

ABSTRACT

This project was initiated to explore and investigate the existing Cyprus ID format, including

the structure and the various fields it contains, with a deep dive into the crafting of the distinctive

features. The objective is to gain a thorough understanding of how these fields are structured

and to then create an advanced, accurate, and fast OCR tool using Python. OCR technology

allows for the digitization, reading, and interpretation of characters from physical documents.

Successfully extracting and processing information from Cyprus IDs could significantly

enhance the quality of services in various sectors, such as airports, police, and other industries.

The development of an image-based tool requires an algorithm that can handle less-than-perfect

character shapes and forms, necessitating the use of approximate matches—similar to an

autocorrect function. Fields such as names and surnames need to align with a specific

percentage of accuracy to meet the unit testing standards. This is achievable with confidence

level scores that gauge the algorithm's accuracy in reflecting reality. Throughout the project,

the challenges, issues, and potential areas for future enhancements are identified to better

understand the present state of Cyprus IDs and to expand their current applications and use

cases.

 Ang
elo

s I
oa

nn
ou

EXTRACT TEXT FROM A CYPRUS PERSONAL ID USING

OCR

Angelos Ioannou

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

May, 2023

Ang
elo

s I
oa

nn
ou

ii

APPROVAL PAGE

Master of Science Thesis

EXTRACT TEXT FROM A CYPRUS PERSONAL ID USING OCR

Presented by

Angelos Ioannou

Research Supervisor

 George Angelos Papadopoulos

Committee Member

 Chris Mettouris

Committee Member

 Alexis Yeratziotis

University of Cyprus

May, 2024

Ang
elo

s I
oa

nn
ou

iii

ACKNOWLEDGEMENTS

I would like to acknowledge and give my warmest thanks to my supervisor Dr. George Angelos

Papadopoulos who made this work possible. His guidance and advice carried me through all

the stages of writing my project. In addition, I would like to thank Dr. Savvas Savvides who

has also guided and helped me throughout my entire journey. I would also like to give special

thanks to my dear family and close friends for their continuous support, love and understanding

when undertaking my research and writing my project.

Ang
elo

s I
oa

nn
ou

iv

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Overview 1

1.2 Aims and Objectives 1

1.2.1 Understanding OCR Technology 1

1.2.2 Identifying Issues and Limitations 2

1.2.3 Optimization for Cyprus Personal IDs 2

1.2.4 Application Areas and Business Implications 2

1.2.5 Exploring the Capabilities of Google Tesseract 3

1.3 Structure of Thesis 3

Chapter 2: Background 6

2.1 Image processing and OCR 6

2.1.1 Inception & Advancements of OCR 6

2.1.2 Early Improvements in OCR Technology 7

2.1.3 Integration with Digital Scanners 7

2.1.4 Advancements in Image Processing Algorithms 8

2.1.5 The Impact of Machine Learning and AI on OCR Technology 9

2.1.6 Language and Character Set Expansion 10

2.1.7 Real-Time OCR and Mobile Applications 10

2.1.8 Cloud-Based OCR Services 11

2.1.9 OCR in Complex Document Analysis 11

2.1.10 Integration with Other Technologies 11

2.1.11 Future Directions 11

2.2 OCR Libraries 12

2.2.1 Tesseract 12

2.2.1.1 Historical Background and Evolution 12

2.2.1.2 Core Features and Capabilities 12

2.2.1.3 Advancements in Accuracy and Performance 13

2.2.1.4 Application in Diverse Domains 13

2.2.1.5 Integration and Extensibility 13

2.2.1.6 Community Support and Development 13

2.2.2 ABBYY 13

2.2.3 OCRopus Overview 14

2.2.4 EasyOCR 15

2.2.5 OCR Libraries Comparison 17

2.2.6 Why Tesseract was chosen 17

Ang
elo

s I
oa

nn
ou

v

Chapter 3: Related Work 20

3.1 Designing a Real-Time-Based Optical Character Recognition to Detect ID

Cards 20

3.1.1 Software Used and Application 20

3.1.2 Testing Methodology 20

3.1.3 Results 21

3.1.4 Effectiveness 21

3.2 Citizen ID Card Detection Using Image Processing and Optical Character

Recognition 21

3.2.1 Software Used and Application 22

3.2.2 An Overview And Applications Of Optical Character Recognition 23

3.2.3 Optical Character Recognition by Open Source OCR Tool Tesseract: A

Case Study 23

3.2.4 Automatic OCR system for Colombian DNIs 24

3.2.5 Image Preprocessing for Improving OCR Accuracy 24

3.2.6 Handwritten Optical Character Recognition (OCR): A Comprehensive

Systematic Literature Review (SLR) 24

Chapter 4: Cyprus ID Analysis 26

4.1 Overview 26

4.2 Layout 26

4.3 Linguistic Analysis 28

4.4 Fixed Text on IDs 31

4.5 Data-types of fields 32

4.6 Location 33

4.6 Type of Data 35

4.7 Summary 36

Chapter 5: Cyprus ID OCR Tool Design 38

5.1 Algorithms 38

5.1.1 Detect Front or Rear Side 40

5.1.2 Detect New or Old ID 41

5.1.3 Parse Information 41

5.2 Tool Layout 42

5.2.1 Cyprus ID 42

5.2.2 Tesseract 44

5.2.3 File Utils 45

5.2.4 String Utils 45

Chapter 6: Implementation and Testing 48

6.1 Introduction 48

Ang
elo

s I
oa

nn
ou

vi

6.1.1 Python Libraries 48

6.1.2 Tesseract 49

6.2 Testing 51

6.2.1 Python Function Annotations 51

6.2.2 Python Unit Testing 52

Chapter 7: Evaluation 56

7.1 Evaluation Setup 56

7.2 Execution Time 56

7.3 Confidence Level 61

7.4 Summary 63

Chapter 8: Conclusions & Future Work 65

8.1 Difficulties Faced 65

8.2 Knowledge Acquired 66

8.3 Future Work 68

8.3.1 Sophisticated Logic for Enhanced Accuracy 69

8.3.2 Performance Optimization for Speed 69

8.3.3 Comprehensive Testing for Uncharted Parameters 69

8.3.4 User-Friendly Interface and Web Application Development 70

8.3.5 Embracing the Future with Adaptability and Innovation 70

Bibliography 72

Ang
elo

s I
oa

nn
ou

vii

LIST OF TABLES

Table 1: Comparison between popular OCR libraries on languages supported, ease of

use, support for Python and performance. ... 17

Table 2: Different methods that are used in unit testing. ... 54

Table 3: Running the script 100 times to benchmark the performance in user time,

system time, CPU usage and total time.. 58

Table 4: Running the script 100 times to benchmark the performance for a single

image in user time, system time, CPU usage and total time. 59

Ang
elo

s I
oa

nn
ou

viii

LIST OF FIGURES

Figure 1:Visual representation of the user time, system time, CPU usage and total time

in bar charts. ... 58

Figure 2:The comparison of processing metrics between rear images and both sides of

IDs .. 59

Figure 3: The comparison of the average scores for each ID field in confidence score

 .. 61

Figure 4: The comparison between the gender field and the place of issue field 62

Figure 5: The confidence level of the 3 highest performing fields and the 3 lowest

performing fields .. 63

Ang
elo

s I
oa

nn
ou

1

Chapter 1: Introduction

1.1 Overview

Optical Character Recognition (OCR) technology stands as a pivotal innovation in the realm of

digital information management, transforming printed and handwritten texts into machine-

encoded formats with remarkable efficiency. This technology not only streamlines data entry

processes, but also significantly reduces the margin for human error, thereby enhancing the

overall accuracy and accessibility of digital data. As OCR technology continues to evolve, its

application has become increasingly vital in the domain of identity verification—a critical

function across numerous sectors including banking, security, and administrative services. In

these contexts, the ability to accurately and swiftly recognize ID documents through OCR

systems is paramount, ensuring seamless operations and bolstering security measures. This

thesis delves into the specialized application of OCR for Cyprus ID recognition, exploring the

unique challenges and opportunities presented by the multifaceted features of these identity

documents, and aiming to elevate the standards of ID verification practices through a new

python tool that was developed.

1.2 Aims and Objectives

1.2.1 Understanding OCR Technology

The first aim of this thesis is to delve into the intricacies of Optical Character Recognition

(OCR) technology and then build upon the existing foundation that is already established. OCR

stands as a cornerstone in the digital transformation of textual information, enabling the

conversion of different types of documents, such as scanned paper documents, PDF files, or

images captured by a digital camera, into editable and searchable data. A comprehensive

understanding of OCR involves exploring its historical evolution, the fundamental principles it

operates on, the various algorithms and methodologies it employs, and its current technological

Ang
elo

s I
oa

nn
ou

 2

standing. By dissecting the operational mechanisms of OCR systems, this paper aims to lay a

foundational knowledge that will be pivotal in identifying areas of enhancement specifically

tailored for the recognition of Cyprus Personal IDs.

1.2.2 Identifying Issues and Limitations

A critical aim of this research is to identify and analyze the prevalent issues, inconveniences,

and errors inherent in current OCR technologies when applied to Cyprus IDs. These documents

possess unique features and challenges, such as specific fonts, languages, layouts, and security

elements, which may not be optimally processed by standard OCR systems. By examining these

challenges in detail, the study intends to pinpoint the specific shortcomings of existing OCR

solutions, such as inaccuracies in character recognition, difficulties with special characters or

formats, and issues arising from the physical condition of the ID documents. This objective is

crucial for paving the way toward targeted improvements in OCR technology for more efficient

and error-free recognition of Cypriot IDs.

1.2.3 Optimization for Cyprus Personal IDs

Building on the identification of specific issues with current OCR applications to Cypriot IDs,

the aim is to explore and develop optimizations that will enable faster, easier, and more accurate

scanning of these documents. This involves investigating image preprocessing techniques,

customized recognition algorithms, and existing machine learning models that are fine-tuned

for the peculiarities of Cyprus Personal IDs. The goal is to enhance the OCR process in terms

of speed, reliability, and efficiency, thereby reducing the error rate and improving the user

experience in contexts where rapid and accurate document and image processing are essential.

1.2.4 Application Areas and Business Implications

Another significant aim is to explore the potential application areas of optimized OCR

technology and its implications for businesses and other organizations, with a particular focus

on airports. Airports are critical nodes in global travel and security infrastructure, where

efficient and accurate document processing is paramount. The creation of a tool that is efficient,

Ang
elo

s I
oa

nn
ou

 3

quick, and reliable could provide an immediate and effective solution for an industry

consistently aiming to refine and streamline its methods. Therefore, by developing a sufficiently

robust tool and sharing its core principles with industries like airport companies and others in

the sector, further enhancements could be achieved.

1.2.5 Exploring the Capabilities of Google Tesseract

Finally, this thesis aims to conduct an in-depth exploration of Google Tesseract, an open-source

OCR engine, to gauge its suitability and effectiveness in a variety of OCR applications, with a

special emphasis on its application to Cyprus Personal IDs. Tesseract is known for its wide

language support, adaptability, and extensive community-driven improvements. By testing its

limits through rigorous experimentation, including its ability to handle the unique features of

Cypriot IDs, this study intends to assess Tesseract's viability as a scalable and efficient OCR

solution for diverse use cases. This will involve a comparative analysis with other OCR

technologies, highlighting Tesseract's strengths, weaknesses, and potential areas for further

development.

1.3 Structure of Thesis

This thesis is structured into eight chapters, each serving a specific purpose in exploring the

application of Optical Character Recognition (OCR) technology for the recognition of Cyprus

Personal IDs using the python tool. The chapters are organized in a logical progression, guiding

the reader through the foundational concepts, objectives, methodologies, and findings of the

research.

The introductory chapter lays the groundwork for the thesis by providing an overview of OCR

technology and its significance in the context of identity verification. It highlights the vital role

OCR plays in streamlining data entry processes and enhancing the accuracy and accessibility

of digital data, emphasizing its importance in sectors such as banking, security, and

administrative services. This chapter also outlines the specific aims and objectives of the

research, encompassing the following key areas:

Ang
elo

s I
oa

nn
ou

 4

1) Understanding OCR Technology: Delving into the intricacies of OCR, including its

historical evolution, fundamental principles, algorithms, and current technological

standing.

2) Identifying Issues and Limitations: Analyzing the prevalent issues and limitations

encountered when applying current OCR technologies to Cyprus Personal IDs, such as

challenges with specific fonts, layouts, and security elements.

3) Optimization for Cyprus Personal IDs: Exploring and developing optimizations to

enable faster, more accurate, and efficient scanning of Cyprus Personal IDs, including

preprocessing techniques, customized recognition algorithms, and machine learning

models.

4) Exploring the Capabilities of Google Tesseract: Conducting an in-depth exploration of

the open-source OCR engine Google Tesseract, assessing its suitability and

effectiveness for various OCR applications, with a special emphasis on Cyprus Personal

IDs.

This second chapter provides a comprehensive review of existing literature and research

pertaining to OCR technology, its applications, and the specific challenges associated with

recognizing Cyprus Personal IDs. It serves as a foundation for understanding the current state

of the art and identifying gaps or areas for further exploration. Chapter three (the methodology

chapter) outlines the research approach and methods employed in the study. It details the data

collection techniques, experimental design, and the specific tools and technologies utilized

throughout the research process. This chapter also describes the evaluation metrics and criteria

used to assess the performance and effectiveness of the proposed solutions. Chapter four

presents the findings and results obtained from the research, including the outcomes of the

experiments and analyses conducted. It encompasses the identification of issues and limitations

in current OCR technologies when applied to Cyprus Personal IDs, as well as the optimizations

and enhancements developed to address these challenges. The analysis section delves into the

performance evaluation of the proposed solutions, examining factors such as accuracy, speed,

Ang
elo

s I
oa

nn
ou

 5

and efficiency in recognizing Cyprus Personal IDs. Furthermore, it explores the capabilities and

limitations of the Google Tesseract OCR engine in this specific context. The fifth chapter is

building upon the results and analyses presented in the previous chapter, the discussion chapter

provides an in-depth interpretation and evaluation of the findings. Chapter six delves into the

practical aspects of implementing and testing the proposed OCR solutions. It provides an

overview of the software tools and programming languages utilized throughout the project,

detailing the specific libraries and components employed for OCR tasks. This chapter also

explores the significance of unit testing in the context of OCR and outlines the testing

methodologies employed to ensure the accuracy, reliability, and robustness of the developed

solutions. It showcases examples of unit tests and their role in validating algorithms, handling

errors, and ensuring the consistent performance of the OCR system. Chapter seven will evaluate

the tool, highlighting the areas where it excelled and identifying those that need improvement.

The assessment will utilize Cypriot IDs to effectively test and reveal the actual challenges

encountered with real-life IDs. Additionally, the chapter will include graphs comparing

different fields, illustrating the percentages of success and failure.

Ang
elo

s I
oa

nn
ou

 6

Chapter 2: Background

2.1 Image processing and OCR

2.1.1 Inception & Advancements of OCR

The inception and early applications of Optical Character Recognition (OCR) technology trace

back to the mid-20th century, marking a significant milestone in the history of computing and

information processing. OCR technology, designed to convert different types of documents,

such as scanned paper documents, PDF files, or images captured by a digital camera, into

editable and searchable data, has revolutionized the way we manage and interact with textual

information. A notable example is the invention by Dr. Emanuel Goldberg in the 1930s, who

developed a machine that could read characters and convert them into telegraph code [1].

However, it was in the 1950s that OCR technology began to gain more practical applications,

primarily in the business and banking sectors. The first major application was in the banking

industry, where OCR was used to automate the processing of cheques. The "Electronic Reading

Machine," developed by IBM in the late 1950s, was capable of reading characters on cheques,

significantly reducing manual data entry and processing time [2]. The U.S. Postal Service was

another early adopter of OCR technology. In the 1960s, the Postal Service began experimenting

with OCR to automate the sorting of mail. This application required the OCR system to

recognize and interpret handwritten and printed addresses on envelopes, a task that presented

significant challenges due to the variability of handwriting styles and the quality of printed

addresses [3]. In the academic realm, OCR technology found early applications in the

digitization of printed materials. Libraries and universities began to use OCR systems to convert

printed books and journals into digital formats, facilitating search and access to vast amounts

of scholarly information. The Project Gutenberg, initiated by Michael Hart in 1971, is a

prominent example of using OCR to digitize books, making them available in electronic format

and accessible to a wider audience. The evolution of OCR technology from these early

applications to its current state has been marked by significant advancements in computer

Ang
elo

s I
oa

nn
ou

 7

vision, machine learning, and artificial intelligence. Today, OCR technology is not only more

accurate and efficient but also capable of recognizing a wide array of fonts and styles, as well

as overcoming challenges posed by poor quality documents and complex layouts.

2.1.2 Early Improvements in OCR Technology

Following the first applications of OCR, significant advancements were made to enhance its

accuracy and efficiency. Early OCR systems were primarily hardware-based, with limited

capabilities, and were often constrained by the quality of the printed material and the simplicity

of the character sets they could recognize. The transition from hardware to software-based OCR

systems marked a significant improvement, allowing for more complex algorithms and broader

character recognition capabilities.

2.1.3 Integration with Digital Scanners

The late 20th century marked a significant era in the evolution of OCR technology, largely due

to its integration with digital scanning devices. This fusion was more than just a technological

convergence; it represented a paradigm shift in how text could be digitized and processed. Prior

to this, OCR systems relied heavily on the quality of input from analog sources, which were

often inconsistent and prone to errors. The advent of digital scanners brought about a revolution,

allowing for the direct capture of printed text in a digital format, which significantly enhanced

the quality of input data for OCR processing [4]. Digital scanners underwent rapid

advancements during this period, with significant improvements in both hardware and software.

The resolution of scanners increased dramatically, allowing for the capture of finer details in

the printed material. This was crucial for OCR systems, as higher resolution images meant that

even small or finely printed text could be captured with a high degree of clarity. Additionally,

color scanning capabilities and improved dynamic range allowed OCR systems to distinguish

text more effectively from complex backgrounds or colored fonts, further enhancing recognition

accuracy. The integration of OCR technology with scanners also facilitated the development of

more sophisticated document management systems. Documents could now be scanned,

Ang
elo

s I
oa

nn
ou

 8

recognized, and archived in digital libraries, making them searchable and accessible in ways

that were previously unimaginable. This integration laid the groundwork for the digital

document workflows that are commonplace today, transforming industries such as legal,

healthcare, and education by enabling efficient document handling, storage, and retrieval

processes.

2.1.4 Advancements in Image Processing Algorithms

The evolution of image processing algorithms has been instrumental in the advancement of

OCR technology. The late 20th and early 21st centuries saw significant developments in this

area, with algorithms becoming increasingly sophisticated in dealing with a variety of

challenges associated with digitizing printed text. Noise reduction, skew correction, and

adaptive thresholding, as mentioned, became standard tools in the OCR preprocessing toolkit

[5].

Noise reduction algorithms were developed to clean scanned images of random pixel variations

or speckles that did not represent actual text, thereby reducing the potential for misrecognition.

Skew correction algorithms addressed the issue of text alignment, automatically straightening

text lines that were not perfectly horizontal due to scanning angles or page curvature. This was

particularly important for ensuring accurate recognition of lines of text and their correct order

in the document.

Adaptive thresholding represented a significant advancement in dealing with varying lighting

conditions and print qualities. Traditional thresholding techniques, which converted grayscale

images to black and white for analysis, struggled with documents that had non-uniform shading

or were faded. Adaptive thresholding techniques, on the other hand, analyzed the image in

smaller sections, adjusting the threshold dynamically to ensure that text was effectively

distinguished from the background across the entire document.

Ang
elo

s I
oa

nn
ou

 9

2.1.5 The Impact of Machine Learning and AI on OCR Technology

The integration of machine learning (ML) and artificial intelligence (AI) into optical character

recognition (OCR) systems heralded a transformative era for this technology. Traditionally,

OCR systems relied on rule-based algorithms that required manual tuning and were limited by

the specificity of their programmed instructions. The advent of ML and AI, particularly with

the introduction of neural networks in the late 20th century, marked a paradigm shift in how

OCR systems were developed and operated [6]. Neural networks, inspired by the biological

neural networks that constitute animal brains, are a set of algorithms modeled loosely after the

human brain, designed to recognize patterns. They interpret sensory data through a kind of

machine perception, labeling, or clustering raw input. This revolutionary approach allowed

OCR systems to process vast amounts of data, learning from each interaction, which

significantly enhanced their recognition capabilities. One of the most significant contributions

of ML and AI to OCR technology is the development of convolutional neural networks (CNNs).

CNNs are particularly well-suited for image recognition tasks, making them ideal for OCR

applications. They can take an image input, assign importance to various aspects/objects in the

image, and differentiate one from the other. When applied to OCR, CNNs analyze pixels in

scanned documents or images, learn from the structure and layout of the text, and effectively

recognize and convert them into digital formats. This has dramatically improved the accuracy

with which OCR systems can identify text, even when dealing with complex layouts, fonts, and

backgrounds.

Moreover, the incorporation of AI and ML has enabled OCR systems to understand and

interpret handwriting, a task that was previously fraught with high error rates due to the

variability and complexity of human handwriting. Advanced machine learning models, trained

on datasets comprising diverse handwriting samples, have become adept at recognizing a wide

array of handwriting styles, thereby extending the utility of OCR beyond typed text to include

handwritten notes, forms, and documents.

The impact of ML and AI on OCR technology extends to the ability to recognize and process

text in low-resolution images or under suboptimal conditions. By employing sophisticated

Ang
elo

s I
oa

nn
ou

 10

image enhancement techniques powered by AI, OCR systems can now extract text from images

plagued by poor lighting, low contrast, or noise. This resilience to adverse conditions has

expanded the range of applications for OCR technology, making it possible to extract text from

photographs, screenshots, and other non-traditional sources. Furthermore, the adaptability of

ML-driven OCR systems has facilitated their application across various languages and scripts.

By training on diverse datasets, these systems can recognize and process text in multiple

languages, including those with complex scripts such as Arabic, Chinese, and Cyrillic, thereby

broadening the global applicability of OCR technology.

In essence, the integration of machine learning and artificial intelligence into OCR has not only

enhanced its accuracy and efficiency but has also expanded its scope to encompass a wider

range of text recognition tasks. This evolution reflects a broader trend in technology, where AI

and ML are driving significant advancements across multiple domains. As OCR technology

continues to evolve, the continued integration of AI and ML promises to unlock even greater

capabilities, further solidifying OCR's role as a cornerstone of digital information management.

2.1.6 Language and Character Set Expansion

Early OCR systems were limited in their ability to recognize texts in languages other than

English or with complex character sets. The development of Unicode and the improvement in

OCR algorithms expanded the technology's capability to process texts in multiple languages,

including those with non-Latin scripts such as Chinese, Arabic, and Cyrillic. This globalized

the applicability of OCR, making it an invaluable tool in international contexts.

2.1.7 Real-Time OCR and Mobile Applications

The advent of powerful mobile devices equipped with high-quality cameras led to the

development of real-time OCR applications. These applications allowed users to capture text

from any source using their mobile device's camera and instantly convert it into editable digital

text. This advancement greatly expanded the use and accessibility of OCR technology, making

Ang
elo

s I
oa

nn
ou

 11

it a tool for everyday tasks such as translating text on signs, digitizing printed documents, and

more.

2.1.8 Cloud-Based OCR Services

The shift towards cloud computing saw the emergence of cloud-based OCR services, which

offered scalable, high-accuracy OCR capabilities without the need for extensive local

computational resources. These services leveraged the power of advanced server-based OCR

algorithms, providing access to state-of-the-art OCR technology to a broader range of users and

applications. [7]

2.1.9 OCR in Complex Document Analysis

Advancements in OCR technology have also enabled the processing of complex document

layouts beyond simple text recognition. Modern OCR systems can now understand and extract

information from documents with complex structures, such as tables, forms, and multi-column

layouts, maintaining the original formatting and structure of the document in the digital output.

[8]

2.1.10 Integration with Other Technologies

OCR technology has increasingly been integrated with other technologies to enhance its utility.

For example, combining OCR with natural language processing (NLP) has enabled the

extraction of not just text but meaningful information from documents, facilitating applications

like automatic data entry, content indexing, and semantic analysis. [9]

2.1.11 Future Directions

Continued advancements in OCR technology focus on improving accuracy, speed, and the

ability to understand context within the text. Emerging technologies like deep learning and

computer vision continue to push the boundaries of what OCR can achieve, promising even

more sophisticated and versatile OCR applications in the future. [10]

Ang
elo

s I
oa

nn
ou

 12

2.2 OCR Libraries

2.2.1 Tesseract

Tesseract OCR, an open-source Optical Character Recognition (OCR) engine, stands out as one

of the most comprehensive and widely used OCR tools in the digital processing realm. Initially

developed by Hewlett-Packard Laboratories in 1985 and later released as open-source software

in 2005, Tesseract has evolved significantly, especially after Google adopted the project in

2006, enhancing its capabilities and extending its reach.

2.2.1.1 Historical Background and Evolution

Tesseract was conceived with the aim of providing a high-quality OCR tool that could convert

images of text into a variety of digital text formats. Its early versions were primarily focused on

English text recognition and were used internally by HP for tasks such as document scanning

and management. The transition to an open-source model marked a pivotal point, enabling

developers worldwide to contribute to its improvement and extend its functionalities. This

collaborative effort led to the rapid evolution of Tesseract, incorporating advancements in OCR

technology, and expanding its language support beyond English to include a multitude of

languages and scripts. [4]

2.2.1.2 Core Features and Capabilities

One of Tesseract's distinguishing features is its ability to recognize more than 100 languages

out of the box, making it an invaluable tool for global digital document processing tasks. It

supports various image formats, including TIFF, JPEG, and PNG, and can handle multi-page

TIFF documents, which are common in scanned document archives.

Tesseract's architecture is modular, comprising several components responsible for different

stages of the OCR process, such as layout analysis, line finding, word recognition, and character

classification. This modularity allows for targeted improvements and customization, enabling

developers to adapt Tesseract for specific OCR tasks or integrate it with other software

solutions. [4]

Ang
elo

s I
oa

nn
ou

 13

2.2.1.3 Advancements in Accuracy and Performance

The significant leap in Tesseract's capabilities came with the introduction of LSTM (Long

Short-Term Memory) networks in version 4.0. This integration of deep learning techniques

marked a substantial improvement in Tesseract's text recognition accuracy, particularly for

complex documents and scripts. LSTM networks enhanced Tesseract's ability to understand

contextual nuances and recognize text with higher precision, even in challenging conditions

such as poor lighting, low resolution, or distorted text. [4]

2.2.1.4 Application in Diverse Domains

Tesseract's versatility allows for its application across various domains, from automating data

entry and processing scanned documents to aiding in historical document digitization and

accessibility projects. Its ability to be trained on new datasets makes it particularly useful for

specialized OCR tasks, such as recognizing uncommon fonts or scripts in archival materials.

2.2.1.5 Integration and Extensibility

Developers can integrate Tesseract with other software tools and platforms, thanks to its API

and support for various programming languages. This flexibility has led to the development of

numerous applications and services that leverage Tesseract's OCR capabilities, from mobile

apps that convert images to text to complex document management systems that automate data

extraction and indexing.

2.2.1.6 Community Support and Development

The open-source nature of Tesseract has fostered a vibrant community of developers and users

who contribute to its ongoing development, documentation, and support. This community-

driven approach ensures that Tesseract stays at the forefront of OCR technology, continually

adapting to new challenges and requirements in the field of digital text recognition.

2.2.2 ABBYY

Another very famous OCR library is ABBYY FineReader. ABBYY FineReader is a highly

acclaimed OCR (Optical Character Recognition) software developed by ABBYY, a Russian

Ang
elo

s I
oa

nn
ou

 14

company known for its document recognition and data capture software. FineReader is

renowned for its exceptional accuracy in converting scanned documents, PDFs, and

photographs into editable and searchable digital formats. It stands out for its advanced language

support, handling more than 190 languages, and its ability to recognize and preserve the layout

and formatting of the original document, including tables, headers, footers, and graphs.

ABBYY FineReader employs sophisticated AI and machine learning technologies to enhance

its OCR capabilities, making it particularly effective in processing complex document layouts

and recognizing text with high precision. This software is widely used in various professional

fields, including legal, education, government, and business sectors, for tasks such as digitizing

paper archives, automating document processing workflows, and facilitating document

collaboration and management.

The software's versatility and robust feature set, including its ability to integrate with other

enterprise solutions and its user-friendly interface, have contributed to its popularity and

widespread adoption across different industries. [11]

2.2.3 OCRopus Overview

Another notable OCR library similar to Tesseract is OCRopus. OCRopus is an open-source

document analysis and OCR system that uses state-of-the-art machine learning techniques for

text recognition, primarily focusing on the processing of large collections of documents and

books, especially those that are part of digital libraries.

OCRopus is designed with a modular architecture, allowing for the flexible integration of

different OCR components, including layout analysis, character recognition, and post-

processing modules. This modularity makes it highly adaptable to various text recognition tasks

and document types.

Ang
elo

s I
oa

nn
ou

 15

Neural Network Models: One of the key features of OCRopus is its use of recurrent neural

networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, for character and

text line recognition. This approach enables OCRopus to achieve high accuracy levels, even on

challenging documents with complex layouts or degraded text.

Language and Script Support: While OCRopus provides robust support for Latin script, its

flexible architecture allows for the training and integration of models for other scripts and

languages, making it a versatile tool for global OCR projects.

Community and Development: As an open-source project, OCRopus benefits from

contributions from a global community of developers and researchers. Continuous

improvements and updates are made to enhance its performance and extend its capabilities.

Applications: OCRopus is particularly well-suited for academic and research applications,

including the digitization of historical texts and the processing of academic papers and technical

documents. Its high accuracy and adaptability make it a valuable tool for libraries, archives, and

research institutions aiming to digitize and make searchable large volumes of printed material.

[12]

2.2.4 EasyOCR

EasyOCR is another tool designed for Optical Character Recognition (OCR), which allows the

conversion of different types of documents, such as scanned paper documents, PDF files, or

images captured by a digital camera, into editable and searchable data.

EasyOCR is an open-source tool developed to make Optical Character Recognition (OCR) more

accessible and efficient, particularly known for its ability to handle multiple languages and its

ease of use. It employs advanced deep learning techniques, using Convolutional Neural

Networks (CNNs) for the extraction of features from images and sequence models like

Recurrent Neural Networks (RNNs) or transformers to interpret the sequence of characters

within the text areas identified. This tool has emerged from a broader initiative aimed at

democratizing access to powerful machine learning and computer vision technologies, making

it a valuable asset for developers and researchers alike. EasyOCR's standout features include its

Ang
elo

s I
oa

nn
ou

 16

high accuracy in text recognition, support for a wide range of languages, and a user-friendly

design that facilitates easy integration into various projects. It is widely used in numerous

applications, ranging from digitizing documents to automated data entry and license plate

recognition. Despite its robust capabilities, the performance of EasyOCR can be influenced by

the quality of input images and the complexity of text layouts, which underscores the ongoing

efforts by the developer community to refine and expand its functionalities to meet evolving

needs and challenges.

Development and Features: EasyOCR was explored for its performance with Latin characters

under various conditions of image degradation, such as character-background intensity

difference, Gaussian blur, and relative character size.

By examining the paper “Analysis of Optical Character Recognition using EasyOCR under

Image Degradation” [13], the authors take a very intensive look at how this OCR can be proven

very effective when faced with unoptimized and blurry images. The study found that EasyOCR

is particularly effective in distinguishing between unique lowercase and uppercase characters

but tends to favor uppercase for similar shapes like C, S, U, or Z. The OCR's performance varied

significantly with changes in character-background intensity difference, with confidence scores

ranging from 3% to 80%. It was noted that higher differences could cause confusion between

characters like 'o' and '0', or 'i' and '1'. Additionally, while increased Gaussian blur generally

hindered recognition, it actually improved recognition for certain letters like 'v'. The size of the

image also had a significant impact on character detection, with failures occurring as sizes

decreased to 40% to 30% of the original. These findings provide insights into EasyOCR's

capabilities and limitations under various conditions of image degradation, highlighting its

strengths in character distinction and the effects of image quality on its performance.

Ang
elo

s I
oa

nn
ou

 17

2.2.5 OCR Libraries Comparison

Feature /

OCR Tool
Google Tesseract ABBYY OCRopus EasyOCR

Languages

Supported

Supports over 100

languages

Supports

200+

languages

Primarily focused on

English, with support

for other Latin-script

languages

Supports 80+ languages including

Latin, Cyrillic, and Asian languages

Ease of Use

Moderate; requires

some setup and

familiarity with

OCR concepts

Moderate;

user-friendly

interfaces but

can be

complex due

to extensive

features

Moderate; aimed at

researchers and

requires

understanding of

OCR and machine

learning concepts

High; designed for easy integration

and use with minimal setup

Support for

Python

Yes, through

PyTesseract, a

Python wrapper

Yes, through

ABBYY

Cloud OCR

SDK or

FineReader

Engine (with

Python

wrappers or

API calls)

Natively designed to

be used with Python

Yes, natively designed to be used

with Python

Performance

Excellent; highly

dependent on pre-

processing and

training for custom

needs

Good; known

for high

accuracy and

extensive

feature set

Good; performance

can vary based on

training data and

specific use cases

Very Good; competitive

performance, especially considering

ease of use and speed

Table 1: Comparison between popular OCR libraries on languages supported, ease of use, support for Python and

performance.

2.2.6 Why Tesseract was chosen

When evaluating Optical Character Recognition (OCR) tools for specific projects such as ID

OCR, where accuracy, language support, and customization are paramount, Google Tesseract

emerges as a superior choice among its peers, including ABBYY, OCRopus, and EasyOCR.

Tesseract's longstanding reputation, open-source nature, and extensive language support,

including over 100 languages, make it an exceptionally versatile tool suitable for diverse global

applications, including the intricate task of ID OCR, which often involves capturing text from

varied and complex backgrounds.

Ang
elo

s I
oa

nn
ou

 18

One of the standout features of Tesseract is its adaptability and the ability to train the engine for

specific use cases. This is particularly beneficial for ID OCR, where the tool might need to

recognize specialized fonts or formats. Tesseract allows for fine-tuning and custom training,

which can significantly enhance accuracy when dealing with the unique challenges presented

by ID documents, such as passports, driver's licenses, and national ID cards. This level of

customization ensures that Tesseract can be precisely tailored to meet the nuanced requirements

of ID OCR projects, thereby reducing errors and improving reliability.

Moreover, Tesseract's support for Python through PyTesseract, a Python wrapper, aligns

perfectly with the current trends in software development, especially in data science and

machine learning projects. Python's widespread adoption due to its simplicity and powerful

libraries makes Tesseract easily integrable into existing workflows. This seamless integration

facilitates the automation of ID OCR processes, enabling efficient processing of large volumes

of ID documents without the need for extensive manual intervention.

Performance is another critical factor in the selection of an OCR tool for ID OCR projects.

Tesseract's performance, particularly when optimized through pre-processing and custom

training, is commendable. It has shown to be effective in recognizing text across various ID

formats and backgrounds, which is crucial for ensuring that all pertinent information is

accurately captured and processed. This reliability in performance underpins the trust many

developers and organizations place in Tesseract for their OCR needs.

Furthermore, Tesseract's open-source model offers unparalleled transparency and flexibility,

allowing developers to understand the inner workings of the OCR engine and contribute to its

enhancement. This collaborative approach fosters continuous improvement and adaptation of

the tool, ensuring it remains at the forefront of OCR technology. The active community around

Tesseract also means that developers have access to a wealth of knowledge and support, which

can be invaluable in troubleshooting and enhancing ID OCR projects.

While ABBYY, OCRopus, and EasyOCR each have their strengths, such as ABBYY's

extensive language support and EasyOCR's user-friendly design, they fall short in offering the

Ang
elo

s I
oa

nn
ou

 19

same level of customization, integration ease, and performance optimization that Tesseract

does, especially in the context of complex OCR tasks like ID OCR. The ability to fine-tune

Tesseract to specific project needs, combined with its robust performance and Python support,

positions it as the superior choice for projects that demand high accuracy, flexibility, and

efficiency. In conclusion, Tesseract's comprehensive language support, customization

capabilities, Python integration, and reliable performance, coupled with its open-source nature,

make it an unrivaled tool in the OCR landscape, particularly suited to the specialized demands

of ID OCR projects. Its proven track record and adaptability ensure that it remains the go-to

OCR solution for developers and organizations looking to harness the power of OCR

technology to streamline and enhance their ID document processing workflows.

Ang
elo

s I
oa

nn
ou

 20

Chapter 3: Related Work

3.1 Designing a Real-Time-Based Optical Character

Recognition to Detect ID Cards

The paper titled "Designing a Real-Time-Based Optical Character Recognition to Detect ID

Cards" [14] presents a study focused on developing a real-time ID card detection system

utilizing Optical Character Recognition (OCR) technology. This research aims to provide an

administrative solution in Indonesia by facilitating the processing of identity cards using real-

time OCR. Below is an overview of the study, including the software used, testing methodology,

results, and effectiveness of the system.

3.1.1 Software Used and Application

The researchers employed a combination of software and technologies to design the real-time

OCR system for ID card detection. The primary software used was Easy OCR, which is Pytorch-

based, indicating its reliance on deep learning frameworks for OCR tasks. For ID card detection,

they utilized TensorFlow's object detection API, specifically employing the SSD MobileNet V2

FPNLite 320x320 as the pre-trained model. This choice of software and models suggests a focus

on achieving a balance between detection accuracy and computational efficiency, catering to

real-time processing requirements.

3.1.2 Testing Methodology

The testing of the system involved the collection of ID card images using a webcam under

various lighting conditions and orientations to mimic real-world scenarios. The images were

then labeled using a labeling tool to prepare for the training process. With a dataset comprising

only 20 photos, the researchers trained the TensorFlow object detection algorithm, iterating

through 3000 training steps to refine the model's ability to accurately detect ID cards from the

webcam feed.

Ang
elo

s I
oa

nn
ou

 21

3.1.3 Results

Upon completing the training process, the system achieved a loss of approximately 0.17 and an

accuracy metric of 0.95. These results indicate a high level of precision in ID card detection,

suggesting that the trained model could effectively distinguish and recognize ID cards from the

webcam images.

3.1.4 Effectiveness

The study concludes that the real-time ID card detection tool using OCR operates effectively,

as evidenced by the high accuracy metric obtained during testing. The system's ability to run

well under various lighting conditions and orientations demonstrates its robustness and potential

applicability in practical administrative contexts within Indonesia. The use of a webcam and

commonly accessible software components like Easy OCR and TensorFlow makes the system

approachable for real-world implementation, offering a promising solution for automating ID

card processing tasks. Overall, this research showcases the potential of combining deep learning

models with real-time OCR technologies to create efficient and accurate systems for ID card

recognition, which can be particularly useful in streamlining administrative processes and

enhancing data entry accuracy in various applications.

3.2 Citizen ID Card Detection Using Image Processing and

Optical Character Recognition

The paper titled "Citizen ID Card Detection Using Image Processing and Optical Character

Recognition" [15] delves into the creation of a system designed to automate the detection and

recognition of Indonesian Electronic ID cards, which have been in widespread use since 2011.

The study addresses challenges such as the difficulty in accurately detecting ID card fields and

recognizing character data on the cards. Below is a detailed overview of the study, including

the methodologies used, testing procedures, results obtained, and the overall effectiveness of

the developed system.

Ang
elo

s I
oa

nn
ou

 22

3.2.1 Software Used and Application

The research team developed a technique that combines image processing and Optical Character

Recognition (OCR) to detect and recognize data on electronic ID cards. The study does not

specify the exact software used for OCR but mentions that the system was embedded in a

website interface utilized by an automotive company, suggesting that the approach was

designed to be integrated into existing digital platforms for real-time ID card processing.

Testing Methodology: The methodology involved the use of image processing techniques to

detect the presence of ID cards within digital images, followed by the application of OCR

technology to recognize and extract textual information from the detected ID card regions. The

study likely involved the preprocessing of images to enhance the quality and readability of text

on the ID cards, which is a common practice in OCR applications to improve recognition

accuracy.

Results: The system achieved a remarkable accuracy rate of 98% in detecting ID cards using

the proposed image processing and OCR techniques. This high level of accuracy indicates that

the system was highly effective in identifying and processing ID card images, successfully

overcoming challenges associated with field detection and character recognition.

Effectiveness: The effectiveness of the system is demonstrated by its high accuracy rate and its

successful implementation in a practical application within the automotive industry. By

achieving 98% accuracy in ID card detection, the system proved to be a reliable solution for

automating the processing of electronic ID cards, potentially streamlining administrative tasks

and reducing manual errors in data entry. The integration of the system into a web interface

further highlights its practical applicability and the potential for deployment in various digital

platforms requiring ID card verification and data extraction. In summary, the research presented

in "Citizen ID Card Detection Using Image Processing and Optical Character Recognition"

showcases a successful application of image processing and OCR technologies in automating

the detection and recognition of ID cards. The high accuracy and practical implementation of

the system highlight its potential to enhance efficiency and accuracy in processes that require

Ang
elo

s I
oa

nn
ou

 23

ID card verification, making it a valuable tool for various industries and administrative

applications.

3.2.2 An Overview And Applications Of Optical Character

Recognition

Optical Character Recognition (OCR) involves the electronic or mechanical transformation of

images from scanned or photographed text, whether it's from typed or printed sources, into text

that computers can process. This technology finds extensive application in data entry from

various paper-based sources like passports, invoices, bank statements, receipts, business cards,

and postal mail, among others. By converting printed material into a digital format, OCR

facilitates the editing, searching, compact storage, and online display of texts, in addition to

enabling their use in computational processes such as text mining, machine translation, and text-

to-speech applications. Positioned at the intersection of pattern recognition, artificial

intelligence, and computer vision, OCR technology also encompasses the digital conversion of

handwritten or printed text into machine-readable images, enhancing the accessibility and

searchability of document content in digital forms. The significant body of research and

literature on OCR underscores its foundational role and ongoing development in the field. This

paper provides an overview of OCR technology, highlights seminal research contributions that

have significantly advanced character recognition capabilities, and explores the diverse

applications of OCR across various sectors, concluding with a synthesis of the key findings and

contributions. [16]

3.2.3 Optical Character Recognition by Open Source OCR Tool

Tesseract: A Case Study

The method of Optical Character Recognition (OCR) plays a crucial role in transforming printed

texts into formats that can be edited electronically. OCR is a widely embraced technique across

numerous fields due to its utility. The effectiveness of OCR technology often hinges on the

methodologies employed for text preprocessing and segmentation. Challenges can arise in text

extraction from images due to variations in text size, style, orientation, and the complexity of

Ang
elo

s I
oa

nn
ou

 24

the image background. This paper initiates with an overview of the OCR methodology, delves

into the historical development of the open-source OCR tool Tesseract, its structural design,

and presents findings from experiments conducted using Tesseract on various types of images.

The paper culminates in a comparative analysis between Tesseract and the commercial OCR

software Transym OCR, specifically focusing on the task of extracting vehicle numbers from

license plates. This comparison assesses both tools across different metrics to evaluate their

performance in this specific application. [17]

3.2.4 Automatic OCR system for Colombian DNIs

This paper introduces a system designed for the optical character recognition of text on

Colombian national identity cards. It incorporates an image acquisition algorithm that operates

via Windows drivers, coupled with an OCR methodology that effectively removes the

holographic background, which is a primary challenge in this context. The efficacy of this

approach was evaluated using a dataset of 34 identity cards, achieving a 92.6% accuracy rate in

recognizing characters. [18]

3.2.5 Image Preprocessing for Improving OCR Accuracy

Digital cameras serve as practical tools for capturing images due to their speed, flexibility,

portability, non-intrusive nature, and affordability. Nonetheless, when used in OCR tasks, they

encounter several challenges, including geometric distortions. This study focuses on the

preprocessing phase that precedes text recognition, particularly concerning images taken with

a digital camera. The significance of image preprocessing in OCR applications is underscored

by experiments using FineReader 7.0 as the underlying recognition software, which affirms its

critical role. [19]

3.2.6 Handwritten Optical Character Recognition (OCR): A

Comprehensive Systematic Literature Review (SLR)

The pervasive presence of handwritten documents in various aspects of human interactions

underscores the significant practical value of Optical Character Recognition (OCR). OCR is a

Ang
elo

s I
oa

nn
ou

 25

technological field that facilitates the conversion of different types of documents or images into

data that is accessible, editable, and searchable. Over the past ten years, the application of

artificial intelligence and machine learning methodologies has been explored extensively by

researchers aiming to automate the analysis of both handwritten and printed documents for their

conversion into digital formats. This review paper aims to consolidate the findings of research

conducted on the OCR of handwritten documents and to suggest potential avenues for future

investigation. Through a Systematic Literature Review (SLR), research papers focusing on

handwritten OCR (and related subjects) published from 2000 to 2019 were gathered,

synthesized, and examined. Established electronic databases were utilized according to a

predefined review protocol, employing keyword searches as well as forward and backward

reference searches to comprehensively identify relevant literature. Following a meticulous

study selection process, 176 articles were chosen for inclusion in this SLR. The purpose of this

review is to showcase the latest achievements and methodologies in OCR, while also identifying

areas that require further research by pointing out existing gaps in the literature. [20]

Ang
elo

s I
oa

nn
ou

 26

Chapter 4: Cyprus ID Analysis

4.1 Overview

The introduction of electronic ID cards first took place in the early part of 2015. There were

minor modifications made to them in 2020 to fully adhere to the Regulation (EU) 2019/1157,

enacted by the European Parliament and the Council on 20 June 2019, aimed at enhancing the

security of identity cards for Union citizens and the residence documents provided to Union

citizens and their families who are utilizing their right to free movement. It’s mandatory for

individuals who are twelve years old or older to obtain and hold a Civil Identity Card, while for

those under twelve, it’s provisional. The Republic of Cyprus has issued two ID cards. Before

2015, IDs were not biometric and included the following fields: Cyprus ID (prior to 2015).

4.2 Layout

Image 1: Cyprus IDs prior to 2015 that were not biometric

Ang
elo

s I
oa

nn
ou

 27

● Document Number

● Name

● Surname

● Sex

● Date of Birth

● Place of Birth

● Nationality

● Father’s Name

● Father’s Surname

● Mother’s Name

● Issued on

● Expires on

Image 2: Biometric Cyprus IDs that replaced the old ones in 2015

Cyprus Biometric ID card (2020) contains the following fields:

● CRN (Card Reference Number)

● Name

● Surname

● Place of Birth

● Date of Birth

● Valid Until

● Signature of Holder

● ID Card Number

● Father’s Name

● Father’s Surname

● Mother’s Name

● Mother’s Maiden Name

● Nationality

● Sex

● Height

● Date and Place of Issue

Ang
elo

s I
oa

nn
ou

 28

Moreover, the updated IDs feature a section designated as the Machine Readable Zone (MRZ).

This comprises a three-line optical character recognition (OCR) code encapsulating

fundamental details about the holder like their name, date of birth, and nationality. The MRZ

facilitates swift and straightforward verification of the holder’s identity by border control and

other relevant authorities.

When comparing the IDs issued in 2020 with those from 2015, there are a few minor alterations.

The ID card number has been shifted slightly upward, the text in all fields is now bolder and

displayed in a larger font size, and a rectangle indicating Cyprus’s membership in the European

Union has been added right below the CRN.

The IDs feature text in three distinct languages. Every text field is defined in Greek, English

and Turkish.

4.3 Linguistic Analysis

Investigating ID cards to enhance the development of a proficient and dependable OCR

necessitates a comprehensive understanding of the varied character encoding protocols across

different fields. While IDs exhibit variations in the fields they showcase, certain standards are

commonly applicable to a degree. In this section, every field of the new Cypriot ID will be

meticulously examined to gain deeper insights into the protocols involved in each, and to

formulate algorithms that are optimally tailored to its requirements.

Ang
elo

s I
oa

nn
ou

 29

Front Side

Cypriot Emblem: Positioned at the very top left of the ID, the Cypriot Flag is showcased. Its

bluish color symbolizes the country that the ID represents.

Name of Country: This field exhibits the name "Cypriot Republic of Cyprus" in Greek

alphabet characters and, beneath it, the same is displayed in both Turkish and English (latin

alphabet), utilizing a marginally smaller font size. All text is presented in uppercase letters.

Type of Identification: This segment confirms that the card serves as an identity card. Similar

to the Name of the Country, the displayed information adheres to the exact same guidelines.

Biometric ID Symbol: All IDs categorized as biometric feature a symbol, which is a square

with a circle in its center, to validate the ID's authenticity.

CRN: The Card Reference Number (CRN) is a distinct 9-digit identifier allocated to every

Cypriot identity card. Serving as a crucial security element, it safeguards the holder's identity

and mitigates fraudulent activities. The CRN is utilized for numerous purposes, such as:

- Recognizing the identity card within governmental databases

- Associating the identity card with additional documents, like passports and driving licenses

- To prevent fraud and counterfeiting

Each ID's CRN begins with the Latin letters "CR," followed by 7 unique digits in a string. CRN

numbers are generated randomly, ensuring that every identity card possesses a distinct number,

enhancing its resistance to forgery and counterfeiting. The CRN is produced through a

cryptographic algorithm, intentionally designed to be exceedingly challenging to decipher.

Name, Surname, Place of Birth: These sections present strings, articulated in both the Greek

language and English, utilizing uppercase letters. Every field reveals the information

bilingually, in Greek and English. Furthermore, the sole field on the Cypriot ID that is exhibited

in bold is the name, in both aforementioned languages.

Date of Birth, Valid Until: Rather than showcasing strings of information, these fields present

evenly spaced numbers. Dates in both fields adhere to the DD MM YYYY format.

Ang
elo

s I
oa

nn
ou

 30

Signature of Holder: Positioned at the extreme bottom right of the ID is the holder’s signature,

captured as a vector at the time the card was issued. The signature is notably larger than text in

other fields, making it easily distinguishable on the card.

ID Card Number: Located directly above the holder’s signature, this field begins with four

zeroes, followed by the ID's six-digit number, totaling 10 numeric digits. These digits are bolded

and share the same font size as the CRN number.

Special Field: A small section on the bottom left side of the ID contains the first four digits of

the holder’s surname, a hyphen, and then two numerical digits. The first digit is consistently a

zero, while the purpose of the second is unclear. This field utilizes a notably small font size.

Holder’s Photograph: The left side of the card features the holder’s photograph in grayscale,

capturing a portrait from the hair to the neck.

Cyprus Flag Iridescent: Adjacent to the holder’s photograph, the symbol of the Cyprus

Republic is displayed with an iridescent effect, diverging from the grayscale used in other ID

elements.

Back Side

Father’s Name, Father’s Surname, Mother’s Name, Mother’s Maiden Name, Nationality,

Sex: These segments display strings, expressed in both Greek and English, using uppercase

letters. Each field conveys the information in a bilingual manner, in both Greek and English.

Height: This section showcases the cardholder's height in centimeters at the time the ID was

issued, represented with three digits followed by the "cm" unit. That value is a number.

Cyprus Emblem Dove: Positioned in the top right corner, the dove from the Cypriot emblem

is depicted with a slightly greenish-blue hue that exhibits a glittering effect.

Oval With Portrait: Directly beneath the dove, an oval shape encases the card holder's portrait,

presented with a holographic effect, and behind it, digits are displayed in the same format as the

date of birth.

Date and Place of Issue: This section displays the card's issue date in the DD MM YYYY

format, along with the place of issue in both Greek and English. Specifically, it shows the

issuing department, followed by a comma (,) and the city.

Ang
elo

s I
oa

nn
ou

 31

MRZ (Machine Readable Zone): This section is designed for machine reading. In the first

line, the Latin string characters “IDCYP” are displayed, followed by the CRN number. After

the CRN, a string is displayed, the purpose of which is not specified, followed by a series of

fifteen “<” symbols. In the second line, seven numbers (string) are shown, followed by a Latin

character, then another seven numbers. After these, the characters “CYP” appear, followed by

eleven “<” symbols, and finally, a numeric value in the last position of the line. In the last line,

the holder’s surname appears in uppercase, followed by two “<<” symbols, the name in

uppercase, and depending on the length of the name and surname, the remaining space is filled

with “<” symbols.

4.4 Fixed Text on IDs

Name of Country: This field displays the "Cypriot Republic of Cyprus" in Greek, Turkish, and

English, using uppercase letters. The consistent presentation of the country's name across IDs

serves as a fixed text element.

Type of Identification: This segment clearly states the card's purpose as an identity card, using

standardized wording in multiple languages to maintain consistency across all issued IDs.

Biometric ID Symbol: The presence of a biometric symbol (a square with a circle in its center)

on IDs classified as biometric is a standardized feature indicating the card's authenticity and

adherence to biometric data protocols.

CRN (Card Reference Number): The format "CR" followed by 7 digits is a fixed format used

to uniquely identify each card. Although the numbers themselves vary, the "CR" prefix is a

standard element.

Document Fields: Fields like "Name," "Surname," "Date of Birth," "Place of Birth,"

"Nationality," "Sex," "Father’s Name," "Father’s Surname," "Mother’s Name," and "Mother’s

Maiden Name" are consistent across all IDs, serving as fixed text fields where only the specific

details of the cardholder change.

Ang
elo

s I
oa

nn
ou

 32

MRZ (Machine Readable Zone): The structure of the MRZ, including the format and

positioning of the "IDCYP" prefix, CRN, and other details, follows international standards for

machine-readable travel documents, making it a section with fixed formatting and text elements.

4.5 Data-types of fields

Alphanumeric Data

● CRN (Card Reference Number): This is a unique identifier consisting of a combination

of letters and numbers. The "CR" prefix is followed by seven numeric digits, making it

alphanumeric.

● ID Card Number: Typically starts with zeroes and is followed by a unique set of

numbers, but the inclusion of leading zeroes makes this field alphanumeric as well.

Textual (String) Data

● Name, Surname, Place of Birth, Father’s Name, Father’s Surname, Mother’s Name,

Mother’s Maiden Name, Nationality, Sex: These fields are purely textual, containing

characters that represent names and other personal information. The data is presented

in uppercase letters and includes both Greek and English languages, accommodating

Cyprus's bilingual population.

● Type of Identification: This field also contains textual data, indicating the document's

purpose as an identity card.

Numeric Data

● Date of Birth, Valid Until, Date and Place of Issue: These fields contain numeric data

in the form of dates, represented in the DD MM YYYY format.

● Height: This field contains numeric data representing the cardholder's height in

centimeters.

Biometric Data

● Signature of Holder: The signature is stored as an image but represents biometric data

because it is unique to the individual and used for personal verification.

Ang
elo

s I
oa

nn
ou

 33

● Holder’s Photograph: This is also biometric data, presented as a grayscale image, and

used for visual identification of the cardholder.

Graphical Data

● Cypriot Emblem, Cyprus Flag, Biometric ID Symbol: These fields contain graphical

data in the form of symbols and emblems that are specific to the Cypriot identity and

the ID card's security features.

Optical and Holographic Data

● Special Security Features (like the Cyprus Emblem Dove, Oval With Portrait): These

features include optical and holographic elements that are part of the card's security

measures, making duplication difficult.

Machine-Readable Data

● Machine Readable Zone (MRZ): This area contains a mix of alphanumeric data

designed for electronic scanning and reading. It includes a series of characters that

encode the cardholder's personal details, following an international standard format for

machine-readable travel documents.

4.6 Location

Front Side

● Cypriot Emblem: Positioned at the top left corner, symbolizing national identity.

● Name of Country: Displayed at the top, usually centered or aligned with the emblem,

indicating the issuing country in multiple languages.

● Type of Identification: Located near the top, often below or beside the country name,

clearly stating the document's purpose.

● CRN (Card Reference Number): Typically placed in the upper portion, easily visible

for quick reference.

● Name, Surname: These personal identification fields are prominently displayed, usually

in the upper-middle section, to facilitate easy reading.

Ang
elo

s I
oa

nn
ou

 34

● Place of Birth, Date of Birth: Located centrally or just below the name and surname,

providing essential personal details.

● Valid Until: Often found near the date of birth, indicating the ID's expiry date.

● Signature of Holder: Positioned towards the bottom, usually on the right side, to provide

a personal authentication feature.

● ID Card Number: Located above or near the signature, ensuring easy visibility for

identification purposes.

● Special Field: If present, this field is usually in a less prominent location, such as the

bottom left, containing additional or supplementary information.

Back Side

● Father’s Name, Father’s Surname, Mother’s Name, Mother’s Maiden Name: These

familial details are typically listed at the top or upper-middle section, providing

background personal information.

● Nationality, Sex: Often located near the familial details, summarizing the individual's

demographic information.

● Height: This detail could be positioned near personal information, providing a physical

descriptor of the cardholder.

● Date and Place of Issue: Usually found in the middle or lower section, detailing when

and where the ID was issued.

● Machine Readable Zone (MRZ): Positioned at the very bottom, spanning the width of

the ID, designed for electronic reading devices.

Security Features

● Biometric ID Symbol: Located on the front, often near the top or side, indicating the

presence of biometric data.

● Holder’s Photograph: Typically on the front side, often on the left, providing a visual

identification feature.

● Cyprus Flag Iridescent: Adjacent to the holder’s photograph, adding a layer of security

through a unique visual effect.

Ang
elo

s I
oa

nn
ou

 35

● Cyprus Emblem Dove, Oval With Portrait: These holographic or optical security

elements are usually found on the back side, often in the upper section, enhancing the

ID's security against forgery.

4.6 Type of Data

Alphanumeric Data:

● CRN (Card Reference Number): Comprises a combination of letters ("CR") and

numbers, serving as a unique identifier for each ID card.

● ID Card Number: A mix of numbers, often starting with zeroes, followed by a unique

set of digits for each card.

● Machine Readable Zone (MRZ): Contains alphanumeric characters, including the

"IDCYP" prefix, the CRN, and other encoded information essential for electronic

reading and verification.

Textual Data:

● Name, Surname, Place of Birth, Father’s Name, Father’s Surname, Mother’s Name,

Mother’s Maiden Name, Nationality: These fields consist of text, capturing personal

information in uppercase letters. The data is bilingual, presented in both the Greek and

English languages, accommodating the linguistic diversity of Cyprus.

● Type of Identification: This field includes text indicating the card's function as an

identity document, standardized across all cards.

Numerical Data:

● Date of Birth, Valid Until, Date and Place of Issue: These sections display dates in the

DD MM YYYY format, providing clear numerical data related to the cardholder's birth

and the card's validity period.

● Height: Presented in centimeters, this numerical data specifies the cardholder's height

at the time of issuance.

Biometric Data:

Ang
elo

s I
oa

nn
ou

 36

● Signature of Holder: Captured as a digital image, the holder's signature is stored as

biometric data, allowing for personal verification.

● Holder’s Photograph: A grayscale image from the hair to the neck, serving as a key

biometric identifier for the cardholder.

Graphical Data:

● Cypriot Emblem and Cyprus Flag: These symbols are graphical elements that represent

the country's identity, with the flag sometimes featuring an iridescent effect to enhance

security.

● Biometric ID Symbol: A graphic symbol indicating the card's compliance with

biometric data standards.

● Special Field: Contains a combination of letters and numbers in a specific format,

possibly serving as an additional security feature or identifier.

Optical and Holographic Data:

● Cyprus Emblem Dove, Oval With Portrait: These features incorporate optical and

holographic elements to enhance the card's security, making duplication more difficult.

4.7 Summary

In this chapter, we delved into the intricacies of the updated Cypriot identity cards, highlighting

significant enhancements aimed at bolstering security and improving machine readability. A

noteworthy addition to these IDs is the Machine Readable Zone (MRZ), which utilizes an

optical character recognition (OCR) code in a three-line format, encapsulating essential holder

details like name, date of birth, and nationality, thereby facilitating swift identity verification

by authorities.

Comparative analysis of the IDs issued in 2020 versus those from 2015 reveals minor yet

impactful modifications. These include a slight upward shift of the ID card number, enhanced

readability through bolder and larger text, and a new rectangle symbolizing Cyprus's European

Union membership, positioned below the Card Reference Number (CRN). The thesis

underscores the multilingual presentation of ID text, with all fields defined in Greek, English,

Ang
elo

s I
oa

nn
ou

 37

and Turkish, catering to Cyprus's linguistic diversity. This feature not only underscores Cyprus's

commitment to inclusivity but also reflects the complexity involved in the development of a

proficient OCR system capable of recognizing varied character encoding protocols across these

languages. A comprehensive linguistic analysis is undertaken, dissecting every field of the new

Cypriot ID to understand the encoding protocols and tailor algorithms for optimal OCR

performance. The analysis spans across different data types - alphanumeric, textual, numeric,

biometric, graphical, optical, and holographic data, each meticulously examined for their

respective roles and security implications on the ID.

From a design and security perspective, the front side of the ID showcases the Cypriot emblem

and flag, the name of the country in multiple languages, type of identification, and the biometric

ID symbol, among others. The CRN, serving as a pivotal security element, is a unique 9-digit

identifier enhancing fraud resistance. Personal details such as name, surname, and place of birth

are presented bilingually in bold uppercase letters, while the holder's signature and photograph

provide biometric validation. The back side continues with personal and familial details, also

bilingually presented, and includes the cardholder's height, further personalizing the ID.

Security features like the Cyprus Emblem Dove and the oval with the portrait exhibit optical

and holographic enhancements against forgery. The MRZ, a critical element for machine

readability, follows international standards for machine-readable travel documents. Its

structured format includes encoded personal details, facilitating electronic scanning and

verification processes. Throughout the analysis, the thesis articulates the importance of the fixed

text and data-type fields across the IDs. It illustrates how these elements - from the CRN and

ID card number to the holder's biometric data and the graphical symbols of Cypriot identity -

play crucial roles in maintaining the integrity, security, and functionality of the identity cards.

In summary, the updated Cypriot identity cards represent a sophisticated blend of technological

advancements and multilingual inclusivity, designed to meet contemporary security challenges

while facilitating efficient identity verification processes. The detailed examination of the cards’

features, from textual and biometric data to optical and holographic security measures,

underscores the comprehensive approach taken to enhance their reliability and security.

Ang
elo

s I
oa

nn
ou

 38

Chapter 5: Cyprus ID OCR Tool Design

5.1 Algorithms

The tool operates in four distinct phases:

Phase 1 - User input and image loading: In the initial phase, the user uploads images they

wish to analyze for data extraction. Upon receiving the images, the tool utilizes the PIL (Python

Imaging Library), now known as Pillow, to import these images into the script. This library

supports a myriad of image file formats, facilitating image manipulations such as opening,

resizing, and processing, which are crucial before passing the images to the OCR tool for text

recognition. This step ensures that images are appropriately prepped to optimize the accuracy

and efficiency of the subsequent OCR phase.

Phase 2 - Text extraction and preparation: In this phase, the tool employs the Tesseract

library to perform OCR and extract readable text from the images. The extracted text is then

temporarily stored to allow for necessary modifications that enhance data accuracy. These

adjustments help in correcting the text and ensuring it matches the correct information

seamlessly. This preparatory step refines the text, setting the stage for further processing in the

subsequent phase.

Get input parameters
and images from user

Load image using PIL

Extract text from
loaded image using

Image Loading

Parse Cyprus ID
Fields

Optimize extracted
data

Calculate confidence

Phase 1

Output results

Phase 2

Phase 3

Phase 4

Ang
elo

s I
oa

nn
ou

 39

Phase 3 - Text Parsing and Optimizations: This stage involves precise identification and

verification of personal details from Cyprus IDs, such as names, surnames, and places of birth,

excluding dates and sex. The process utilizes two separate JSON files; the first contains first

names in Greek, and the second encompasses surnames also in Greek. The tool employs these

files to approximate and validate the names and surnames extracted in the previous phase,

ensuring the data matches correctly. This verification is crucial for the accuracy and reliability

of the information before it moves to the final processing step.

Phase 4 - Confidence Calculation and Output: In the final phase, the tool calculates the

confidence level of the text matches established in the previous steps using advanced algorithms

that assess the accuracy of name and surname identification from the processed IDs. This

involves comparing the validated names and surnames against the entries in the JSON files to

quantify how closely they match. Based on these calculations, the tool generates a confidence

score for each field analyzed, which indicates the reliability of the information. The results,

along with their confidence scores, are then compiled and presented in a structured output

format, ready for application.

Algorithms

We utilize three distinct algorithms: the first extracts data from images provided by the user,

the second determines whether the image depicts the front or back of a Cypriot ID, and the third

identifies whether the ID follows a new or old design format. Although the process of extracting

data from each specific field on the ID varies—since the OCR (Optical Character Recognition)

searches for various indicators to identify and populate these fields—the fundamental method

remains consistent across all data extraction algorithms. This consistency justifies why a single

pseudocode can represent the operations of all the algorithms. For example, to identify the name

field, the OCR looks for the keyword "name", and similarly, it searches for "surname" to find

the surname field, "sex" for the sex field, etc., for all other fields. The pseudocode for these

algorithms is provided below to illustrate the workings of the tool and the logic it uses to

accurately locate the necessary keywords.

Ang
elo

s I
oa

nn
ou

 40

5.1.1 Detect Front or Rear Side

Image 3: The algorithm to identify the front and rear side of an ID.

If the algorithm determines the image fails this verification, it will then automatically classify

it as the old ID.

Ang
elo

s I
oa

nn
ou

 41

5.1.2 Detect New or Old ID

Image 4: The algorithm to detect if this is a new or old ID.

Similar to algorithm 1, if it identifies that it is not the new ID, it will automatically be

categorized as the old ID.

5.1.3 Parse Information

Image 5: The algorithm that parses the information in the OCR tool.

Ang
elo

s I
oa

nn
ou

 42

This algorithm is a procedure to extract a person's first name and surname from OCR data. It

starts by defining keyword sets for identifying first names and surnames. Then, it iterates

through each key in the OCR data: if it finds a key matching the first name keywords, it starts

looking for the surname; if it finds a key matching the surname keywords, it captures the next

key as the surname. The algorithm stops searching after finding the surname, returning both the

first name and surname.

5.2 Tool Layout

Image 6: the layout of how the codebase is connected for the python tool.

5.2.1 Cyprus ID

The `cyprus_id.py` file defines a set of classes and enumerations that provide a structured

representation and functionality for handling Cyprus personal identification (ID) cards. It serves

as a crucial component in the overall system architecture of the project, facilitating the

processing and manipulation of ID card data.

Firstly, the file introduces two enumeration classes, `IdVersion` and `IdSide`. The `IdVersion`

class represents the version of the Cyprus ID card, with two possible values: "Old" and "New".

Similarly, the `IdSide` class encapsulates the notion of the card's side, offering three options:

Interface

Cyprus ID File Utils

String Utils

Tesseract

Ang
elo

s I
oa

nn
ou

 43

"Front", "Rear", and "Both". These enumerations ensure consistency and type safety when

working with ID card versions and sides throughout the codebase.

The `IdField` class is a fundamental building block in the file's design. It represents a single

field within a Cyprus ID card, such as the first name, last name, date of birth, or any other

relevant piece of information. Each `IdField` instance has three key attributes: `header` (the

field's caption), `value` (the field's actual value), and `confidence_level` (a measure of

confidence in the value's accuracy). Additionally, the ̀ IdField` class provides a ̀ merge` method,

which allows for the merging of two ̀ IdField` instances. This functionality is particularly useful

when combining or updating ID card data from multiple sources, ensuring that the most accurate

and up-to-date information is retained.

At the core of the `cyprus_id.py` file lies the `CyprusId` class, which represents a complete

Cyprus personal ID card. This class encapsulates various attributes, each of which is an instance

of the `IdField` class. These attributes cover a wide range of ID card fields, including the ID

number, document number, first and last names, date of birth, nationality, gender, height, and

more. The `CyprusId` class offers methods such as `set_version` and `set_side`, which allow

for setting the ID card's version and side, respectively. Furthermore, the ̀ merge` method enables

the merging of two `CyprusId` instances by intelligently combining their respective `IdField`

instances.

The `__repr__` method within the `CyprusId` class provides a formatted string representation

of the ID card instance. This representation can be printed or used for other purposes, such as

logging or displaying the ID card information in a human-readable format.

In the context of the project, the `cyprus_id.py` file plays a pivotal role in the overall system

architecture by providing a structured and efficient way to represent and manipulate Cyprus ID

card data. It serves as a foundational component, enabling various operations and functionalities

related to ID card processing, validation, merging, and presentation.

Ang
elo

s I
oa

nn
ou

 44

5.2.2 Tesseract

The `ocr_utils.py` file contains several functions that assist in extracting information from

images of Cyprus identification cards using Optical Character Recognition (OCR) techniques.

The `preprocess_image` function preprocesses an image by converting it to grayscale and

improving its contrast, which can enhance OCR performance. The `extract_data` function

extracts text data from an image using Pytesseract OCR engine, supporting image preprocessing

and specifying languages for better recognition.

The file includes functions like `check_if_front` and `check_if_rear` to determine whether the

given OCR data corresponds to the front or rear side of an ID card by checking for specific

keywords. Similarly, `check_if_new` and `check_if_old` attempt to identify whether the ID

card is a new or old version based on the OCR data and the detected side. The

`detect_version_and_side` function combines these functions to determine the version and side

of the ID card based on the OCR data.

The `extract_name` function extracts the first name and surname from the OCR data by looking

for specific identifiers and performing approximate matching with a list of Greek names.

Several other functions like `extract_place_of_birth`, `extract_date_of_birth`,

`extract_valid_until`, `extract_id_card_number`, `extract_doc_number`,

`extract_father_first_name`, `extract_father_surname`, `extract_sex`, `extract_nationality`,

`extract_date_and_place_of_issue`, and `extract_height` use regular expressions and other

techniques to extract specific information from the OCR data, such as place of birth, date of

birth, valid until date, ID card number, document number, father's name, sex, nationality, date

and place of issue, and height.

The `parse_ocr_output_to_fields_dict` function consolidates the extracted information into a

dictionary, where the keys represent different fields of the ID card, and the values are the

corresponding extracted data. The `ocr_utils.py` file plays a crucial role in the overall system

architecture by providing a set of utilities for extracting various pieces of information from

Cyprus ID card images using OCR techniques, which can be integrated into a larger pipeline or

system for processing and analyzing ID card data.

Ang
elo

s I
oa

nn
ou

 45

5.2.3 File Utils

The `file_utils.py` file contains two functions that assist in handling and processing image files

within a given file or directory path.

The first function, `is_image(file_path)`, is responsible for determining whether a given file is

an image or not. It takes a `file_path` argument, which represents the path to the file you want

to check. The function utilizes the `filetype` library, which provides a convenient way to guess

the MIME type of file based on its contents. By checking if the guessed MIME type starts with

'image', the function can reliably determine if the file is an image or not. This function returns

a boolean value, `True` if the file is an image, and `False` otherwise.

The second function, `get_image_paths(input_path)`, is designed to retrieve a list of image file

paths within a given file or directory path. It takes an ̀ input_path` argument, which can be either

a file path or a directory path. The function first checks if the provided `input_path` exists; if it

doesn't, it returns an empty list. If the `input_path` is a file, the function checks if it's an image

using the `is_image` function. If the file is an image, its path is added to the `image_paths` list,

which is returned at the end of the function. If the `input_path` is a directory, the function lists

all files within that directory using `os.listdir`. For each file, it constructs the full file path by

joining the `input_path` and the file name using `os.path.join`. It then checks if the file is an

image using the ̀ is_image` function. If the file is an image, its path is added to the ̀ image_paths`

list. Finally, the function returns the `image_paths` list containing the paths of all image files

found within the given `input_path`.

The ̀ file_utils.py` file can be utilized to handle and process image data. For example, you might

need to gather all image files from a specific directory or check if a particular file is an image

before performing further operations on it.

5.2.4 String Utils

The provided code defines several functions and a custom enumeration class called ̀ PrintStyle`

in a Python module. This module serves as a utility for string manipulation, approximate string

matching, and date validation.

Ang
elo

s I
oa

nn
ou

 46

Firstly, the `PrintStyle` enumeration class is defined, providing a way to associate constant

values with named styles. It defines four different print styles: `INFO`, `WARNING`,

`ERROR`, and `SUCCESS`. Enumerations improve code readability and maintainability by

representing a set of related constant values.

The `print_string` function takes a string `s` and an optional `style` parameter, which defaults

to `PrintStyle.INFO`. Depending on the specified `style`, the function prints the given string `s`

with different color formatting using the `termcolor` library. If the `style` is `PrintStyle.INFO`,

it prints the string in the default color. If the `style` is `PrintStyle.WARNING`, it prints the

string in yellow. If the `style` is `PrintStyle.ERROR`, it prints the string in red. If the `style` is

`PrintStyle.SUCCESS`, it prints the string in bold green.

The `match_ratio` function calculates the similarity ratio between two strings using the

`fuzz.ratio` function from the `fuzzywuzzy` library. It takes two string arguments, `str1` and

`str2`, and returns an integer value representing the similarity ratio between them, ranging from

0 to 100.

The `approximate_match` function checks if two strings have a similarity ratio greater than or

equal to a specified threshold. It takes two string arguments, `str1` and `str2`, and an optional

`ratio` parameter with a default value of 90. It returns `True` if the similarity ratio between the

two strings is equal to or greater than the specified `ratio`, and `False` otherwise.

The `approximate_str_contains` function checks if a substring approximately matches another

string based on the partial ratio. It takes two string arguments, `str1` (the substring) and `str2`

(the string), and an optional `ratio` parameter with a default value of 90. It returns `True` if the

partial similarity ratio between `str1` and `str2` is equal to or greater than the specified `ratio`,

and `False` otherwise.

The `approximate_index` function finds the index of the first string in a list that approximately

matches a given string. It takes three arguments: ̀ str1` (the string to find), ̀ lst` (the list of strings

to search), and an optional `ratio` parameter with a default value of 90. It returns the index of

the first matching string in the list if the similarity ratio is equal to or greater than the specified

`ratio`; otherwise, it returns -1.

Ang
elo

s I
oa

nn
ou

 47

The `approximate_contains` function checks if a string approximately matches any string in a

list. It takes two arguments: `str1` (the string to check) and `lst` (the list of strings to search),

and an optional `ratio` parameter with a default value of 90. It returns `True` if the string

approximately matches any string in the list based on the specified ̀ ratio`, and ̀ False` otherwise.

The `is_valid_date` function checks if a given string can be interpreted as a valid date. It takes

two arguments: `date_str` (the string to check) and an optional `fuzzy` parameter with a default

value of `True`. The function allows two date formats: "DD MM YYYY" and

"DD/MM/YYYY". It performs various checks on the string, such as checking for alphabetic

characters, the presence of '/' and ' ' characters, and attempts to parse the string using the

`dateutil.parser.parse` function. If the string can be successfully parsed as a date, it returns

`True`; otherwise, it returns `False`.

This module provides utilities for string manipulation, approximate string matching, and date

validation. These functions can be useful in various scenarios, such as data cleaning, text

processing, or user input validation.

Ang
elo

s I
oa

nn
ou

 48

Chapter 6: Implementation and Testing

6.1 Introduction

Throughout the project's duration, all scripts were executed using Python 3.9.7. Python 3.9,

released in 2020 and supported until 2025, is a stable and efficient version of the programming

language. Its robust performance and rigidity were well-suited for the project's requirements,

including optical character recognition (OCR) and background processing tasks. However, as

the project evolves and becomes more intricate, necessitating additional functionalities and

dependencies, an upgrade to a more recent Python version might be warranted. While new

versions typically introduce performance and security enhancements, it is crucial to note that

when packaging the software for deployment on other devices, the specific Python version and

all associated libraries required by the scripts will be included as dependencies.

6.1.1 Python Libraries

json: This library provides functionality for encoding and decoding JSON (JavaScript Object

Notation) data, which is a lightweight data-interchange format. In the context of OCR for IDs,

this library could be used for parsing or generating JSON data structures, potentially for storing

or transmitting the extracted information from the IDs.

pytesseract: This is a Python wrapper for Google's Tesseract-OCR Engine, which is a powerful

open-source OCR engine. pytesseract allows you to use Tesseract's OCR capabilities directly

from Python scripts, making it an essential library for performing OCR on ID images.

PIL (Python Imaging Library): PIL is a popular library for opening, manipulating, and saving

various image file formats. In the context of OCR for IDs, PIL can be used for preprocessing

the input images, such as resizing, converting color modes, or applying filters, to enhance the

quality and accuracy of the OCR process.

pytesseract.Output: This module from the pytesseract library provides additional output

information beyond just the recognized text. It can return data like bounding boxes for

Ang
elo

s I
oa

nn
ou

 49

individual characters or words, allowing for more advanced analysis and processing of the OCR

results when dealing with IDs.

re: The re library provides support for regular expressions in Python. Regular expressions can

be invaluable for post-processing the OCR output, such as validating or extracting specific

patterns from the recognized text, which can be particularly useful when parsing structured

information like ID numbers or expiration dates.

6.1.2 Tesseract

The version of Tesseract used was 0.3.10, which played a pivotal role in facilitating the OCR

process. To carry out the character recognition, several settings needed to be configured. These

settings were incorporated into a function named `extact_data`:

The extract_data function is designed to perform optical character recognition (OCR) on an

image file and return the recognized text along with its corresponding confidence levels. It takes

three parameters:

1. image_path: This is the file path to the image file that needs to be processed for OCR.

2. preprocessing: This is a boolean flag that determines whether image preprocessing should

be applied before performing OCR. Image preprocessing can involve operations like resizing,

converting color modes, or applying filters to enhance the quality and accuracy of the OCR

process.

3. languages: This is a string representing the languages to be considered by the OCR engine

when recognizing text in the image. For example, if you pass "eng+ell+tur", it will expect the

image to contain text in English, Greek, and Turkish. The function starts by opening the image

file using the Image.open method from the Python Imaging Library (PIL). This loads the image

data into memory. If the preprocessing flag is set to True, the function calls a custom

preprocess_image function and passes the loaded image to it. This custom function presumably

performs the necessary preprocessing operations on the image, and the preprocessed image is

then assigned back to the image variable. Next, the function uses the pytesseract library to

perform OCR on the image (either the original or preprocessed image, depending on whether

Ang
elo

s I
oa

nn
ou

 50

preprocessing was applied). The pytesseract.image_to_data function is called, passing the

image object, the specified languages, and an output_type argument set to Output.DICT. This

function performs the OCR process and returns a dictionary containing various information

about the recognized text, such as the text itself, bounding boxes, confidence levels, etc. The

function then creates an empty dictionary called ocr_text_conf, which will store the recognized

text and its corresponding confidence level. It iterates over two lists from the OCR output

dictionary: the list of confidence levels (ocr_data["conf"]) and the list of recognized text

(ocr_data["text"]). The zip function is used to pair each confidence level with its corresponding

text. For each pair of confidence level and text, the code checks if the text is not empty. If the

text is not empty, it adds a key-value pair to the ocr_text_conf dictionary, where the key is the

recognized text, and the value is the corresponding confidence level. Finally, the function

returns the ocr_text_conf dictionary, which contains the recognized text from the image file and

their associated confidence levels, excluding any empty text entries.

Ang
elo

s I
oa

nn
ou

 51

6.2 Testing

6.2.1 Python Function Annotations

Unlike statically typed languages like C++ or Java, Python is dynamically typed, allowing

variables to change their type during runtime. Function annotations in Python provide a means

to add metadata about the expected types of function parameters and return values. While

Python itself does not enforce these annotations, they play a crucial role in enhancing code

quality, readability, and maintainability. Annotations serve as self-documenting code, providing

valuable insights into the expected types of function parameters and return values. By

annotating functions with parameter types and return types, developers can better understand

the intended usage of functions without needing to dive into the implementation details. This

improves code readability and comprehension, especially in large codebases where

understanding the behavior of functions may be challenging. Although Python is dynamically

typed, recent developments such as the introduction of type hinting and static type checkers like

MyPy allow developers to perform static type checking on their codebases. By annotating

functions with type hints, developers can leverage static type checkers to catch type-related

errors and inconsistencies early in the development process. This helps prevent common

runtime errors and improves code robustness. Function annotations enable Integrated

Development Environments (IDEs) to provide better support and autocompletion features. IDEs

can use function annotations to offer context-aware suggestions and type hints, improving the

developer experience and productivity. Additionally, IDEs can leverage annotations to perform

type inference and provide more accurate code analysis and error detection.

Below, a code block of a function annotation of our code will be shown as well as how it works:

This function is annotated to indicate that it takes one parameter and returns a tuple consisting

of two elements. The parameter extracted_text is expected to be a list of strings (List[str]), which

Ang
elo

s I
oa

nn
ou

 52

would typically contain the text that has been extracted from an image or document using OCR

(Optical Character Recognition) or a similar method. The return type is a tuple with two

elements: IdSide, which is an enumeration that represents the side of the ID (e.g., front or back)

and IdVersion, which is also an enumeration that indicates the version of the ID (e.g., old or

new design).

6.2.2 Python Unit Testing

Unit Testing

Unit testing is a software testing method where individual units or components of a software

are tested independently to ascertain if they operate as expected. A "unit" can be as small as a

function or as large as a complex class in an object-oriented programming context. The primary

goal of unit testing is to isolate each part of the program and show that the individual parts are

correct in terms of requirements and functionality.

Why Unit Testing is Useful

The utility of unit testing lies in its ability to help developers catch errors early in the

development cycle. By testing the smallest testable parts of an application, separately and

independently, it becomes much easier to pinpoint where a problem may be occurring. This

approach leads to several benefits: it simplifies the debugging process, enhances the quality of

the code, encourages changes and simplification of code, and provides documentation of the

system's units. Furthermore, unit tests ensure that code changes in the future do not break

existing functionality, a concept known as regression testing. Another critical advantage of unit

testing is that it facilitates Test-Driven Development (TDD). TDD is an advanced software

development process where the developer writes a test before writing a code snippet to fulfill

that test's requirement. The cycle of TDD involves writing a test, running it to see it fail (since

the code isn't written yet), writing the code, running the tests again to see them pass, and then

refactoring the code with confidence that it's still functioning correctly as the tests will confirm.

Ang
elo

s I
oa

nn
ou

 53

Unit Testing For OCR

Considering the necessity for rigorous testing in this project, it is imperative to employ unit

testing for a more effective evaluation of the tool. The following outlines the advantages of

utilizing unit testing in Python for the tool:

Accuracy and Reliability: OCR systems must accurately interpret and convert different types

of images into machine-encoded text. By employing unit tests, the accuracy of the OCR

algorithms can be verified on a variety of test images under controlled conditions. This helps to

confirm that the system reliably extracts text data such as names, ID numbers, and dates from

Cypriot IDs.

Algorithm Validation: With unit testing, each algorithmic component, such as those for

detecting text regions, character recognition, and format validation, can be individually tested.

For example, a test for the algorithm might be written that determines if an ID is old or new,

ensuring it consistently identifies the correct version despite variations in image quality or

layout.

Error Handling: Unit tests can be used to ensure that the OCR system gracefully handles

common errors, such as blurred or skewed images, and can still operate effectively in less-than-

ideal conditions. Testing for error conditions will help to improve the robustness of the OCR

application.

Python Unit Testing

In Python, unit tests are usually expressed using a built-in module named unittest. This module

comes with a wide variety of tools to construct and run tests, and it's part of Python's standard

library. The unittest framework provides a TestCase class that can be extended to create test

cases.

Ang
elo

s I
oa

nn
ou

 54

Below is an example of a unit test:

Method Checks that Explanation

assertEqual(a,b) a == b Asserts that the two values a

and b are equal

assertNotEqual(a,b) a != b Asserts that the two values a

and b are not equal

assertTrue(x) bool(x) is True Asserts that the expression x

evaluates to True

assertFalse(x) bool(x) is False Asserts that the expression x

evaluates to False

Table 2: Different methods that are used in unit testing.

In the code block above, the test_check_if_front method is designed to validate the

check_if_front function. The assertTrue method is used twice to assert that check_if_front

returns True for both new and old ID data, which would indicate that the data indeed

corresponds to the front side of the IDs. The string messages "new front" and "old front" are

optional messages that will be displayed if the assert fails, helping to identify which case failed

during testing.

So, when test_check_if_front is executed:

● It first calls new_front_data() to simulate the OCR data extraction from a new version

of a Cyprus ID's front side.

Ang
elo

s I
oa

nn
ou

 55

● Then, it passes this data to the check_if_front function and uses assertTrue to assert that

the result should be True. If check_if_front doesn't return True, the test fails, and "new

front" is printed as the failure message.

● Next, it does the same for old_front_data(), simulating an older version of the ID.

The use of assertTrue in this context is based on the expectation that check_if_front(data.texts())

should evaluate to True if the data provided is indeed from the front of a Cyprus ID. If the

function is working correctly, the unit test will pass without any error messages. If it's not, the

unit test will fail, and the associated message will help in quickly understanding what went

wrong.

Ang
elo

s I
oa

nn
ou

 56

Chapter 7: Evaluation

7.1 Evaluation Setup

For the evaluation of the tool, a 2021 MacBook Air is utilized for operating the necessary

actions. This system includes 8GB of unified memory and 512GB of SSD storage. It operates

on an M1 ARM processor, marking Apple's initial transition from traditional Intel CPUs to its

own ARM-based chips. This shift in processor architecture necessitates the use of an ARM-

compatible version of Visual Studio, specifically version 1.87.2, to accommodate the

differences from x86 architectures.

7.2 Execution Time

To measure the performance of the system that it is being tested at and the efficiency of the tool,

some performance tests have to be run. Using a command of:

In the code block above, -r is used to indicate that the image is the rear side of the ID and -f for

the front side of the ID.

This command will calculate these parameters:

● User Time (in seconds)

● System Time (in seconds)

● CPU Usage (%)

● Total Time (in seconds)

With that command, we will get this response:

Ang
elo

s I
oa

nn
ou

 57

From that response, we conclude that:

3.96s User: This time shows that the script was actively processing the commands for 3.96

seconds.

0.17s System: This time was spent by the system to support the script, like reading the

necessary files.

90% CPU: This indicates that the CPU was actively used 90% of the time while the script

was running, showing good CPU engagement.

4.558 Total: This is the overall time from start to finish for the script’s run, including both the

active processing and any waiting time.

To effectively monitor system performance, it's necessary to execute the tool repeatedly to

conduct thorough testing. Utilizing a Bash loop to run the script 100 times allows for

subsequent data extraction and analysis. This data can then be evaluated by calculating the

average, maximum, and minimum values.

Running it 100 times, the following results arise:

Category Average Maximum Minimum

User Time (s) 3.95s 3.97s 3.92s

System Time (s) 0.128s 0.17s 0.12s

Ang
elo

s I
oa

nn
ou

 58

CPU Usage (%) 97.4% 99% 90%

Total Time (s) 4.163s 4.558s 4.074s

Table 3: Running the script 100 times to benchmark the performance in user time, system time, CPU usage and

total time.

Figure 1:Visual representation of the user time, system time, CPU usage and total time in bar charts.

Running a single side of an ID, 100 times, provides these results:

Category Average Maximum Minimum

User Time (s) 0.825 0.860 0.810

System Time (s) 0.056 0.100 0.050

CPU Usage (%) 93.87 96.00 24.00

Ang
elo

s I
oa

nn
ou

 59

Total Time (s) 0.977 3.883 0.897

Table 4: Running the script 100 times to benchmark the performance for a single image in user time, system time,

CPU usage and total time.

Comparing the two tables, the table of a single image and the table that is using both side of the

ID:

Figure 2:The comparison of processing metrics between rear images and both sides of IDs

By comparing the two tables for processing metrics of rear images of IDs and both sides of IDs,

we can draw several insights:

1) Increased Processing Time: Processing both sides of IDs generally takes significantly

longer in terms of user time and total time compared to processing just the rear images.

2) Higher System Time: The system time, which could involve operating system tasks

necessary to support the application, is also higher when processing both sides of IDs.

3) CPU Utilization: CPU usage is consistently higher when processing both sides of IDs.

This heightened CPU usage points to increased computational demand, which is present

due to additional processing steps like more intensive image analysis and data

extraction processes.

Ang
elo

s I
oa

nn
ou

 60

4) Variability: The range between the maximum and minimum values in each category

(user time, system time, total time) is wider when processing both sides of IDs. This

increased variability suggests that the complexity of processing varies more

significantly across different ID scans when both sides are involved, due to variations

in image content and quality.

Ang
elo

s I
oa

nn
ou

 61

7.3 Confidence Level

The confidence level is a metric used to determine the accuracy of Tesseract OCR in identifying

characters during scans. A higher confidence level implies a stronger probability that the

character or word scanned is correctly identified. Lower confidence levels may indicate visual

issues hindering clear character recognition, or that the character is absent from the training

database. However, occurrences like these are infrequent since Tesseract OCR effectively

handles Greek, English, and Turkish characters.

To determine the confidence level for each field, a series of tests are conducted:

● Average confidence level per field for both front and back of IDs

● Overall average confidence level for the entirety of both sides of IDs

● Assessments of several IDs are conducted, ensuring the privacy and anonymity of the

ID providers, and the findings are outlined below:

Figure 3: The comparison of the average scores for each ID field in confidence score

It is evident that some fields consistently show very high confidence levels, whereas others are

notably low. A comparison will be made between the fields with the highest and lowest scores

(Gender versus Place of Issue).

Ang
elo

s I
oa

nn
ou

 62

Figure 4: The comparison between the gender field and the place of issue field

Further analysis and tests on the scanned IDs reveal that the 'Place of Issue' field fails to be

recognized correctly in the provided IDs. Conversely, the 'Gender' field achieved perfect scores

in all assessments. This discrepancy indicates that enhancements are crucial for the 'Place of

Issue' field to boost the tool's accuracy and reliability.

This need for improvement is underscored by a subsequent comparison of the three best and

three worst-performing fields:

Ang
elo

s I
oa

nn
ou

 63

Figure 5: The confidence level of the 3 highest performing fields and the 3 lowest performing fields

The analysis of these fields reveals significant inconsistencies. The 'Date of Birth' and 'Place of

Issue' fields, typically found on the back of an ID, and the 'ID Number' on the front, demonstrate

the necessity for further research and development of more refined and precise algorithms to

address these issues in future updates.

7.4 Summary

In summary, we evaluate the performance of Tesseract OCR in recognizing various fields across

ID documents. Tesseract OCR, known for its proficiency in processing Greek, English, and

Turkish characters, employs a confidence level metric to gauge its accuracy in character

recognition during scans. A high confidence level signifies accurate character identification,

while a low score may indicate potential visual obstacles or missing characters from the OCR’s

training database. However, such challenges are generally rare due to Tesseract's effective

processing capabilities. To assess the OCR’s accuracy comprehensively, multiple tests were

conducted on both the front and back of ID documents. These evaluations included measuring

the average confidence level per field and the overall average for all fields combined. Despite

maintaining strict confidentiality and anonymity in handling ID samples, our analysis led to

several insights.

Ang
elo

s I
oa

nn
ou

 64

Our findings reveal a distinct discrepancy in confidence levels among the fields analyzed.

Notably, the 'Gender' field consistently achieved perfect scores, highlighting its reliable

recognition. In stark contrast, the 'Place of Issue' field significantly underperformed, indicating

a failure in its accurate detection across the sampled IDs. This gap underscores a critical need

for targeted improvements in the OCR's algorithm, particularly in fields that are currently poorly

recognized. A further comparison of the top three and bottom three performing fields

emphasized the existing flaws. The 'Date of Birth' and 'Place of Issue', typically located on the

rear, and the 'ID Number' on the front, all require additional scrutiny. These results advocate for

the development of more sophisticated and accurate algorithms to enhance recognition

accuracy, ensuring Tesseract OCR can reliably interpret key document information in diverse

contexts. This summary serves as a pivotal reference for ongoing enhancements and

underscores the necessity for continuous development in OCR technology.

Ang
elo

s I
oa

nn
ou

 65

Chapter 8: Conclusions & Future Work

8.1 Difficulties Faced

Throughout the project, numerous challenges were encountered. A primary and significant

challenge was devising a logic for the OCR operation, including determining the relevant

keywords and their locations. Crafting detailed, step-by-step instructions to replicate the human

ability to effortlessly discern whether an ID is old or new, and its orientation, proved to be time-

consuming. Similarly, the task of developing an OCR tool capable of accurately capturing and

allocating data into appropriate fields presented difficulties. This is because the tool must

precisely identify each field's location, as well as its font, format, and presentation style, to

ensure the correct logic is applied for accurately reading and assigning data.

Furthermore, beyond the technical intricacies of programming the OCR to recognize and

process various elements, there's the added complexity of ensuring it adapts to inconsistencies

in ID designs and layouts. Variations in lighting, angles of capture, and physical condition of

the IDs further complicate the tool's ability to accurately interpret data. Achieving a level of

robustness where the tool can reliably operate under diverse and less-than-ideal conditions

requires extensive testing and iterative refinement. This iterative process is critical for

enhancing the tool's precision and reliability, making it adept at handling real-world variability

in ID documents. Additionally, the effort to maintain user privacy and data security while

processing sensitive information introduces another layer of complexity, underscoring the

importance of implementing stringent data protection measures.

Moreover, the continuous evolution of ID formats presents an ongoing challenge. As

governments update ID designs to incorporate advanced security features, the OCR tool must

be regularly updated to remain effective. This necessitates a flexible and scalable architecture

capable of accommodating new patterns, features, and technologies without extensive

overhauls. Engaging in constant research and development is essential to stay ahead of these

Ang
elo

s I
oa

nn
ou

 66

changes, requiring a commitment to learning and adaptation that extends beyond the initial

deployment of the tool.

In summary, developing an OCR tool for ID recognition is a multifaceted endeavor that extends

beyond the technical challenges of accurate data extraction. It involves a holistic approach that

considers the tool's adaptability to new ID formats, its usability by a broad audience, and the

imperative of safeguarding personal data. These considerations are critical for creating a tool

that is not only technically proficient but also practical and secure for everyday use.

8.2 Knowledge Acquired

Embarking on this project not only provided an opportunity to tackle a series of complex

problems but also served as a rich learning experience that extended across various domains of

software development, data processing, and project management. One of the most significant

areas of knowledge acquisition was in the realm of programming, particularly in Python,

facilitated by the use of Visual Studio Code as the primary development environment. The

project necessitated a deep dive into Python's ecosystem, leveraging its powerful libraries and

frameworks to work with a sophisticated Optical Character Recognition (OCR) tool. Among

these, the Tesseract Python library stood out as a critical component, offering extensive

functionalities for image processing and text extraction. The exploration of Tesseract, alongside

a host of other Python libraries, significantly enhanced my understanding of Python’s

capabilities, particularly in handling complex data processing tasks.

The project's demands led to a substantial improvement in my ability to develop and implement

logic. Crafting algorithms that could accurately interpret and classify information from varied

ID documents required not only technical knowledge but also a nuanced understanding of the

problem domain. This experience sharpened my analytical skills, enabling me to construct

detailed, step-by-step processes that the OCR tool could reliably execute. It was a lesson in

translating human cognitive processes—such as identifying an ID’s orientation or determining

its age—into programmable logic that a computer could follow, a task that proved both

challenging and immensely rewarding.

Ang
elo

s I
oa

nn
ou

 67

Learning to use Git and GitHub was another pivotal aspect of the project. These tools are

indispensable for modern software development, offering robust solutions for version control

and collaboration. Through Git, I mastered the art of managing code changes, ensuring that

every modification, whether a new feature or a bug fix, was tracked and documented. GitHub

served as the project's repository, a central hub where the fruits of my labor were stored, shared,

and safeguarded. This experience was not just about learning the commands and operations

necessary to commit and push code; it was an education in the best practices of collaborative

development, understanding how to structure a project in a way that facilitates teamwork and

transparency.

The project was also a profound lesson in problem-solving and innovation. From the outset, it

was clear that developing an effective OCR tool would involve navigating a maze of unforeseen

challenges. These ranged from technical hurdles, like adapting the tool to recognize and process

text across different ID formats, to more abstract problems. Each obstacle demanded a solution,

often requiring creative approaches that were not apparent at the beginning. This process of

identifying issues, hypothesizing solutions, and iterating based on results became a cycle of

learning in itself. It taught me the value of resilience and adaptability, qualities that are crucial

for any software developer facing the ever-evolving landscape of technology.

Furthermore, the project was an education in the importance of thorough testing and quality

assurance. Ensuring that the OCR tool performed reliably under a variety of conditions meant

adopting a rigorous testing framework, simulating as many different scenarios as possible to

uncover and correct any deficiencies. This aspect of the project highlighted the importance of

attention to detail and the need for a methodical approach to software development, where every

potential user interaction is considered, and every outcome is meticulously evaluated.

In addition to the technical skills and knowledge gained, the project was a lesson in project

management and planning. Balancing the various components of the work—coding, testing,

debugging, and documentation—required careful organization and time management. It

emphasized the importance of setting realistic goals and milestones, prioritizing tasks, and

adjusting plans as the project evolved. This experience was invaluable in understanding how to

Ang
elo

s I
oa

nn
ou

 68

manage complex projects efficiently, ensuring that progress is steady and aligned with the

project's objectives.

Lastly, the project underscored the significance of continuous learning and curiosity. The field

of software development is dynamic, with new tools, languages, and methodologies emerging

regularly. Keeping abreast of these developments and being willing to explore and adopt new

techniques is essential for staying relevant and effective as a developer. This project was a

testament to the power of learning, demonstrating how tackling real-world problems can lead

to the acquisition of a wealth of knowledge and skills.

In conclusion, this project was more than just an exercise in developing a functional OCR tool;

it was a comprehensive learning journey that touched on various aspects of software

development and project management. From enhancing my proficiency in Python and

familiarizing myself with essential tools like Git and GitHub to refining my problem-solving

skills and understanding the intricacies of project planning, the knowledge and experience

gained from this endeavor are invaluable. They have laid a solid foundation for my future

projects, equipping me with the skills, insights, and confidence to tackle even more challenging

problems in the field of software development.

8.3 Future Work

The journey through the development of the Optical Character Recognition (OCR) tool has laid

a solid foundation for what has been a markedly rewarding endeavor. However, the nature of

technological evolution and the ever-expanding scope of user requirements compel us to look

forward, envisioning enhancements that not only refine the tool’s capabilities but also broaden

its applicability and accessibility. In this "Future Works" section, we delineate a roadmap for

the advancement of our OCR tool, focusing on several pivotal areas aimed at maximizing its

efficacy and user experience.

Ang
elo

s I
oa

nn
ou

 69

8.3.1 Sophisticated Logic for Enhanced Accuracy

One of the primary objectives on our horizon is to develop a more sophisticated logic for our

algorithms. The motivation behind this enhancement is to ensure that, regardless of the lighting

conditions under which images are provided by the user, our OCR tool will still deliver accurate

results. Achieving this necessitates a multifaceted approach, including but not limited to,

advanced image preprocessing techniques to normalize lighting conditions, contrast adjustment

algorithms, and perhaps incorporating machine learning models trained to recognize text across

diverse illumination scenarios. This endeavor will involve extensive research and development,

experimenting with different algorithms to find the optimal balance between preprocessing

overhead and accuracy improvement.

8.3.2 Performance Optimization for Speed

In an era where speed is of the essence, making our OCR tool run faster is another critical area

of focus. This could involve exploring more efficient methodologies for text recognition, such

as optimizing our current algorithms for parallel processing, investigating the use of more

powerful OCR libraries, or leveraging hardware acceleration where possible. Additionally,

refining our codebase to eliminate bottlenecks and streamline data processing workflows will

be key. Performance profiling tools will play a crucial role in this process, helping us identify

and address areas where improvements can be made to enhance the tool’s operational speed

without compromising the quality of its output.

8.3.3 Comprehensive Testing for Uncharted Parameters

The diversity of human names and surnames presents a unique challenge for any OCR tool,

especially when it encounters unusual or less common names. Future work will include a

rigorous testing and evaluation phase to ensure our tool’s algorithms are robust enough to

handle a wide array of names and surnames from different cultures and languages. This will

likely involve expanding our dataset to include a more diverse set of names, enhancing our

tool’s ability to accurately recognize and process text that falls outside the parameters of what

Ang
elo

s I
oa

nn
ou

 70

has been previously encountered. Collaboration with linguists and cultural experts may also

provide valuable insights into improving our tool’s name recognition capabilities.

8.3.4 User-Friendly Interface and Web Application Development

To make our OCR tool more accessible and user-friendly, we envisage the development of a

web application that can offer OCR capabilities in real-time. This involves designing an

intuitive user interface that simplifies the process of uploading and processing images for OCR.

The interface should be clean, minimalistic, and guide the user through each step of the process,

providing helpful feedback along the way. Additionally, real-time OCR processing capabilities

would significantly enhance the user experience, offering instant results and the ability to adjust

or correct any inaccuracies immediately. This real-time functionality could be particularly

beneficial in scenarios where quick turnaround times are critical, such as processing identity

documents or forms in a business context.

8.3.5 Embracing the Future with Adaptability and Innovation

As we chart the course for future enhancements to our OCR tool, the underlying principles

guiding our efforts will be adaptability and innovation. The landscape of digital technology is

perpetually in flux, with new challenges and opportunities emerging at a rapid pace. Staying

ahead requires not only a commitment to continuous improvement, but also a willingness to

rethink and reinvent our approaches in response to new developments. The journey thus

provided valuable insights and a solid foundation upon which to build. However, the path ahead

is filled with possibilities that extend far beyond the current capabilities of our tool. By focusing

on enhancing accuracy under varying conditions, optimizing performance, broadening our

testing parameters to encompass a wider range of text scenarios, and developing a more user-

friendly and accessible platform, we are poised to not only meet the evolving needs of our users

but also redefine the standards of excellence in OCR technology.

In conclusion, the future of our OCR tool is one of ambitious expansion and refinement. The

roadmap outlined in this section underscores our commitment to pushing the boundaries of what

Ang
elo

s I
oa

nn
ou

 71

is possible, driven by a relentless pursuit of accuracy, efficiency, and user-centric design.

Through diligent research, innovative engineering, and a deep understanding of the users' needs,

a new advanced OCR tool that not only meets but exceeds the expectations of those who rely

on it, could be developed for now, and in the years to come.

Ang
elo

s I
oa

nn
ou

 72

Bibliography

[1] C. S. Smith, “What Is OCR (Optical Character Recognition) Technology?,” Forbes.

Accessed: May 12, 2024. [Online]. Available:

https://www.forbes.com/sites/technology/article/what-is-ocr-technology/

[2] C. J. Bashe, W. Buchholz, and N. Rochester, “The IBM Type 702, An Electronic Data

Processing Machine for Business,” J. ACM, vol. 1, no. 4, pp. 149–169, Oct. 1954, doi:

10.1145/320783.320784.

[3] A. Vachon, L. Ordonez, and J. R. Fonseca Cacho, “Global Postal Automation,” in

Intelligent Systems and Applications, K. Arai, Ed., Cham: Springer International

Publishing, 2022, pp. 135–154. doi: 10.1007/978-3-030-82199-9_10.

[4] R. Smith, “An Overview of the Tesseract OCR Engine,” in Ninth International

Conference on Document Analysis and Recognition (ICDAR 2007), Sep. 2007, pp. 629–

633. doi: 10.1109/ICDAR.2007.4376991.

[5] Ø. Due Trier, A. K. Jain, and T. Taxt, “Feature extraction methods for character

recognition-A survey,” Pattern Recognit., vol. 29, no. 4, pp. 641–662, Apr. 1996, doi:

10.1016/0031-3203(95)00118-2.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi:

10.1109/5.726791.

[7] S. Rice, J. Kanai, and T. Nartker, “An Evaluation of OCR Accuracy,” Jan. 1993.

[8] S. Mori, C. Y. Suen, and K. Yamamoto, “Historical review of OCR research and

development,” Proc. IEEE, vol. 80, no. 7, pp. 1029–1058, Jul. 1992, doi:

10.1109/5.156468.

[9] H.-Y. Ma, H.-H. Huang, and C.-L. Liu, “Reading between the Lines: Image-Based

Order Detection in OCR for Chinese Historical Documents,” Proc. AAAI Conf. Artif.

Intell., vol. 38, no. 21, Art. no. 21, Mar. 2024, doi: 10.1609/aaai.v38i21.30572.

Ang
elo

s I
oa

nn
ou

 73

[10] I. J. Goodfellow et al., “Generative Adversarial Networks.” arXiv, Jun. 10, 2014. doi:

10.48550/arXiv.1406.2661.

[11] “Abby OCR Reader,” ABBYY. Accessed: May 12, 2024. [Online]. Available:

https://www.abbyy.com/ocr-sdk/

[12] “OCRopus,” GitHub. Accessed: May 12, 2024. [Online]. Available:

https://github.com/ocropus

[13] M. A. M. Salehudin et al., “Analysis of Optical Character Recognition using EasyOCR

under Image Degradation,” J. Phys. Conf. Ser., vol. 2641, no. 1, p. 012001, Nov. 2023,

doi: 10.1088/1742-6596/2641/1/012001.

[14] “[PDF] Designing a Real-Time-Based Optical Character Recognition to Detect ID Cards

| Semantic Scholar.” Accessed: May 12, 2024. [Online]. Available:

https://www.semanticscholar.org/paper/Designing-a-Real-Time-Based-Optical-

Character-to-ID-Iskandar-Kesuma/4cb5fc12437cd1c271ef183804c4b575e8990716

[15] W. Satyawan et al., “Citizen Id Card Detection using Image Processing and Optical

Character Recognition,” J. Phys. Conf. Ser., vol. 1235, no. 1, p. 012049, Jun. 2019, doi:

10.1088/1742-6596/1235/1/012049.

[16] Dr. Y. Perwej, S. A. Hannan, A. Asif, and A. Mane, “An Overview and Applications of

Optical Character Recognition,” Int. J. Adv. Res. Sci. Eng. IJARSE, vol. Vol. 3, p. Pages

261-274, Jun. 2014.

[17] C. Patel, A. Patel, and D. Patel, “Optical Character Recognition by Open source OCR

Tool Tesseract: A Case Study,” Int. J. Comput. Appl., vol. 55, pp. 50–56, Oct. 2012, doi:

10.5120/8794-2784.

[18] C. Isaza, J. Vargas, C. Gaviria, and L. Hernández, “Automatic OCR system for

colombian DNIs,” in 2012 XVII Symposium of Image, Signal Processing, and Artificial

Vision (STSIVA), Sep. 2012, pp. 295–300. doi: 10.1109/STSIVA.2012.6340598.

[19] W. Bieniecki, S. Grabowski, and W. Rozenberg, “Image Preprocessing for Improving

OCR Accuracy,” Jun. 2007, pp. 75–80. doi: 10.1109/MEMSTECH.2007.4283429.

Ang
elo

s I
oa

nn
ou

 74

[20] J. Memon, M. Sami, R. A. Khan, and M. Uddin, “Handwritten Optical Character

Recognition (OCR): A Comprehensive Systematic Literature Review (SLR),” IEEE

Access, vol. 8, pp. 142642–142668, 2020, doi: 10.1109/ACCESS.2020.3012542.

Ang
elo

s I
oa

nn
ou

	Chapter 1: Introduction
	1.1 Overview
	1.2 Aims and Objectives
	1.2.1 Understanding OCR Technology
	1.2.2 Identifying Issues and Limitations
	1.2.3 Optimization for Cyprus Personal IDs
	1.2.4 Application Areas and Business Implications
	1.2.5 Exploring the Capabilities of Google Tesseract

	1.3 Structure of Thesis

	Chapter 2: Background
	2.1 Image processing and OCR
	2.1.1 Inception & Advancements of OCR
	2.1.2 Early Improvements in OCR Technology
	2.1.3 Integration with Digital Scanners
	2.1.4 Advancements in Image Processing Algorithms
	2.1.5 The Impact of Machine Learning and AI on OCR Technology
	2.1.6 Language and Character Set Expansion
	2.1.7 Real-Time OCR and Mobile Applications
	2.1.8 Cloud-Based OCR Services
	2.1.9 OCR in Complex Document Analysis
	2.1.10 Integration with Other Technologies
	2.1.11 Future Directions

	2.2 OCR Libraries
	2.2.1 Tesseract
	2.2.1.1 Historical Background and Evolution
	2.2.1.2 Core Features and Capabilities
	2.2.1.3 Advancements in Accuracy and Performance
	2.2.1.4 Application in Diverse Domains
	2.2.1.5 Integration and Extensibility
	2.2.1.6 Community Support and Development

	2.2.2 ABBYY
	2.2.3 OCRopus Overview
	2.2.4 EasyOCR
	2.2.5 OCR Libraries Comparison
	2.2.6 Why Tesseract was chosen

	Chapter 3: Related Work
	3.1 Designing a Real-Time-Based Optical Character Recognition to Detect ID Cards
	3.1.1 Software Used and Application
	3.1.2 Testing Methodology
	3.1.3 Results
	3.1.4 Effectiveness

	3.2 Citizen ID Card Detection Using Image Processing and Optical Character Recognition
	3.2.1 Software Used and Application
	3.2.2 An Overview And Applications Of Optical Character Recognition
	3.2.3 Optical Character Recognition by Open Source OCR Tool Tesseract: A Case Study
	3.2.4 Automatic OCR system for Colombian DNIs
	3.2.5 Image Preprocessing for Improving OCR Accuracy
	3.2.6 Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR)

	Chapter 4: Cyprus ID Analysis
	4.1 Overview
	4.2 Layout
	4.3 Linguistic Analysis
	4.4 Fixed Text on IDs
	4.5 Data-types of fields
	4.6 Location
	4.6 Type of Data
	4.7 Summary

	Chapter 5: Cyprus ID OCR Tool Design
	5.1 Algorithms
	5.1.1 Detect Front or Rear Side
	5.1.2 Detect New or Old ID
	5.1.3 Parse Information

	5.2 Tool Layout
	5.2.1 Cyprus ID
	5.2.2 Tesseract
	5.2.3 File Utils
	5.2.4 String Utils

	Chapter 6: Implementation and Testing
	6.1 Introduction
	6.1.1 Python Libraries
	6.1.2 Tesseract

	6.2 Testing
	6.2.1 Python Function Annotations
	6.2.2 Python Unit Testing

	Chapter 7: Evaluation
	7.1 Evaluation Setup
	7.2 Execution Time
	7.3 Confidence Level
	7.4 Summary

	Chapter 8: Conclusions & Future Work
	8.1 Difficulties Faced
	8.2 Knowledge Acquired
	8.3 Future Work
	8.3.1 Sophisticated Logic for Enhanced Accuracy
	8.3.2 Performance Optimization for Speed
	8.3.3 Comprehensive Testing for Uncharted Parameters
	8.3.4 User-Friendly Interface and Web Application Development
	8.3.5 Embracing the Future with Adaptability and Innovation

	Bibliography

