 

Model on Custom Dataset 

Test Image Classification 

Model on Custom Dataset 

Test Image Classification 

Model on random images 
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code, additional parameters such as ‘batch_size’ and ‘num_experiments’ were set, as 

previously explained.  

 

 

Figure 3.2: Instance and image distribution across custom classes 

 

During the training process for object detection, the initial model used did not include 

specific objects such as those found on construction sites. The model training with 

additional construction site objects enriches the utilized pre-trained model and facilitates 

its use on construction-related image detection applications. Additionally, the option for 

training using a pre-trained YOLOv3 model was specified. For the purposes of this work, 

both algorithms were employed. Future work shall aim the incorporation of newer releases 

of YOLO models (e.g., YOLOv8) and training datasets (e.g., SODA).  

To create the assignments, an open-source graphic annotation tool for images, Labelimg 

[19], was employed. The process involved creating bounding boxes and labels in each 

photo and assigning them to each of the examined objects for the purpose of custom object 

detection training process. The associated annotation .txt files were generated in YOLO 
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format, wherein each row signifies a detected object and includes specific details such as 

the numerical class code and its corresponding coordinates. In Figure 3.3, an example of 

annotation creation in the LabelImg [19] interface is provided. As part of this task, 300+ 

photos were collected for each object, with 70-80% stored in the ‘train’ folder for training 

the detection model and the remainder in the 'validation' folder for evaluating the model’s 

performance during training. 

 

 

Figure 3.3: Labelimg workspace during annotation process 

 

Each time the code was executed, the model with the highest accuracy in terms of mAP50 

(mean Average Precision at 50%), along with its corresponding JSON file were generated 

and stored in the dataset folder. Additionally, the other parameters mentioned above were 

systematically varied - in conjunction with the practical application of non-maximum 

suppression (NMS) - during each run to elucidate their impact on the accuracy of the 

respective model. NMS is a technique applied after object detection to sift through 

numerous overlapping bounding boxes generated by a model, retaining only the most 

assured ones.  

In the context of object detection, Non-Maximum Suppression (NMS) is crucial for 

refining the predictions made by a model. When an object detection model analyzes an 
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image, it often generates multiple bounding boxes that overlap, resulting in redundant 

detections of the same object. NMS addresses this issue by filtering out less accurate 

bounding boxes and retaining only the most confident ones. 

The NMS process involves several steps. First, the model assigns a confidence score to 

each bounding box, and these boxes are then sorted from highest to lowest based on their 

scores. Starting with the highest-scoring box, NMS iteratively selects this box and 

suppresses all other overlapping boxes whose Intersection over Union (IoU) with the 

selected box exceeds a certain threshold. This suppression process continues until all boxes 

are either selected or discarded. 

NMS is significant for several reasons. It reduces redundancy by eliminating overlapping 

bounding boxes, thus enhancing the model's precision. Retaining only the most confident 

detections helps improve the overall accuracy of the model. This is particularly important 

in construction site monitoring, where accurately detecting objects such as safety helmets 

and reflective jackets is critical. Furthermore, applying NMS can lead to significant 

improvements in performance metrics like mean Average Precision (mAP) and F1 score, 

as it ensures that detections are more reliable and less cluttered. 

In this research work, the NMS threshold was systematically varied to observe its impact 

on model performance. The results indicated that adjusting the NMS value could 

significantly affect the precision, recall, and overall F1 score of the detection model. For 

instance, selecting an NMS threshold of 0.4 resulted in a notable improvement in the 

model's accuracy, highlighting the importance of fine-tuning this parameter. 

In summary, NMS is an indispensable technique in object detection, enhancing the 

reliability and accuracy of models by ensuring that only the most probable detections are 

considered. This study's findings underscore the critical role of NMS in achieving robust 

performance, particularly in the context of construction object detection models.  

During the training of each model, several key metrics were evaluated, including mAP50, 

precision, recall, and mAP50-95. These metrics provided valuable insights into the model's 

performance. However, it is important to note that some of these metrics were not 

automatically saved during the training process. 
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Specifically, precision serves as a fundamental metric for evaluating the accuracy of 

positive predictions made by the model. It quantifies the model's ability to correctly 

identify positive instances among all instances predicted as positive. In the context of 

construction object detection, precision is crucial as it helps ensure that identified objects 

such as beams, columns, and safety gear are indeed present, thereby reducing false alarms 

that could lead to unnecessary inspections or safety checks. Precision is derived from the 

following relationship: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

[3.2] 

On the other hand, recall, also known as sensitivity or true positive rate, assesses the 

model's capacity to identify all relevant instances of a particular class. It measures the 

proportion of true positives that the model correctly identifies out of all actual positives. 

The recall score is computed by dividing the number of true positives by the sum of true 

positives and false negatives (Equation 3.3). High recall is essential in construction 

applications where missing a true positive, such as failing to detect a safety hazard, could 

have significant implications for site safety and compliance.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

[3.3] 

By using these two terms, it is possible to calculate another widely used metric for 

evaluating classification models. The F1 score, often referred to as the harmonic mean of 

precision and recall, provides a balanced assessment of the model's performance. It 

captures the trade-off between precision and recall, offering a single metric to evaluate a 

model's effectiveness. This metric is particularly useful in construction applications where 

both precision and recall are equally critical, ensuring the model accurately identifies and 

classifies construction objects and hazards. The F1 score is computed using the formula: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

[3.4] 
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The term ‘mAP’ (mean Average Precision) is a metric that assesses the precision-recall 

tradeoff of a model. It evaluates how well a model performs at different confidence levels 

in its predictions. Specifically, ‘mAP50’ evaluates the model’s precision and recall at a 

specific 50% Intersection over Union (IoU) threshold. Higher mAP50 values indicate 

better performance, with a maximum value of 1.0 representing perfect precision and recall 

at the specified IoU threshold. IoU is a metric that measures the overlap between the 

predicted bounding box and the actual location of the object. A 50% IoU means there is at 

least a 50% overlap between the predicted and actual contexts. The accuracy metric of 

mAP offers insights into the model's ability to detect construction objects of varying sizes 

and complexities within an image, such as identifying smaller items like safety helmets in 

addition to larger objects like excavators. 

Understanding and optimizing these metrics are essential for improving the effectiveness 

of custom trained models in practical applications. Precision, recall, and the F1 score allow 

for a balance between minimizing false positives and false negatives, while mAP provides 

a comprehensive evaluation of the object detection models' performance under various 

detection challenges. Utilizing these metrics enables the refinement of the models, ensuring 

they are well-suited for a range of use cases and environments. 

This evaluation system is commonly used in assessing object detection models, including 

those trained for custom object detection tasks. At a later stage, this model was employed 

in another code, where its effectiveness in custom object detection examined and 

subsequently trained classes was evaluated using mainly unseen data, alongside the 

selection of a specific value for NMS and the adjustment of various rendering options. A 

summary flowchart of this methodology is presented in Figure 3.4. 
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Figure 3.4: Custom object detection methodology flowchart 

 

Additionally, the capability was provided by creating a Python code in combination with 

trained detection models to identify health and safety issues in photographs from 

construction sites, specifically printing a relevant warning message for the absence of a 

part or of all of the necessary safety equipment (protective helmet and reflective jacket) in 

case a person is detected in those areas. Specifically, the code initially examined the 

presence or absence of the aforementioned objects, and then examined the potential high 

overlap (IoU > 90%) of their defined bounding boxes with those of the detected human 

figure/s (indicating the adoption of this specific security measure by the individual). The 

high effectiveness of this additional function was verified through the execution of various 

tests on trained and random photos including some or all of the relevant classes.  
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4. ANALYSIS AND RESULTS 
 

In the pursuit of fulfilling the objectives of this work, a series of tests were conducted 

through the execution of custom training Python programming language codes, as 

previously described. Throughout these tests, specific parameters were systematically 

varied in each training code, including the dataset itself, to generate two models - one for 

each task - with the highest accuracy and optimal performance. These models aimed to best 

fulfill the intended purpose for which they were created. 

4.1 Image Classification Results 
 

The final analysis results for the nine classes described in the previous stage are as follows. 

For image prediction, considering the case of nine classes, a MobileNetV2 model achieved 

an accuracy of 81.06%. This relatively high accuracy indicates the near certainty of the 

model in the correctness of its predictions, specifically in successfully predicting the nine 

trained classes in any given photo. This result was further validated by the model’s 

performance on various photos, consistently yielding generally high probabilities for 

correctly predicting the depicted object. The model was tested on both trained and random 

images, and during the conducted tests, no significant change in performance was observed 

between these two categories of images. It is thus evident that the model’s performance 

was proportional to its accuracy rate. It should be noted that the listed per image object-

classification probabilities add up to 100%. Thus, when multiple object classes are detected 

within an image, the reported class probabilities are lower in value compared to cases 

where object classes are fewer. As a result, in several tests performed on both trained and 

random images, notable fluctuations were observed in the prediction rates between the 

displayed classes, with some classes showing low rates. Some example results are provided 

below.  
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EXAMPLE 1: 

 

 

Figure 4.1: Prediction percentages per class by custom IC model (example 1) 
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Discussion: 

 

In the initial instance of image classification, the presented figure depicts the outcomes 

derived from analyzing a random image showcasing various objects on a construction site, 

notably columns, beams, and slabs. Employing the aforementioned image classification 

model, probabilities were assigned to the objects identified in the photo, with a beam 

receiving a probability of 52.24%, a column 26.02%, and a slab 21.38%. Predictions for 

the remaining classes were notably low, aligning with expectations given that only these 

three classes were prominently featured in the image under examination. 

The variance in probabilities assigned to the three main predicted classes can be attributed 

to factors such as the viewing angle of each class within the photo and the inherent 

similarity between certain classes in appearance or features (e.g., beam versus column). 

Such similarities may challenge the model's ability to accurately distinguish between them, 

resulting in lower confidence scores for certain classes. 

Nevertheless, the overall outcome underscores the model's robust predictive capabilities, 

despite the nuanced challenges presented by the image's composition and the similarities 

between certain classes. 
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EXAMPLE 2:  

 

Discussion: 
 

Figure 4.2 presents the outcomes derived from analyzing a random photograph featuring 

masonry and window elements, both of which are equally prominent. Notably, the 

prediction percentage for these two primary classes is relatively high and nearly equal, 

while predictions for other classes not represented in the image are minimal. Specifically, 

the model assigned a probability of 50.79% to the window class and 44.41% to the masonry 

class. In this instance, the custom image classification model demonstrated its 

commendable accuracy, maintaining balance in the prediction probabilities between the 

two primary classes, due to the absence of significant similarities in appearance or features 

between masonry and window elements, along with the low number of detected classes. 

 

 

 

 

Figure 4.2: Prediction percentages per class by custom IC model (example 2) 
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EXAMPLE 3:  

  

 

 

 

 

 

 

 

 

Figure 4.3: Prediction percentages per class by custom IC model (example 3) Nico
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Discussion: 

 

The image depicted in Figure 4.3 pertains to the presence of a worker adorned with 

appropriate personal protective equipment at a construction site. The model's analysis of 

this scenario yielded successful predictions for the three primary classes evident in the 

photograph, albeit with notable fluctuations in prediction percentages.  

Specifically, the reflective jacket class garnered the highest prediction percentage at 

49.10%, followed by the person class at 38.31%, and the safety helmet class registering a 

significantly lower percentage at 12.34% among these three categories. The substantial 

variance in these probability values can be attributed to the inherent similarity between the 

images used for training the model across these three classes. Notably, person, safety 

helmet, and reflective jacket are classes frequently observed together within a construction 

site environment. 

However, it is to some extent expected that there will be significant variations in percentage 

values and relatively low prediction rates for some classes. This occurs because the 

prediction rates for all detected objects in an image collectively add up to 100%, leading 

to lower individual prediction rates when multiple objects are present. 
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EXAMPLE 4:   

 

 

 

 

 

 

 

 

 

Figure 4.4: Prediction percentages per class by custom IC model (example 4) Nico
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Discussion: 

 

Figure 4.4 illustrates the outcomes derived from an image featuring a worker equipped with 

appropriate personal protective gear in proximity to an excavator. The model accurately 

identified the presence of the excavator and the safety vest; however, it failed to recognize 

the worker and the safety helmet.  

One potential explanation for the notably low prediction rates pertaining to the 

aforementioned classes within the corresponding photograph could be attributed to intense 

lighting conditions, particularly around the area where the safety helmet is situated, 

compounded by the posture of the human subject. Additionally, the similarity between the 

classes "person," "safety helmet," and "reflective jacket" may pose a challenge for the 

model in distinguishing between them, consequently resulting in diminished confidence 

scores for some of these classes. 
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4.2 Object Detection Results 
 

Accordingly, for object detection, a YOLOv3 model with an average accuracy (mAP) of 

67.41 % was achieved. The obtained model recorded also F1-Score accuracy roughly 

above 65% as shown in Table 4.1. This figure indicates the relatively average to good 

accuracy of the specific model in terms of detecting, bounding and successfully classifying 

the objects under study in examined photographs, however efforts are being made to 

enhance the performance of this model to achieve even higher success rates. This result 

was further validated by the model’s performance on various photos, where several 

satisfactory results were observed in terms of the true positive detection and classification 

of objects. The YOLOv3 model was tested on both trained and random images, and during 

the conducted tests, no significant change was observed in terms of the model’s 

performance between these two categories of images. Therefore, in this case as well, it is 

evident that the performance of the model is proportional to its accuracy rate. Some 

example results are provided below. 

In object detection models, it is common to encounter overlapped bounding boxes for each 

detected object. To address this issue, a common practice is the implementation of Non-

Maximum Suppression (NMS), which, according to its threshold, removes overlapped 

bounding boxes and retains only those with the highest confidence scores for each detected 

object. To improve the outcomes with the implementation of the custom object detection 

model, various NMS thresholds were applied, either to each image result or to the overall 

validation set. This was done to understand how different values of NMS affect the 

performance and accuracy of the trained model across different metrics. 

Table 4.1: Custom object detection model’s metrics 

 

MODEL 

ALGORITHM 

PRECISION 

(%) 
RECALL (%) 

F1-SCORE 

(%) 
mAP0.5 (%) 

YOLOV3 61.82 68.99 65.21 67.41 
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EXAMPLE 1: 

 

 

 
 

(a) 

 

(b) 

Figure 4.5: Custom OD model implementation (example 1): (a) Initial random photo, (b) 

Detected objects by custom OD model 
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Discussion: 

 

The figure above presents the results derived from a random image depicting various 

objects observed within a construction site, encompassing columns, beams, and slabs. 

Employing the aforementioned object detection model, the analysis revealed the successful 

detection of four columns, three beams, and one slab, each with a classification probability 

exceeding 97%, thus affirming the model's robust performance. Notably, only one column 

yielded a positive detection probability below 97%; however, even in this case, the 

probability remains relatively high, indicating a favorable outcome. 

However, certain other objects anticipated to be detected by the model were not identified. 

This discrepancy could potentially be attributed to occlusion phenomena resulting from the 

specific angle at which the photograph was captured. Nonetheless, the overall results 

remain largely consistent with those obtained using the classification model, thus 

warranting a satisfactory evaluation. NMS application with a threshold value of 0.05 was 

also necessary for obtaining the presented results. 

Table 4.2: Detected objects by custom OD model (example 1) 

 

No. OBJECT  

DETECTED 

CLASS CONFIDENCE SCORE 

(%) 

1 COLUMN 99.65 

2 COLUMN 99.77 

3 COLUMN 81.92 

4 COLUMN 97.17 

5 BEAM 98.98 

6 BEAM 99.14 

7 BEAM 99.43 

8 SLAB 99.22 
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EXAMPLE 2: 

 

 

 
 

(a) 

 

 

(b) 

Figure 4.6: Custom OD model implementation (example 2): (a) Initial random photo, (b) 

Detected objects by custom OD model 
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Table 4.3: Detected objects by custom OD model (example 2) 

 

No. OBJECT  

DETECTED 

CLASS CONFIDENCE 

SCORE (%) 

1 SAFETY HELMET 98.90 

2 REFLECTIVE JACKET 98.76 

3 PERSON 96.94 

 

 

Discussion: 

 

Figure 4.6 illustrates the outcomes derived from a random photo capturing a worker on a 

construction site equipped with appropriate personal protection measures. The model 

successfully detected the three main classes depicted in the photo, with corresponding 

confidence scores exceeding 96%. This aligns with the results obtained from the 

classification model applied to the same photo, as previously presented. Notably, in the 

case of custom object detection, no issues were observed with the trained model, despite 

the inherent similarity among photos featuring these three classes in the training dataset. 

During the annotation process, all objects of different classes observed in each photo were 

duly annotated, contributing to the model’s effective performance. Additionally, the NMS 

technique was applied with a threshold set to 0.35 to enhance the model’s outcomes. 
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EXAMPLE 3: 

  

 

 

 

(a) (b) 

Figure 4.7: Custom OD model implementation (example 3): (a) Initial random photo, (b) Detected 

objects by custom OD model 

 

Discussion: 
 

The image showcased in Figure 4.7 captures a scene from a construction site, focusing on 

a window encased by brickwork. Through the utilization of the trained object detection 

model on this photo, both masonry structures and the window were successfully identified, 

each boasting a confidence score surpassing 94%. This outcome underscores the 

effectiveness of the model under these particular conditions, reaffirming its capability to 

accurately discern and classify objects within complex and detailed construction 

environments. The overall result mentioned above was achieved in conjunction with the 

implementation of NMS with a threshold value of 0.2. 

Table 4.4: Detected objects by custom OD model (example 3) 

 

No. OBJECT  

DETECTED 

CLASS CONFIDENCE 

SCORE (%) 

1 MASONRY 99.78 

2 MASONRY 99.74 

3 MASONRY 94.82 

4 WINDOW 98.13 
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EXAMPLE 4: 

 

 

 
 

(a) 

 

 

(b) 

Figure 4.8: Custom OD model implementation (example 4): (a) Initial random photo, (b) 

Detected objects by custom OD model. 

 

 

 

 

 

Nico
las

 N
ico

lao
u 



50 
 

Table 4.5: Detected objects by custom OD model (example 4) 

 

No. OBJECT  

DETECTED 

CLASS CONFIDENCE 

SCORE (%) 

1 SAFETY HELMET 99.39 

2 REFLECTIVE JACKET 95.24 

3 PERSON 72.86 

4 EXCAVATOR 97.94 

 

 

Discussion: 
 

The preceding figure illustrates an example portraying various objects pertinent to the 

examination, with the custom-trained object detection model delivering commendable 

outcomes for the majority of these objects. Particularly, it demonstrates a moderate to good 

result for a singular class, namely "person." Notably, an enhanced performance of the 

detection model is discernible in this image when juxtaposed with its classification 

counterpart (Figure 4.4), showcasing notably higher prediction rates. This instance serves 

as additional confirmation that the trained detection model remains unaffected by the 

resemblance among the train photos used for three of the four identified classes above 

(“safety helmet”, “reflective jacket” and “person”). In the aforementioned case, a NMS 

threshold of 0.3 was implemented to attain sharper results. 
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NMS CORRECTION EXAMPLE: 

 

 

 
 

(a) 

 

 

(b) 

 

(c) 

Figure 4.9: Custom OD model implementation (NMS example): (a) Initial random photo, (b) 

Detected objects by custom OD model without NMS, (c) Detected objects by custom OD model with 

NMS and rendering settings 
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Discussion: 
 

In Figure 4.9, a comparison is made between the output of a custom object detection model 

on a random image with and without the application of NMS (Non-Maximum 

Suppression). The initial output exhibits numerous predicted bounding boxes overlapping 

multiple times on the detected objects, each bearing a high confidence score for the 

overlapping detected object, labeled with the same class and accompanied by reduced 

readability of the results. To refine the final outcome, NMS was applied in conjunction 

with several rendering settings to achieve sharper and accurately adjusted results on the 

specified image. In this particular case, the NMS threshold was set to 0.2 to attain the clear 

and satisfactory result.  

In more detail, the initial output without NMS shows a cluttered visualization, where some 

of the detected object are surrounded by multiple bounding boxes. This can cause 

confusion and makes it difficult to accurately interpret the results, as the same object might 

appear multiple times in different positions, each with a slight variation in the bounding 

box coordinates. This issue arises because the object detection model, by default, generates 

bounding boxes for every potential detection with a confidence score above a certain 

threshold. However, these overlapping boxes can obscure the true position and scale of the 

detected objects. To mitigate this problem, NMS is employed. This technique works by 

retaining the bounding box with the highest confidence score for each detected object and 

suppressing all other overlapping boxes with lower confidence scores. In addition, NMS 

ensures that only the most relevant and accurate bounding boxes are displayed, 

significantly improving the readability and interpretability of the results. By setting the 

NMS threshold to 0.2, the model discards any bounding boxes that overlap significantly 

with the highest confidence box, ensuring a cleaner and more precise detection. 

Moreover, the rendering settings were fine-tuned to complement the NMS application. 

These settings include adjusting the line thickness, color, and transparency of the bounding 

boxes and labels to enhance visibility. As a result, the final output provides a clear, concise, 

and accurate representation of the detected objects, making it easier to assess the model's 

performance. The approach of using NMS with varying thresholds and rendering settings 

was consistently applied across other images analyzed in this section. 
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HEALTH & SAFETY EXAMPLE: 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 4.10: Custom OD model implementation (H&S example): (a) Initial random photo, (b) 

Detected objects by custom OD model. 

 

Figure 4.11: Python code output (H&S example) Nico
las

 N
ico

lao
u 



54 
 

Discussion: 
 

Using the same detection model, results were obtained from other construction site 

photographs, with an additional capability introduced: the detection and notification of 

safety and health issues concerning the necessary and recommended personal protective 

measures on the construction site. Specifically, if a person was detected in these 

photographs without either or both of the reflective jacket and safety helmet, a 

corresponding warning was issued, as effectively demonstrated in the subsequent figure. 

In Figure 4.10, two persons are depicted within a construction site, one wearing a protective 

helmet and the other not wearing any personal protective equipment. Therefore, this case 

serves as a prime example of a situation where issues regarding compliance with safety 

and health regulations may arise on the construction site. Upon the introduction of the 

photograph and the utilization of the trained object detection model, the two individuals 

and the protective helmet were correctly identified, with classification success rates 

exceeding 98%. Through the execution of the specialized Python code tailored for cases 

such as this, utilizing the aforementioned photograph, a warning (Figure 4.11) was 

appropriately issued regarding the presence of safety and health concerns, as one or more 

individuals failed to adhere to all required measures of personal protection (i.e., "safety 

helmet" and "reflective jacket"). 

Table 4.6: Detected objects by custom OD model (H&S example) 

 

No. OBJECT  

DETECTED 

CLASS CONFIDENCE 

SCORE (%) 

1 SAFETY HELMET 99.01 

2 PERSON 98.62 

3 PERSON 99.59 
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CONFUSION MATRIX: 

 

 

Figure 4.12: Results of confusion matrix based on custom OD model 

 

Discussion: 
 

Figure 4.12 presents the confusion matrix of the detection model examined in the study. In 

a confusion matrix, each row represents the actual labels depicted in the validation set 

images, while the columns represent the corresponding labels predicted by the detection 

model. From the presented matrix, it is observed that some classes are positively evaluated 

due to a high number of true positive detections (e.g., excavator, window, etc.), while 

others are characterized as moderate to negative. The results of the matrix are to some 

extent expected, as the examined detection model did not achieve particularly high levels 

of accuracy. Essentially, τhe matrix provides insights into which classes the model 
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struggles to predict accurately and can guide further improvements in the model, such as 

fine-tuning class-specific features or collecting more diverse training data for those classes. 

Therefore, there is room for significant future improvements. 

 

 

Figure 4.13: Custom object detection model’s metrics (per class and overall) 

 

A better visualization of the results and information contained in the confusion matrix 

presented in Figure 12 is provided in Figure 13. Using the extracted matrix and a specially 

configured Python code, the precision values of the trained model against each class were 

calculated, utilizing measurement metrics such as precision, recall, and the derived F1-

Score. Specifically, a higher F1-Score value was recorded for the class "excavator" (94%), 

while the lowest was for the class "Reflective Jacket". High precision values were also 

recorded for the classes "window" and "masonry", moderate values for the classes 

"column", "person", and "beam", while low precision F1-Score values were recorded for 

the remaining classes. From the above prediction graph of the trained model against the 

true labels of the validation set used for training purposes, an overall F1-Score of 61.11% 

was obtained, a result deemed moderate to good. 

With the aim of improving the accuracy and performance of the custom object detection 

trained model, the practice of NMS was applied—initially at various values—on the initial 
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predictions of the model on the validation set. The use of different NMS values aimed at a 

deeper understanding of its impact on the number of model predictions as well as the 

overall accuracy in terms of precision, recall, and F1-Score, and consequently by extracting 

corresponding confusion matrices.  

From the experiments conducted for this particular model, an increase in its accuracy 

values was observed with the decrease in NMS values, which is highly positive and entirely 

expected. However, this positive impact of low NMS values was counteracted by the 

dramatic decrease in the instances for each class, as this practice removes a large number 

of instances and leaves only those with the highest confidence scores, resulting in even 

fewer instances than the truth labels.  

Upon the conclusion of the experiments, the decision was made to select an NMS value of 

0.4. This value led to an increase in the overall accuracy of the model in terms of F1-Score 

by approximately 30%. As we can see in graph below, instantly the predicted labels for 

each class and overall were more than truth labels, especially for some classes like column 

and person.  

Although, after the implementation of NMS practice with a threshold = 0.4, a significant 

drop of instances per class was observed as many overlapped bounding boxes and mainly 

those with the relatively lowest confidence scores were removed. However, the certain 

value of NMS has led to have less predicted instances than truth labels. This drop between 

truth and NMS predicted labels was relatively high for all classes, except class “excavator”. 

Nico
las

 N
ico

lao
u 



58 
 

 

 

Figure 4.14: Instance distribution before and after NMS application 

 

The impact of applying NMS with a threshold of 0.4 on the accuracy and performance of 

the custom trained model was observed through the confusion matrix and the resulting 

metrics derived from its values. As illustrated in Figure 4.14, the total instances per class 

are notably fewer compared to the confusion matrix depicted in Figure 4.12. Additionally, 

the matrix exhibits a more diagonal pattern (Figure 4.15), indicating that more classes have 

predominantly higher accuracies (around 70%), while fewer classes exhibit moderate 

accuracies (around 50-60%). This observation suggests that the application of NMS with a 

threshold of 0.4 has led to a refinement in the model's performance, with a clearer 

delineation between classes and improved overall accuracy. 

The analysis of the confusion matrix shown in Figure 4.15, reveals a noteworthy 

enhancement in the model's overall performance, quantified by an F1-Score of 79.69% 

(Figure 4.16). This improvement is particularly significant when considering the individual 

classes. Notably, classes that previously exhibited lower accuracy with the model's initial 

predictions experienced substantial boosts in their F1-Score values. Specifically, both 

"masonry" and "window" classes achieved notably higher F1-Score values, reaching an 

impressive 94%. This indicates a marked improvement in the model's ability to accurately 

detect and classify these objects within the images. Furthermore, the majority of the 
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remaining classes also demonstrated commendable F1-Score values, surpassing the 70% 

threshold. This indicates a consistent improvement across multiple object categories, 

reflecting the efficacy of the adjustments made to the model. 

 

However, it is worth noting that the class "safety helmet" registered the lowest F1-Score 

value in this analysis, recording a value of 58%. While this falls within the realm of 

moderate accuracy, it underscores the ongoing need for refinement, particularly in 

accurately detecting and classifying instances of safety helmets within the images. Overall, 

these findings underscore the effectiveness of the model refinement efforts, leading to 

substantial enhancements in accuracy across various object classes. 

 

 

 

Figure 4.15: Results of confusion matrix based on custom OD model after NMS application 
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Figure 4.16: Custom object detection model’s metrics after NMS application (per class and 

overall) 
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5. SUMMARY OF FINDINGS 
 

Upon examining the results derived from the two trained models (image classification & 

object detection) in the previous section, several observations and conclusions regarding 

their accuracy, performance, and reliability can be made. 

Firstly, in the image classification model, which achieved a high accuracy rate (81%) 

during training, a significant validation of this accuracy was observed in the four examples 

examined. Specifically, in all cases except Example 4, the depicted objects exhibited 

significant prediction rates, with each object class receiving the majority share of the one 

unit of prediction (100%) available each time, thereby avoiding the presence of significant 

percentages in classes that were not depicted in each photograph. 

Some significant challenges identified during the application of the trained model included 

the notable fluctuations in prediction rates among the depicted classes, and more 

specifically, false negative predictions of classes in the photographs. One possible 

explanation for both phenomena appears to be the model's inability to accurately describe 

the content of the examined photograph when depicting classes with similar characteristics, 

such as beams and columns, or the combination of classes for which similar photographs 

were used in the trained dataset, as they often coexist on the construction site, such as the 

classes "safety helmet", "reflective jacket", and "person". Another possible explanation 

seems to be the presence of obstacles in front of the depicted objects, specific lighting 

conditions of the images, and even the angle of capture. Another significant factor that 

influenced both the degree of variation and the prediction percentages for each class was 

that these percentages cumulatively summed to 100% for the entire content of each 

examined photograph. This effect became more pronounced as the number of identified 

classes increased. 

 In any case, to address the aforementioned issues in the results of the trained image 

classification model, it is recommended, as part of future work, to modify or add to the 

existing trained dataset in order to achieve a better balance between the number of instances 

and greater variety of images for each class.  
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Similarly, with the implementation of the trained object detection model with an accuracy 

in terms of mAP0.5 of 67.41%, which is considered moderate to high, a plethora of results 

emerged that significantly validated the reliability and effectiveness of the model using 

random photographs, most of which were also used in image classification for result 

comparison. In this model, very positive results were recorded as the highest number of 

depicted classes were identified in all examples, even in cases where a large number of 

classes were depicted, and objects of the same class were identified in the same photograph. 

Additionally, prediction rates for each detected object exceeded 90% in the majority of 

cases. 

However, similar to the image classification model, the object detection model also 

encountered a series of issues, comparable in magnitude to the accuracy of the model. 

Specifically, it was found that objects covering a smaller portion of the examined 

photograph or objects with significant obstacles preventing their full depiction recorded 

lower rates of successful prediction compared to other objects of the same class, or worse, 

were not detected at all (see windows in example 1). One possible explanation appears to 

be the methodology followed during the process of assigning bounded boxes during the 

preparation of the training data, where objects under poor lighting conditions, with 

obstacles, or with relatively small covering surface areas were avoided in order to simplify 

and facilitate the model training on the examined objects. 

Nonetheless, unlike the image classification model, the results of the object detection 

model were not influenced by similar characteristics or training images among the detected 

classes. This was mainly because, for this activity, the training images were not separated 

per object; instead, bounding boxes were applied to objects of all depicted classes 

simultaneously. Additionally, this model was used for detecting safety and health issues on 

construction sites, achieving satisfactory results. 

Furthermore, an extensive application of the Non-Maximum Suppression (NMS) technique 

was conducted on the extracted results to remove any overlapping bounding boxes of the 

same class and to achieve more distinct results. Moreover, precision, recall, and F1-Score 

were evaluated on the validation set using various NMS values, where it was demonstrated 
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that using NMS=0.4 achieves the optimal precision result and number of instances for this 

trained model. 

In conclusion, both prediction models, one for each activity, demonstrate relatively good 

accuracy values, as verified by their application to random photographs. However, they are 

accompanied by a significant number of challenges and observations that require thorough 

study and addressing in future work. This aims to simultaneously increase the achieved 

accuracies and utilize more recent and advanced learning algorithms (e.g., YOLOv8). 
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6. CONCLUSIONS 
 

The utilization of artificial intelligence, particularly technologies such as Machine Vision 

(MV) and Deep Learning (DL), in the construction industry is deemed imperative. The 

applications and benefits that can arise from these technologies are crucial, especially 

during the transition to a new era fraught with challenges. Activities such as image 

classification and object detection consistently prove to be extremely valuable tools, 

enhancing, improving, and facilitating numerous practical and technical tasks on 

construction sites. The real-time application of these technologies can enhance the 

monitoring of safety and health issues on construction sites, extending to the broader and 

more essential oversight of labor management, mechanical equipment, vehicles, and 

materials, all while considering the relatively low costs resulting from the use of these 

technologies. 

The present study focused on the automated detection and classification of construction 

elements at construction sites using the ImageAI library, built on the foundation of Python’s 

TensorFlow and Keras libraries. The entire process was based on the integration of 

Machine Vision and Deep Learning technologies, combined with a dataset collected for 

the objects under consideration. The extracted results were analyzed in relation to the 

accuracy of the corresponding models from which they were derived.  

As part of future work, the following actions are to be taken to enhance the performance 

and accuracy of the relevant models based on ImageAI: 

• Quantitative and qualitative expansion of the dataset, encompassing a greater 

variety of objects. To incorporate more construction classes, the methodology 

employed for the nine classes examined in this research could be extended. These 

additional classes might encompass various items categorized into groups such as 

mechanical equipment, construction materials, vehicles, and personnel. Procuring 

images depicting these new classes would be essential. However, this endeavor 

would entail augmented computational resources and incur higher costs, 

particularly contingent upon the quantity of additional classes. Mitigating this, 

existing training images featuring these classes could be utilized, or new images 
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could be generated using the Augmentor Python library (a code example is 

provided in the Appendix), ensuring diversity within the dataset without 

redundancy. Additionally, the use of a balanced dataset with respect to all examined 

objects would be crucial to prevent overfitting and the memorization of specific 

objects by the trained model for each task. 

• In future research, a systematic approach could categorize object classes into 

purpose-specific groups, enhancing model applicability in construction 

management. For instance, machinery items like excavators, cranes, and bulldozers 

could be tracked for productivity analysis, while materials such as bricks, steel 

beams, and piping could aid in quantity/cost estimation. Additionally, structural 

elements like columns and walls could be monitored for construction scheduling 

purposes. All these applications can complement the existing capability of health 

and safety object tracking provided by this research, to ensure adherence to safety 

protocols on construction sites, which can also be expanded including more health 

& safety classes. 

• Improvement of the annotation functions for bounded frames and labels, using 

advanced rendering practices in conjunction with the practical application of non-

maximum suppression (NMS) to produce sharper and accurately adjusted results. 

Additionally, exploration and testing of other custom activities offered by the 

ImageAI library for accuracy and usefulness, particularly by using video streams 

of related content, would be beneficial.  

• Exploring alternative methods, software libraries, and datasets to enhance speed 

and accuracy is a pivotal aspect of future research. This entails delving into newer 

iterations of object detection algorithms, like YOLOv8, and exploring cutting-edge 

architectures such as feature pyramid networks (FPN) and EfficientDet. 

Additionally, integrating diverse training datasets like SODA can enrich the 

model's capabilities by offering a broader range of training examples. Continuously 

assessing and adopting the latest techniques, libraries, and datasets ensures that 

custom object detection models remain at the forefront of innovation, delivering 

optimal results in terms of speed, accuracy, and reliability. 

Nico
las

 N
ico

lao
u 



66 
 

REFERENCES 
 

[1] Lambrides, E., & Christodoulou, S.E. (2023). Human action detection and 

ergonomic risk assessment at construction sites, by use of machine vision and 

deep learning. In: EC3 Conference 2023 (Vol. 4). European Council on 

Computing in Construction, Crete, Greece. 

[2] Market.US (2024). Specializes in in-depth market research and analysis. 

https://market.us/report/generative-ai-in-construction-market/ 

[3] Brilakis, I., Lourakis, M., Sacks, R., Savarese, S., Christodoulou, S., Teizer, J. and 

Makhmalbaf, A. (2010). Toward automated generation of parametric BIMs based 

on hybrid video and laser scanning data. Advanced Engineering Informatics, 

24(4), pp.456-465. 

[4] Czerniawski, T. & Leite, F. (2020). Automated digital modeling of existing 

buildings: A review of visual object recognition methods. Automation in 

Construction, 113, p.103131. 

[5] Nath, N. & Behzadan, A.H. (2020). Deep generative adversarial network to 

enhance image quality for fast object detection in construction sites. In: 2020 

Winter Simulation Conference (WSC) (pp. 2447-2459). IEEE. 

[6] Paneru, S. & Jeelani, I. (2021). Computer vision applications in construction: 

Current state, opportunities & challenges. Automation in Construction, 132, 

p.103940. 

[7] Duan, R., Deng, H., Tian, M., Deng, Y. & Lin, J. (2022). SODA: site object 

detection dataset for deep learning in construction. arXiv preprint 

arXiv:2202.09554. 

[8] Wang, Y., Xiao, B., Bouferguene, A., Al-Hussein, M. & Li, H. (2022). Vision-

based method for semantic information extraction in construction by integrating 

deep learning object detection and image captioning. Advanced Engineering 

Informatics, 53, p.101699. 

[9] Hou, L., Chen, C., Wang, S., Wu, Y. & Chen, X. (2022). Multi-object detection 

method in construction machinery swarm operations based on the improved 

YOLOv4 model. Sensors, 22(19), p.7294. 

[10] Zhou, Q., Liu, H., Qiu, Y. & Zheng, W. (2022). Object Detection for Construction 

Waste Based on an Improved YOLOv5 Model. Sustainability, 15(1), p.681.  

[11] Jog, G.M., Brilakis, I.K. & Angelides, D.C. (2011). Testing in harsh conditions: 

Tracking resources on construction sites with machine vision. Automation in 

construction, 20(4), pp.328-337. 

[12] Moses, O. (2018). ImageAI, an open source python library built to empower 

developers to build applications and systems  with self-contained computer vision 

capabilities. https://github.com/ 

OlafenwaMoses/ImageAI.  

[13] Turing (2024). A combination of internal experts, global talent, and proprietary AI 

technology working together to accelerate and innovate companies and careers 

more efficiently. https://www.turing.com/kb/ultimate-battle-between-deep-

learning-and-machine-learning 

Nico
las

 N
ico

lao
u 

https://market.us/report/generative-ai-in-construction-market/
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning
https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning


67 
 

[14] Umer Yasin, M. (2022). Bricks Under Construction or Old Building / Houses, an 

image dataset that contains pictures of buildings and houses under construction. 

https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-

building-houses/data 

[15] Ahmadzada, A. (2020). People Image Dataset, many pictures of people 

performing different activities. 

https://www.kaggle.com/datasets/ahmadahmadzada/images2000/data 

[16] B Naik, N. (2023). Safety Helmet and Reflective Jacket, images of Individuals 

Wearing Safety Helmets and Reflective Jackets. 

https://www.kaggle.com/datasets/niravnaik/safety-helmet-and-reflective-jacket 

[17] Deshmukh, R., Wenguang, M. & Wei, M. (2020). Window Detection in Street 

Scenes, selected images from Paris Street-View Dataset with Window 

Annotations. https://www.kaggle.com/datasets/rude009/window-detection-in-

street-scenes 

[18] B Naik, N. (2022). PPU1dataset, a test dataset of concrete column and concrete 

beam annotated images for developing custom column and beam object detection 

model.  https://github.com/febrifahmi/PPU1dataset 

[19] Tzutalin (2015). LabelImg, a graphical image annotation tool.  

https://github.com/HumanSignal/labelImg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nico
las

 N
ico

lao
u 

https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-building-houses/data
https://www.kaggle.com/datasets/mumeryasin/bricks-under-construction-or-old-building-houses/data
https://www.kaggle.com/datasets/ahmadahmadzada/images2000/data
https://www.kaggle.com/datasets/niravnaik/safety-helmet-and-reflective-jacket
https://www.kaggle.com/datasets/rude009/window-detection-in-street-scenes
https://www.kaggle.com/datasets/rude009/window-detection-in-street-scenes
https://github.com/febrifahmi/PPU1dataset
https://github.com/HumanSignal/labelImg


68 
 

APPENDIX 

Python code for custom image classification training 

from imageai.Classification.Custom import ClassificationModelTrainer 

 

model_trainer = ClassificationModelTrainer() 

model_trainer.setModelTypAsMobileNetV2() 

model_trainer.setDataDirectory("structural elements - ver.2 - IP9") 

model_trainer.trainModel(num_experiments=1000, batch_size=4) 

Python code for custom image classification prediction 

from imageai.Classification.Custom import CustomImageClassification 

import os 

 

execution_path = os.getcwd() 

prediction = CustomImageClassification() 

prediction.setModelTypeAsMobileNetV2() 

prediction.setModelPath(os.path.join(execution_path, " mobilenet_v2-
structural elements - ver.2 - IP9-test_acc_0.81056_epoch-257.pt")) 

prediction.setJsonPath(os.path.join(execution_path, " structural 
elements - ver.2 - IP9_model_classes.json")) 

prediction.loadModel() 

predictions, probabilities = 

prediction.classifyImage(os.path.join(execution_path, 

"IMG_20240410_101352.jpg"), result_count=9) 

for eachPrediction, eachProbability in zip(predictions, probabilities): 

    print(eachPrediction + " : " + str(eachProbability)) 

Python code for custom object detection training 

from imageai.Detection.Custom import DetectionModelTrainer 

 

trainer = DetectionModelTrainer() 

trainer.setModelTypeAsYOLOv3() 

trainer.setDataDirectory(data_directory="CustomObjectDetection") 

trainer.setTrainConfig(object_names_array=['column','excavator','beam',

'masonry','slab','window','person','Safety_Helmet','Reflective_Jacket']

, batch_size=4 

                       , num_experiments=200, 

train_from_pretrained_model="yolov3_hololens-yolo_mAP-0.82726_epoch-

73.pt") 

#download pre-trained model via 

https://github.com/OlafenwaMoses/ImageAI/releases/download/3.0.0-

pretrained/yolov3.pt 

# If you are training to detect more than 1 object, set names of 

objects above like object_names_array=["hololens", "google-glass", 

"oculus", "magic-leap"] 

trainer.trainModel() 
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Python code for augmented pictures production 

import os 

import Augmentor 

 

# Specifies the path to the directory containing original images 

input_directory = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\final_entry\BEAM\RENAME JPG" 

 

# Specifies the output directory where augmented images will be saved 

output_directory = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\final_entry\BEAM\aug2" 

 

# Checks if the output directory exists, otherwise creates it 

if not os.path.exists(output_directory): 

    os.makedirs(output_directory) 

 

# Creates an Augmentor pipeline for the input directory 

pipeline = Augmentor.Pipeline(input_directory, output_directory) 

 

# Defines augmentation operations 

pipeline.rotate(probability=0.7, max_left_rotation=3, 

max_right_rotation=3) 

pipeline.flip_left_right(probability=0.7) 

pipeline.flip_top_bottom(probability=0.7) 

pipeline.zoom_random(probability=0.7, percentage_area=0.8) 

pipeline.flip_random(probability=0.7) 

 

# Color Jittering 

pipeline.random_color(probability=0.7, min_factor=0.7, max_factor=1.3) 

 

# Brightness Adjustment 

pipeline.random_brightness(probability=0.7, min_factor=0.7, 

max_factor=1.3) 

 

# Contrast Adjustment 

pipeline.random_contrast(probability=0.7, min_factor=0.7, 

max_factor=1.3) 

 

# Sets the number of augmented images to generate 

num_augmented_images = 100 

 

# Executes the augmentation process 

pipeline.sample(num_augmented_images) 
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Python code for custom object detection with NMS and rendering settings 

import cv2 

from imageai.Detection.Custom import CustomObjectDetection 

 

# Defines rendering settings for each class 

class_rendering_settings = { 

    "excavator": {"color": (255, 0, 0), "label_position": "top_left"}, 

    "person": {"color": (204, 204, 0), "label_position": 

"bottom_right"}, 

    "Safety_Helmet": {"color": (0, 255, 0), "label_position": 

"bottom_left"}, 

    "Reflective_Jacket": {"color": (0, 0, 255), "label_position": 

"top_right"}, 

} 

 

detector = CustomObjectDetection() 

detector.setModelTypeAsYOLOv3() 

detector.setModelPath("yolov3_CustomObjectDetection_mAP-0.67410_epoch-

20.pt") 

detector.setJsonPath("CustomObjectDetection_yolov3_detection_config.jso

n") 

detector.loadModel() 

 

# Detection with adjusted rendering options 

detections = detector.detectObjectsFromImage( 

    input_image="ud6.jpg", 

    output_image_path="ud6_output.jpg", 

    minimum_percentage_probability=30, 

    display_percentage_probability=False,  # Disables displaying 

percentage probability 

    display_object_name=False,  # Disables displaying object names 

    display_box=True, 

    nms_treshold=0.35 

) 

 

# Loads the image 

image = cv2.imread("ud6_output.jpg") 

 

# Iterates through detections 

for detection in detections: 

    class_name = detection["name"] 

    rendering_settings = class_rendering_settings.get(class_name, {})  

# Gets rendering settings for the class 

    color = rendering_settings.get("color", (255, 255, 255)) 

    label_position = rendering_settings.get("label_position", 

"top_left") 

 

    # Draws the bounding box 

    left, top, right, bottom = detection["box_points"] 

    cv2.rectangle(image, (left, top), (right, bottom), color, 2) 

 

    # Calculates the center of the bounding box 

 

    center_y = (top + bottom) // 2 

 

Nico
las

 N
ico

lao
u 



71 
 

    # Draws the label 

    label = detection["name"] + " : 

{:.2f}%".format(detection["percentage_probability"]) 

    label = detection["name"] + " : 

{:.2f}%".format(detection["percentage_probability"]) 

    label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 1, 

1) 

    if label_position == "bottom_right": 

        label_position = (right -95, top-(-60)) 

    elif label_position == "bottom_left": 

        label_position = (right , top) 

    elif label_position == "top_left": 

        label_position = (right -95, center_y + label_size[1] // 2) 

    elif label_position == "top_right": 

        label_position = (right - 125, center_y + label_size[1] // 2) 

    else: 

        label_position = (right, top - 100) 

    cv2.putText(image, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 

0.3, color, 1) 

 

# Saves the image with modified rendering 

cv2.imwrite("ud6-detected-labeled.jpg", image) 
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Python code for custom object detection on .txt format (class, bounding boxes 

coordinates, confidence score) 

from imageai.Detection.Custom import CustomObjectDetection 

import os 

from PIL import Image 

 

# Creates a CustomObjectDetection instance 

detector = CustomObjectDetection() 

 

# Sets the model type to YOLOv3 

detector.setModelTypeAsYOLOv3() 

 

# Sets the path to the trained YOLOv3 model file 

detector.setModelPath("yolov3_CustomObjectDetection_mAP-0.67410_epoch-

20.pt") 

 

# Sets the path to the JSON file containing detection configuration 

detector.setJsonPath("CustomObjectDetection_yolov3_detection_config.jso

n") 

 

# Loads the YOLOv3 model 

detector.loadModel() 

 

# Path to the directory containing validation set images 

validation_set_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\images" 

 

# Path to the directory where the output text files with bounding box 

annotations will be saved 

output_annotations_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions" 

 

# Dictionary to map class names to numerical codes 

class_mapping = {"column": 0, "excavator": 1, "beam": 2, "masonry": 3, 

"slab": 4, "window": 5, "person": 6, 

                 "Safety_Helmet": 7, "Reflective_Jacket": 8} 

 

# Iterates over each image in the validation set 

for image_filename in os.listdir(validation_set_path): 

    if image_filename.endswith(".jpg"): 

        # Builds the full path to the input image 

        input_image_path = os.path.join(validation_set_path, 

image_filename) 

 

        # Opens the image and gets its dimensions 

        with Image.open(input_image_path) as img: 

            image_width, image_height = img.size 

 

        # Performs object detection on the current image 

        detections = 

detector.detectObjectsFromImage(input_image=input_image_path, 

output_image_path=None) 

 

        # Builds the full path to save the output text file with 

bounding box annotations 
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        annotation_filename = image_filename.replace(".jpg", ".txt") 

        output_annotation_path = os.path.join(output_annotations_path, 

annotation_filename) 

 

        # Opens the output text file for writing 

        with open(output_annotation_path, 'w') as annotation_file: 

            # Writes each detection in YOLO format to the text file 

            for detection in detections: 

                class_label = detection["name"] 

                numerical_code = class_mapping.get(class_label) 

                if numerical_code is not None and numerical_code in 

range(9): 

                    x_min, y_min, x_max, y_max = 

detection["box_points"] 

                    x_center = (x_min + x_max) / 2 / image_width 

                    y_center = (y_min + y_max) / 2 / image_height 

                    box_width = (x_max - x_min) / image_width 

                    box_height = (y_max - y_min) / image_height 

                    confidence_score = 

detection["percentage_probability"] / 100.0 

                    annotation_str = f"{numerical_code} {x_center:.6f} 

{y_center:.6f} {box_width:.6f} {box_height:.6f} 

{confidence_score:.6f}\n" 

                    annotation_file.write(annotation_str) 

                else: 

                    print(f"Invalid class label '{class_label}' for 

{image_filename}. Skipping annotation.") 
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Python code for custom object detection on .txt format (NMS implementation) 

import numpy as np 

import os 

def non_max_suppression(boxes, scores, threshold): 

    # If no boxes, returns an empty list 

    if len(boxes) == 0: 

        return [] 

 

    # Converts boxes to numpy array 

    boxes = np.array(boxes) 

 

    # Initializes list to store the picked boxes 

    picked_boxes = [] 

 

    # Extracts coordinates of bounding boxes 

    x1 = boxes[:, 0] 

    y1 = boxes[:, 1] 

    x2 = boxes[:, 2] 

    y2 = boxes[:, 3] 

 

    # Computes the area of each bounding box 

    area = (x2 - x1 + 1) * (y2 - y1 + 1) 

 

    # Sorts the bounding boxes by their confidence scores (in 

descending order) 

    idxs = np.argsort(scores)[::-1] 

 

    while len(idxs) > 0: 

        # Picks the bounding box with the highest confidence score 

        last = len(idxs) - 1 

        i = idxs[last] 

        picked_boxes.append(i) 

 

        # Calculates the intersection over union (IoU) of the picked 

box with other boxes 

        xx1 = np.maximum(x1[i], x1[idxs[:last]]) 

        yy1 = np.maximum(y1[i], y1[idxs[:last]]) 

        xx2 = np.minimum(x2[i], x2[idxs[:last]]) 

        yy2 = np.minimum(y2[i], y2[idxs[:last]]) 

 

        w = np.maximum(0, xx2 - xx1 + 1) 

        h = np.maximum(0, yy2 - yy1 + 1) 

 

        intersection = w * h 

 

        iou = intersection / (area[i] + area[idxs[:last]] - 

intersection) 

 

        # Discards the boxes with IoU greater than the threshold 

        idxs = np.delete(idxs, np.concatenate(([last], np.where(iou > 

threshold)[0]))) 

 

    # Returns the indices of the picked boxes 

    return picked_boxes 
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# Function to apply NMS to bounding box predictions in a TXT file 

def apply_nms_to_txt_file(txt_file_path, output_file_path, 

nms_threshold): 

    # Opens the input TXT file 

    with open(txt_file_path, 'r') as input_file: 

        lines = input_file.readlines() 

 

    # Parses each line in the input file and apply NMS 

    refined_lines = [] 

    boxes = [] 

    scores = [] 

    for line in lines: 

        # Parses the line to extract bounding box coordinates and 

confidence score 

        class_label, x_center, y_center, box_width, box_height, 

confidence_score = map(float, line.strip().split()) 

        # Appends the bounding box details to the lists 

        boxes.append([x_center - box_width / 2, y_center - box_height / 

2, x_center + box_width / 2, y_center + box_height / 2]) 

        scores.append(confidence_score) 

 

    # Applies NMS to the bounding box predictions 

    picked_boxes = non_max_suppression(boxes, scores, nms_threshold) 

 

    # Writes the refined bounding box predictions to the output TXT 

file 

    with open(output_file_path, 'w') as output_file: 

        for idx in picked_boxes: 

            output_file.write(' '.join(map(str, 

lines[idx].strip().split())) + '\n') 

 

# Path to the folder containing the TXT files with bounding box 

predictions 

input_folder_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions" 

# Path to the folder to save the refined TXT files with NMS applied 

output_folder_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions-

nms0.4" 

 

# NMS threshold 

nms_threshold = 0.4  # Adjust as needed 

 

# Iterates over each TXT file in the input folder 

for txt_file_name in os.listdir(input_folder_path): 

    if txt_file_name.endswith(".txt"): 

        # Builds the full path to the input TXT file 

        input_txt_file_path = os.path.join(input_folder_path, 

txt_file_name) 

        # Builds the full path to the output TXT file 

        output_txt_file_path = os.path.join(output_folder_path, 

txt_file_name) 

 

        # Applies NMS to the bounding box predictions in the current 

TXT file 

        apply_nms_to_txt_file(input_txt_file_path, 

output_txt_file_path, nms_threshold) 
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Python code for custom object detection model confusion matrix 

from sklearn.metrics import confusion_matrix 

import os 

from collections import Counter 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Custom class labels 

class_labels = { 

    0: "column", 1: "excavator", 2: "beam", 3: "masonry", 

    4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8: 

"Reflective_Jacket" 

} 

 

# Paths 

ground_truth_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\annotations" 

predictions_path = r"C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\validation\predictions-

nms0.4" 

 

# Initializes variables to store confusion matrices 

conf_matrices = [] 

 

# Processes files one by one 

for batch_index in range(0, len(os.listdir(ground_truth_path)), 1): 

    batch_ground_truth_labels, batch_predicted_labels = [], [] 

 

    # Loads ground truth and predicted labels for the current batch 

    for filename in 

os.listdir(ground_truth_path)[batch_index:batch_index + 1]: 

        if filename.endswith(".txt"): 

            with open(os.path.join(ground_truth_path, filename), 'r') 

as annotation_file: 

                # Reads ground truth labels 

                batch_ground_truth_labels.extend(int(line.split()[0]) 

for line in annotation_file.readlines()) 

 

            with open(os.path.join(predictions_path, filename), 'r') as 

prediction_file: 

                # Reads predicted labels 

                batch_predicted_labels.extend(int(line.split()[0]) for 

line in prediction_file.readlines()) 

 

    # Counts occurrences of each class in ground truth and predicted 

labels 

    ground_truth_counts = Counter(batch_ground_truth_labels) 

    predicted_counts = Counter(batch_predicted_labels) 

 

    # Determines the minimum count for each class 

    class_min_counts = {cls: min(ground_truth_counts[cls], 

predicted_counts[cls]) for cls in class_labels.keys()} 

 

    # Creates lists to store filtered ground truth and predicted labels 

    filtered_ground_truth_labels = [] 
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    filtered_predicted_labels = [] 

 

    # Iterates over each label and keep only the required number of 

instances for each class 

    for label, cls in zip(batch_predicted_labels, 

batch_ground_truth_labels): 

        if class_min_counts[cls] > 0: 

            filtered_ground_truth_labels.append(cls) 

            filtered_predicted_labels.append(label) 

            class_min_counts[cls] -= 1 

 

    # Updates batch lists with filtered ones 

    batch_ground_truth_labels = filtered_ground_truth_labels 

    batch_predicted_labels = filtered_predicted_labels 

 

    # Computes confusion matrix for the current batch 

    conf_matrices.append(confusion_matrix(batch_ground_truth_labels, 

batch_predicted_labels, labels=range(9))) 

 

# Merges confusion matrices to create the complete confusion matrix 

complete_conf_matrix = sum(conf_matrices) 

 

# Displays confusion matrix with numbers in each cell 

plt.figure(figsize=(10, 8)) 

plt.imshow(complete_conf_matrix, interpolation='nearest', 

cmap=plt.cm.Blues) 

 

# Adds color bar 

plt.colorbar() 

 

# Adds numbers in each cell 

thresh = complete_conf_matrix.max() / 2. 

for i in range(complete_conf_matrix.shape[0]): 

    for j in range(complete_conf_matrix.shape[1]): 

        plt.text(j, i, format(complete_conf_matrix[i, j], 'd'), 

                 horizontalalignment="center", 

                 color="white" if complete_conf_matrix[i, j] > thresh 

else "black") 

 

# Sets axis labels and title 

plt.xlabel('Predicted labels') 

plt.ylabel('True labels') 

plt.title('Complete Confusion Matrix') 

 

# Sets x and y axis ticks and labels 

plt.xticks(np.arange(len(class_labels)), class_labels.values(), 

rotation=45) 

plt.yticks(np.arange(len(class_labels)), class_labels.values(), 

rotation=45) 

 

plt.tight_layout() 

plt.show() 
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Python code for custom object detection model accuracy metrics 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Custom class labels 

class_labels = { 

    0: "column", 1: "excavator", 2: "beam", 3: "masonry", 

    4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8: 

"Reflective_Jacket"} 

 

def calculate_metrics(conf_matrix): 

    num_classes = conf_matrix.shape[0] 

 

    # Initializes arrays to store precision, recall, and F1 score for 

each class 

    precision = np.zeros(num_classes) 

    recall = np.zeros(num_classes) 

    f1_score = np.zeros(num_classes) 

 

    for i in range(num_classes): 

        # True positives: diagonal element 

        tp = conf_matrix[i, i] 

        # False positives: sum of column i (excluding tp) 

        fp = np.sum(conf_matrix[:, i]) - tp 

        # False negatives: sum of row i (excluding tp) 

        fn = np.sum(conf_matrix[i, :]) - tp 

        # True negatives: sum of all values except row i and column i 

        tn = np.sum(conf_matrix) - tp - fp - fn 

 

        # Calculates precision 

        precision[i] = tp / (tp + fp) if (tp + fp) > 0 else 0 

        # Calculates recall 

        recall[i] = tp / (tp + fn) if (tp + fn) > 0 else 0 

        # Calculates F1 score 

        f1_score[i] = 2 * (precision[i] * recall[i]) / (precision[i] + 

recall[i]) if (precision[i] + recall[i]) > 0 else 0 

 

    # Calculates overall metrics 

    overall_precision = np.mean(precision) 

    overall_recall = np.mean(recall) 

    overall_f1_score = np.mean(f1_score) 

    return precision, recall, f1_score, overall_precision, 

overall_recall, overall_f1_score 

 

# Provided confusion matrix 

conf_matrix = np.array([ 

    [122, 0, 10, 2, 28, 0, 1, 0, 0], 

    [0, 65, 0, 0, 0, 0, 5, 1, 0], 

    [7, 0, 48, 0, 1, 1, 0, 2, 0], 

    [0, 0, 1, 67, 0, 1, 1, 0, 0], 

    [2, 0, 0, 0, 35, 0, 1, 0, 0], 

    [1, 0, 0, 1, 0, 108, 9, 0, 0], 

    [0, 5, 0, 1, 1, 1, 77, 1, 0], 

    [0, 1, 0, 0, 0, 0, 12, 30, 16], 

    [0, 0, 0, 1, 0, 0, 11, 10, 47]]) 
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# Calculates precision, recall, and F1 score 

precision, recall, f1_score, overall_precision, overall_recall, 

overall_f1_score = calculate_metrics(conf_matrix) 

 

# Plots the results for each class 

classes = list(class_labels.values()) 

x = np.arange(len(classes)) 

width = 0.2 

space = 0.1 

fig, ax = plt.subplots(figsize=(12, 6)) 

 

# Calculates the maximum value among precision, recall, and f1_score 

arrays 

max_value = max(max(precision), max(recall), max(f1_score)) 

 

# Sets the upper limit of the y-axis slightly higher than the maximum 

value 

ax.set_ylim(0, max_value + 0.1) 

 

rects1 = ax.bar(x - width - space, precision, width, label='Precision', 

color='cyan') 

rects2 = ax.bar(x, recall, width, label='Recall', 

color='mediumseagreen') 

rects3 = ax.bar(x + width + space, f1_score, width, label='F1 Score', 

color='#FFB6C1')  # Light pink color 

 

# Adds labels, title, and legend 

ax.set_ylabel('Scores', fontsize=14) 

ax.set_title('Precision, Recall, and F1 Score by Class', fontsize=18) 

ax.set_xticks(np.arange(len(classes))) 

plt.yticks(fontsize=12) 

ax.set_xticklabels(list(class_labels.values()), rotation=45, 

ha='right', fontsize=14) 

ax.legend(fontsize=13) 

 

# Adds value annotations to each bar 

def autolabel(rects): 

    for rect in rects: 

        height = rect.get_height() 

        ax.annotate('{}'.format(round(height, 2)), 

                    xy=(rect.get_x() + rect.get_width()/2, height), 

                    xytext=(0, 3), 

                    textcoords="offset points", 

                    ha='center', va='bottom', fontsize=11) 

autolabel(rects1) 

autolabel(rects2) 

autolabel(rects3) 

 

# Shows the plot 

plt.tight_layout() 

plt.show() 

 

# Prints overall metrics 

print(f"\nOverall Precision = {overall_precision:.4f}, Overall Recall = 

{overall_recall:.4f}, Overall F1 Score = {overall_f1_score:.4f}") 
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Python code for custom object detection (H&S VERSION) 

import cv2 

from imageai.Detection.Custom import CustomObjectDetection 

 

def calculate_iou(box1, box2, image_width, image_height): 

    x1, y1, w1, h1 = box1 

    x2, y2, w2, h2 = box2 

 

    # Converts YOLO coordinates to pixel coordinates 

    x1, y1 = int(x1 * image_width), int(y1 * image_height) 

    w1, h1 = int(w1 * image_width), int(h1 * image_height) 

    x2, y2 = int(x2 * image_width), int(y2 * image_height) 

    w2, h2 = int(w2 * image_width), int(h2 * image_height) 

 

    # Calculates intersection rectangle coordinates 

    x_start = max(x1, x2) 

    y_start = max(y1, y2) 

    x_end = min(x1 + w1, x2 + w2) 

    y_end = min(y1 + h1, y2 + h2) 

 

    # Calculates width and height of intersection rectangle 

    intersection_width = max(0, x_end - x_start) 

    intersection_height = max(0, y_end - y_start) 

 

    # Calculates area of intersection rectangle 

    intersection_area = intersection_width * intersection_height 

 

    # Calculates areas of individual bounding boxes 

    area_box1 = w1 * h1 

    area_box2 = w2 * h2 

 

    # Calculates area of union 

    union_area = area_box1 + area_box2 - intersection_area 

 

    # Calculates IoU 

    iou = intersection_area / union_area if union_area > 0 else 0 

    return iou 

 

detector = CustomObjectDetection() 

detector.setModelTypeAsYOLOv3() 

detector.setModelPath("yolov3_CustomObjectDetection_mAP-0.67410_epoch-

20.pt") 

detector.setJsonPath("CustomObjectDetection_yolov3_detection_config.jso

n") 

detector.loadModel() 

 

# Loads the image to get its dimensions 

input_image_path = "hj93.jpg" 

image = cv2.imread(input_image_path) 

image_height, image_width, _ = image.shape 

 

# Detection with adjusted rendering options 

detections = detector.detectObjectsFromImage( 

    input_image=input_image_path, 

    output_image_path="hj93_output.jpg", 
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    minimum_percentage_probability=30,   

    display_percentage_probability=False,  # Disable displaying 

percentage probability 

    display_object_name=True,  # Disable displaying object names 

    display_box=True, 

    nms_treshold=0.05  ) 

 

class_6_detected = False 

class_7_detected = False 

class_8_detected = False 

 

# Count of objects for each class 

class_6_count = 0 

class_7_count = 0 

class_8_count = 0 

 

# Stores bounding boxes for each class 

class_6_boxes = [] 

class_7_boxes = [] 

class_8_boxes = [] 

 

# Counters for checkpoints 

warning_count_1 = 0 

warning_count_2 = 0 

warning_count_3 = 0 

 

# Iterates through detections 

for detection in detections: 

    class_name = detection["name"] 

    bbox = detection["box_points"] 

    if class_name == "person": 

        class_6_detected = True 

        class_6_count += 1 

        class_6_boxes.append(bbox) 

    elif class_name == "Safety_Helmet": 

        class_7_detected = True 

        class_7_count += 1 

        class_7_boxes.append(bbox) 

    elif class_name == "Reflective_Jacket": 

        class_8_detected = True 

        class_8_count += 1 

        class_8_boxes.append(bbox) 

 

if not class_6_detected: 

    print("No action required") 

else: 

    if not class_7_detected or not class_8_detected: 

        warning_count_1 += class_6_count 

    else: 

        if class_7_count < class_6_count or class_8_count < 

class_6_count: 

            warning_count_2 += class_6_count -  min(class_7_count, 

class_8_count) 

        else: 

            # Check for full overlapping 

            full_overlap = True 

            class_6_without_full_overlap = 0 

Nico
las

 N
ico

lao
u 



82 
 

            for class_6_box in class_6_boxes: 

                overlap_7 = False 

                overlap_8 = False 

                for class_7_box in class_7_boxes: 

                    if calculate_iou(class_6_box, class_7_box, 

image_width, image_height) >= 0.9: 

                        overlap_7 = True 

                        break 

                for class_8_box in class_8_boxes: 

                    if calculate_iou(class_6_box, class_8_box, 

image_width, image_height) >= 0.9: 

                        overlap_8 = True 

                        break 

                if not overlap_7 or not overlap_8: 

                    full_overlap = False 

                    class_6_without_full_overlap += 1 

            if not full_overlap: 

                warning_count_3 += class_6_without_full_overlap 

            else: 

                print("No action required") 

 

# ANSI escape code for red color 

RED = '\033[91m' 

# ANSI escape code for underlining text 

UNDERLINE = '\033[4m' 

# ANSI escape code for resetting underline 

RESET_UNDERLINE = '\033[24m' 

 

# Prints the checkpoint with the highest count 

max_count = max(warning_count_1, warning_count_2, warning_count_3) 

 

if max_count == 1: 

    if max_count == warning_count_1: 

        print(f"{RED}{UNDERLINE}HEALTH & SAFETY 

ISSUE:{RESET_UNDERLINE}\n{warning_count_1} person without proposed 

safety equipment\nin the construction site!!!") 

    if max_count == warning_count_2: 

        print(f"{RED}{UNDERLINE}HEALTH & SAFETY 

ISSUE:{RESET_UNDERLINE}\n{warning_count_2} person without proposed 

safety equipment\nin the construction site!!!") 

    if max_count == warning_count_3: 

        print(f"{RED}{UNDERLINE}HEALTH & SAFETY 

ISSUE:{RESET_UNDERLINE}\n{warning_count_3} person without proposed 

safety equipment\nin the construction site!!!") 

else: 

    if max_count == warning_count_1: 

        print(f"{RED}{UNDERLINE}HEALTH & SAFETY 

ISSUE:{RESET_UNDERLINE}\n{warning_count_1} persons without proposed 

safety equipment\nin the construction site!!!") 

    if max_count == warning_count_2: 

        print(f"{RED}{UNDERLINE}HEALTH & SAFETY 

ISSUE:{RESET_UNDERLINE}\n{warning_count_2} persons without proposed 

safety equipment\nin the construction site!!!") 

    if max_count == warning_count_3: 

        print(f"{RED}{UNDERLINE}HEALTH & SAFETY 

ISSUE:{RESET_UNDERLINE}\n{warning_count_3} persons without proposed 

safety equipment\nin the construction site!!!") 
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Python code for number of instances & images per class counter 

import os 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Custom class labels 

class_labels = { 

    0: "column", 1: "excavator", 2: "beam", 3: "masonry", 

    4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8: 

"Reflective_Jacket" 

} 

 

# Function to parse YOLO format truth labels and count instances for 

each class 

def count_instances(truth_labels_dir): 

    class_counts = {label: 0 for label in range(len(class_labels))} 

    class_files = {label: 0 for label in range(len(class_labels))} 

 

    # Iterates through each truth label file 

    for filename in os.listdir(truth_labels_dir): 

        if filename.endswith(".txt"): 

            with open(os.path.join(truth_labels_dir, filename), 'r') as 

file: 

                # Reads lines and counts instances for each class 

                lines = file.readlines() 

                found_classes = set() 

                for line in lines: 

                    class_id = int(line.split()[0]) 

                    if class_id in class_labels: 

                        class_counts[class_id] += 1 

                        found_classes.add(class_id) 

                # Counts the files that contain at least one instance 

of each class 

                for class_id in found_classes: 

                    class_files[class_id] += 1 

 

    return class_counts, class_files 

 

# Function to plot bar graph of instance distribution 

def plot_instance_distribution(class_counts, class_files): 

    # Sorts class counts and class files by class ID 

    sorted_counts = [class_counts[label] for label in 

sorted(class_labels)] 

    sorted_files = [class_files[label] for label in 

sorted(class_labels)] 

    class_names = [class_labels[label] for label in 

sorted(class_labels)] 

 

    # Sets bar width 

    bar_width = 0.35 

 

    # Sets position of bars on X axis 

    r1 = np.arange(len(class_names)) 

    r2 = [x + bar_width for x in r1] 
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    # Plots bars 

    plt.figure(figsize=(10, 6)) 

    plt.bar(r1, sorted_counts, color='blue', width=bar_width, 

edgecolor='grey', label='Number of Instances') 

    plt.bar(r2, sorted_files, color='red', width=bar_width, 

edgecolor='grey', label='Number of Images') 

 

    # Adds labels and title with custom font size 

    plt.xlabel('Class', fontweight='bold', fontsize=14)  # Adjust 

fontsize as needed 

    plt.ylabel('Count', fontweight='bold', fontsize=14)  # Adjust 

fontsize as needed 

    plt.xticks([r + bar_width / 2 for r in range(len(class_names))], 

class_names, rotation=45, 

               fontsize=12)  # Adjust fontsize as needed 

    # Sets y-axis scale 

    plt.yticks(fontsize=12)  # Adjust fontsize as needed 

    plt.title('Instance and Image Distribution Across Classes', 

fontweight='bold', 

              fontsize=16)  # Adjust fontsize as needed 

 

    # Adds values on each bar 

    for i, count in enumerate(sorted_counts): 

        plt.text(i, count + 0.1, str(count), ha='center', 

va='bottom',fontsize=11) 

 

    for i, files in enumerate(sorted_files): 

        plt.text(i + bar_width, files + 0.1, str(files), ha='center', 

va='bottom',fontsize=11) 

 

    # Adds legend 

    plt.legend(fontsize=12) 

    plt.tight_layout() 

    plt.show() 

 

# Path to directory containing truth label files 

truth_labels_dir = r'C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\totals' 

 

# Counts instances and files for each class 

class_counts, class_files = count_instances(truth_labels_dir) 

 

# Plots instance and file distribution 

plot_instance_distribution(class_counts, class_files) 
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Python code for number of instances per class counter (3 folders comparison 

version) 

import os 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Custom class labels 

class_labels = { 

    0: "column", 1: "excavator", 2: "beam", 3: "masonry", 

    4: "slab", 5: "window", 6: "person", 7: "Safety_Helmet", 8: 

"Reflective_Jacket" 

} 

 

# Function to parse YOLO format truth labels and count instances for 

each class 

def count_instances(truth_labels_dir): 

    class_counts = {label: 0 for label in range(len(class_labels))} 

    class_files = {label: 0 for label in range(len(class_labels))} 

 

    # Iterates through each truth label file 

    for filename in os.listdir(truth_labels_dir): 

        if filename.endswith(".txt"): 

            with open(os.path.join(truth_labels_dir, filename), 'r') as 

file: 

                # Reads lines and counts instances for each class 

                lines = file.readlines() 

                found_classes = set() 

                for line in lines: 

                    class_id = int(line.split()[0]) 

                    if class_id in class_labels: 

                        class_counts[class_id] += 1 

                        found_classes.add(class_id) 

                # Counts the files that contain at least one instance 

of each class 

                for class_id in found_classes: 

                    class_files[class_id] += 1 

 

    return class_counts, class_files 

 

# Function to plot bar graph of instance distribution 

def plot_instance_distribution(class_counts, class_files): 

    # Sorts class counts and class files by class ID 

    sorted_counts = [class_counts[label] for label in 

sorted(class_labels)] 

    sorted_files = [class_files[label] for label in 

sorted(class_labels)] 

    class_names = [class_labels[label] for label in 

sorted(class_labels)] 

 

    # Sets bar width 

    bar_width = 0.35 

 

    # Sets position of bars on X axis 

    r1 = np.arange(len(class_names)) 

    r2 = [x + bar_width for x in r1] 
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    # Plots bars 

    plt.figure(figsize=(10, 6)) 

    plt.bar(r1, sorted_counts, color='blue', width=bar_width, 

edgecolor='grey', label='Number of Instances') 

    plt.bar(r2, sorted_files, color='red', width=bar_width, 

edgecolor='grey', label='Number of Images') 

 

    # Adds labels and title with custom font size 

    plt.xlabel('Class', fontweight='bold', fontsize=14)  # Adjust 

fontsize as needed 

    plt.ylabel('Count', fontweight='bold', fontsize=14)  # Adjust 

fontsize as needed 

    plt.xticks([r + bar_width / 2 for r in range(len(class_names))], 

class_names, rotation=45, 

               fontsize=12)  # Adjust fontsize as needed 

    # Sets y-axis scale 

    plt.yticks(fontsize=12)  # Adjust fontsize as needed 

    plt.title('Instance and Image Distribution Across Classes', 

fontweight='bold', 

              fontsize=16)  # Adjust fontsize as needed 

 

    # Adds values on each bar 

    for i, count in enumerate(sorted_counts): 

        plt.text(i, count + 0.1, str(count), ha='center', 

va='bottom',fontsize=11) 

 

    for i, files in enumerate(sorted_files): 

        plt.text(i + bar_width, files + 0.1, str(files), ha='center', 

va='bottom',fontsize=11) 

 

    # Adds legend 

    plt.legend(fontsize=12) 

    plt.tight_layout() 

    plt.show() 

 

# Path to directory containing truth label files 

truth_labels_dir = r'C:\Users\Nicolas\PycharmProjects\ImageAI-

master\examples\CustomObjectDetection - Results\totals' 

 

# Counts instances and files for each class 

class_counts, class_files = count_instances(truth_labels_dir) 

 

# Plots instance and file distribution 

plot_instance_distribution(class_counts, class_files) 
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