
Department of Electrical and Computer Engineering

Intelligent Monitoring of Hardware Components Using

Artificial Neural Networks: A Case study Using

Networks on Chip

Andreas Savva

A Dissertation Submitted to the University of Cyprus in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy

June, 2024

And
rea

s S
av

va

© Andreas Savva, 2024

And
rea

s S
av

va

VALIDATION PAGE

Doctoral Candidate: Andreas Savva

Doctoral Thesis Title: Intelligent Monitoring of Hardware Components Using

Artificial Neural Networks: A Case study Using Networks on Chip

The present Doctorate Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering, and was approved on March 5, 2024 by the members of the Examination

Committee.

Committee Chair
Dr. Georgios Ellinas, Professor

Research Supervisor

Dr. Theocharis Theocharides, Associate Professor

Research Supervisor

Dr. Chrysostomos Nicopoulos, Associate Professor

Committee Member
Dr. Maria Michael, Associate Professor

Committee Member
Dr. Panayiotis Kolios, Assistant Professor

Committee Member
Dr. Panayiota Nikolaou, Lecturer in Computer Engineering

iii

And
rea

s S
av

va

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original work

of my own, unless otherwise mentioned through references, notes, or any other statements.

.

Andreas Savva

iv

And
rea

s S
av

va

Abstract

The aim of this dissertation is to design and develop an intelligent way to monitor

hardware with the use of robust Artificial Neural Networks (ANNs). Power con-

sumption, reliability and robustness are major limitations in hardware today and

researchers have been constantly working on reducing those issues. ANNs can be

used for monitoring and detection purposes since they have excellent characteristics

such as generalization capability, robustness and excellent prediction results. For the

development of the intelligent monitoring, we will use NoCs (Networks-on-Chips)

as case study. NoCs provide scalable on-chip communication and are expected to

be the dominant interconnection architectures in multicore and manycore systems.

Several attempts have been made to reduce the power consumption at both the

circuit level and the system level. Most past research efforts have proposed selective

on/off state switching based on system-level information based on utilization levels.

Most of these proposed algorithms focus on a pessimistic and simple static threshold

mechanism which determines the turning off/on. This work presents an intelligent

dynamic power management policy with improved predictive abilities based on

supervised online learning of the system status (i.e. expected future utilization

link levels), where links are turned off and on via the use of a small and scalable

neural network. Simulation results with various synthetic traffic models over various

network topologies show that the proposed work can reach up to 13% power savings

when compared to a trivial threshold computation, at very low (< 4%) hardware

overheads.

Additionally, this work presents a design exploration framework for developing a

high-level ANN for fault detection in hardware systems. Designing an ANN in order

to be used for fault detection purposes includes different parameters. Through this

work, those parameters are presented and analyzed based on simulations. Moreover,

after the development of the ANN, in order to evaluate it, a case study scenario based

v

And
rea

s S
av

va

on Networks on Chip is used for detection of inter router link faults. Simulation

results with various synthetic traffic models show that the proposed work can detect

up to 99% of inter-router link faults with a delay less than 60 cycles. Added to this, the

size of the ANN is kept relatively small and can be implemented in hardware easily.

Synthesis results indicate an estimated amount of 0.0633mW power consumption

per neuron for the implemented ANN when computing a complete cycle.

Lastly, this work also provides a study for analyzing the robustness of ANNs used

for prediction purposes, based on weights alterations and an intelligent method is

developed for increasing the robustness of the ANNs with minimum additional

hardware overheads. Simulation results with the use of Princeton Application

Repository for Shared-Memory Computers (PARSEC) benchmarks show that our

method can maintain the robustness of the ANNs at high levels (around 98% pre-

diction accuracy) with minimum additional hardware overheads.

Overall, the contributions of this dissertation strongly advance the state-of-the-

art in the field of intelligent monitoring of different hardware and NoCs, combined

with the use of innovative intelligent methods and techniques based on ANNs.

vi

And
rea

s S
av

va

Περίληψη

Ο στόχος αυτής της εργασίας είναι να σχεδιάσει και να αναπτύξει ένα έξυπνο τρόπο

παρακολούθησης υλικού και δικτύων με τη χρήση εύρωστων Τεχνητών Νευρωνικών Δικ-

τύων (ΤΝΔ). Η κατανάλωση ρεύματος, τα σφάλματα σύνδεσης και η ευρωστία αποτελούν

σημαντικους περιορισμούς στο υλικό σήμερα και οι ερευνητές εργάζονται συνεχώς για τη

μείωση αυτών των προβλημάτων. Τα ΤΝΔ μπορούν να χρησιμοποιηθούν για σκοπούς

παρακολούθησης και ανίχνευσης αφού έχουν εξαιρετικά χαρακτηριστικά όπως ικανότητα

γενίκευσης, ευρωστία και εξαιρετικές δυνατότητες πρόβλεψης. Για τη δημιουργία του

έξυπνου τρόπου παρακολούθησης, θα χρησιμοποιήσουμε τα Δίκτυα σε Τσιπ (ΔΣΤ) σαν

σενάριο μελέτης. Τα ΔΣΤ παρέχουν επεκτάσιμη επικοινωνία στα τσιπ και αναμένεται να

είναι οι κυρίαρχες αρχιτεκτονικές δισύνδεσης σε συστήματα πολλαπλών πυρήνων.

΄Εχουν γίνει αρκετές προσπάθειες για μείωση της κατανάλωσης ισχύος τόσο σε επίπεδο

κυκλώματος όσο και σε επίπεδο συστήματος. Οι περισσότερες προηγούμενες ερευνητικές

προσπάθειες έχουν προτείνει επιλεκτική εναλλαγή κατάστασης με απενεργοποίηση και

ενεργοποίηση με βάση πληροφορίες σε επίπεδο συστήματος με βάση τα επίπεδα χρήσης.

Οι περισσότεροι απ’ αυτούς τους μηχανισμούς επικεντρώνονται σε έναν απλό μηχανισμό

στατικού ορίου το οποίο καθορίζει την απενεργοποίηση/ενεργοποίηση.

Μέσα από τη δουλειά μας παρουσιάζουμε μια έξυπνη και δυναμική πολιτική διαχείρησης

ενέργειας με βελτιωμένες προγνωστικές ικανότητες που βασίζεται σε εποπτευόμενη εκ-

μάθηση της κατάστασης του συστήματος (δηλαδή αναμενόμενα μελλοντικά επίπεδα χρήσης

συνδέσεων), όπου οι σύνδεσμοι απενεργοποιούνται και ενεργοποιούνται μέσω της χρήσης

ενός μικρού και επεκτάσιμου νευρωνικού δικτύου. Τα αποτελέσματα προσομοίωσης μέσω

του πλαισίου το οποίο αναπτύξαμε με διάφορα μοντέλα συνθετικής και ρεαλιστικής κυκλο-

φορίας σε διάφορες τοπολογίες δικτύων δείχνουν ότι ο προτεινόμενος μηχανισμός μπορεί

να φτάσει εώς και 13% εξοικονόμηση ενέργειας σε σύγκριση με ένα τετριμμένο μηχανισμό

υπολογισμού ορίου, σε πολύ χαμηλά (4%) γενικά έξοδα υλικού.

Επιπλεόν, αυτή η δουλειά παρουσιάζει ένα πλαίσιο εξερεύνησης σχεδιασμού για την

vii

And
rea

s S
av

va

ανάπτυξη ενός τεχνητού νεωρωνικού δικτύου υψηλού επιπέδου για την ανίχνευση σφαλμάτων

σε συστήματα υλικού. Ο σχεδιασμός ενός ΤΝΔ προκειμένου να χρησιμοποιηθεί για

σκοπούς ανίχνευσης σφαλμάτων περιλαμβάνει διάφορες παραμέτρους. Μέσα από αυτή

την εργασία, αυτές οι παράμετροι παρουσιάζονται και αναλύονται με βάση προσομοιώ-

σεις. Επιπλέον, μετά την ανάπτυξη του ΤΝΔ, για την αξιολόγησή του, χρησιμοποιεί-

ται ένα σενάριο μελέτης βασισμένο σε ΔΣΤ για τον εντοπισμό σφαλμάτων σύνδεσης

μεταξύ των δρομολογητών. Τα αποτελέσματα προσομοίωσης με διάφορα μοντέλα κυκλο-

φορίας δείχνουν ότι ο προτεινόμενος μηχανισμός μπορεί να ανιχνεύσει έως και το 99%

των σφαλμάτων σύνδεσης μεταξύ των δρομολογητών με καθυστέρηση μικρότερη από 60

κύκλους. Επιπλέον, το μέγεθος του ΤΝΔ διατηρείται σχετικά μικρό και μπορεί να εφαρ-

μοστεί εύκολα σε υλικό. Τα αποτελέσματα της σύνθεσης υποδεικνύουν μια εκτιμώμενη

ποσότητα κατανάλωσης ισχύος 0,0633mW ανά νευρώνα για το υλοποιημένο ΤΝΔ κατά

τον υπολογισμό ενώς πλήρους κύκλου.

Τέλος, αυτή η εργασία παρέχει επίσης μια μελέτη για την ανάλυση της ευρωστίας

των ΤΝΔ που χρησιμοποιούνται για σκοπούς πρόβλεψης, με βάση τις αλλαγές βαρών και

αναπτύσσεται επίσης μια έξυπνη μέθοδος για την αύξηση της ευρωστίας με ελάχιστα πρόσ-

θετα έξοδα υλικού. Τα αποτελέσματα προσομοίωσης με τη χρήση ρεαλιστικών μοντέλων

κίνησης με σημεία αναφοράς από το Princeton Application Repository for Shared-

Memory Computers (PARSEC) benchmark suite δείχνουν ότι η μέθοδός μας μπορεί να

διατηρήσει την ευρωστία των ΤΝΔ σε υψηλά επίπεδα (περίπου 98% ακρίβεια πρόβλεψης)

με ελάχιστα πρόσθετα έξοδα υλικού.

Συνολικά, οι συνεισφορές αυτής της διατριβής προάγουν έντονα την τελευταία λέξη

της τεχνολογίας στον τομέα της έξυπνης παρακολούθησης υλικού και ΔΣΤ σε συνδυασμό

με τη χρήση καινοτόμων έξυπνων μεθόδων και τεχνικών που βασίζονται σε ΤΝΔ.

viii

And
rea

s S
av

va

Acknowledgments

I would like to express my deepest gratitude to everyone who has supported me

through the completion of this dissertation. Firstly, I would like to thank my su-

pervisors Dr. Theocharis Theocharides and Dr. Chrysostomos Nicopoulos for their

unwavering guidance and support. I would also like to thank the University of

Cyprus for providing all the necessary resources needed for the completion of this

work. On a personal note, I would like to express my appreciation to my family and

friends for their encouragement and support through this journey.

ix

And
rea

s S
av

va

To my family.

This work was possible because of their strength, wisdom, and love.

x

And
rea

s S
av

va

Publications

Journal Papers

[J1]. A. Savva, T. Theocharides, and C. Nicopoulos, “Robustness of Artificial Neural

Networks Based on Weight Alterations Used for Prediction Purposes," MDPI Algo-

rithms 2023, 16, 322, 2023.

[J2]. A. Savva, T. Theocharides, and C. Nicopoulos, “A Design Space Exploration

Framework for ANN-Based Fault Detection in Hardware Systems," Journal of Elec-

trical and Computer Engineering, Hindawi, 2017.

[J3]. A. Savva, T. Theocharides, and V. Soteriou, “Intelligent On/Off Dynamic Link

Management for On-Chip Networks," Journal of Electrical and Computer Engineering,

vol. 2012, Article ID: 107821, 2012.

Conference Papers

[C1]. A. Savva, T. Theocharides, and V. Soteriou, “Intelligent On/Off Dynamic Link

Management for On-Chip Networks," in Proc. IEEE Annual Symposium on ISVLSI,

2011, pp. 343 - 344.

xi

And
rea

s S
av

va

Contents

1 Introduction 1

1.1 General Introduction . 1

1.2 Motivation - Goals . 4

1.3 Thesis Contributions . 5

1.4 Thesis Organization . 6

2 Background 8

2.1 ANN and Prediction Related Work . 10

2.2 Link Dynamic Power Management . 11

2.3 Fault Detection in Networks on Chip 14

2.4 Robust Techniques for ANNs . 15

3 Experimental Framework 18

3.1 Designing Exploration Framework for NoCs 18

3.2 Processing Units . 20

3.3 General for NoC Simulator . 21

3.4 General for ANNs Development . 23

3.5 Framework Methodology . 25

3.5.1 ANN Training . 27

3.5.2 Simulation Decisions . 28

4 Intelligent Dynamic Link Management for Hardware/NoCs 29

4.1 Introduction . 29

4.2 Power Management for on-chip Interconnects 29

4.3 ANN-Based Threshold Computation Methodology 31

4.3.1 Static Threshold Computation for Off/On Links 31

4.3.2 Mechanism Overview . 32

xii

And
rea

s S
av

va

4.3.3 Intelligent Threshold Computation 34

4.3.4 Base (4x4) ANN Operation and Hardware Architecture 37

4.4 Hardware Optimizations and Tradeoffs 38

4.5 Simulations and Results . 41

4.6 ANN Hardware Overheads - Synthesis Results 43

4.7 Comparison with Related Works . 45

4.8 Conclusion . 47

5 ANN-Based Fault Detection in Hardware Systems / NoCs 48

5.1 Introduction . 48

5.2 ANN Mechanism Overview . 49

5.2.1 Scalability - ANN partitioning 50

5.2.2 ANN Development for Fault Detection 53

5.2.3 (4x5) ANN Based Model . 54

5.2.4 ANNs Parameters and Training 54

5.2.5 Simulation Decisions for Fault Detection 58

5.2.6 Topology Exploration Setup – Adaptability in Various Hard-

ware Configurations . 60

5.3 ANN Costs and Power Consumption 62

5.4 Comparison with Related works . 62

5.5 Conclusion . 65

6 Robustness of ANNs Based on Weight Alterations Used for Prediction

Purposes 67

6.1 Introduction . 67

6.2 ANNs and Robustness . 68

6.3 Methodoogy . 69

6.3.1 Development of the ANNs and Network Traffic 69

6.3.2 Simulations to Verify How the Prediction Accuracy of the

ANNs is Generally Affected . 71

6.3.3 More In-depth Simulations and Explanations for the Robust-

ness of the ANNs Based on Weight Alterations 73

6.3.4 Replication of the Most Important Neurons/Connections . . . 75

6.4 Comparison with Related Works . 79

xiii

And
rea

s S
av

va

6.5 Conclusions . 81

7 Conclusions and Future Directions 83

7.1 Conclusions . 83

7.2 Future Research Directions . 85

7.2.1 CPU Prediction and Hardware Vulnerabilities Prediction . . . 86

7.2.2 Memory Fault Prediction . 87

xiv

And
rea

s S
av

va

List of Figures

3.1 NoC Architecture. 19

3.2 Mesh and Torus Architectures. 20

4.1 Power savings of a trivial threshold case compared to no on/off links

case. 32

4.2 (a) ANN prediction with NoCs and an 8×8 network partition into four

4×4 networks with their ANNs, (b) Structure of the Neural Network. 34

4.3 Neuron Computations. 34

4.4 Power savings versus CMOS hardware overheads corresponding to

various sizes of ANN monitoring regions in a NoC. 36

4.5 Main steps of a 4×4 ANN predictor. 37

4.6 ANN hardware architecture and its hardware realizations. 39

4.7 Power savings for 17, 16 and 15 neurons in the hidden layer of the

ANN. 40

4.8 Power savings for different training weight bit representations. . . . 40

4.9 Power savings for 8x8 mesh and 8x8 torus networks for the ANN

based technique, static threshold technique and no on/off technique. 42

4.10 Average network throughput comparisons for 8x8 mesh and torus

networks. 43

4.11 Energy consumption for an 8x8 network. 44

4.12 Average packet latency for the cases where ANN-based mechanism is

used, when trivial case is used and when there is no on/offmechanism. 44

5.1 Overview of the ANN detection process. 50

5.2 Different NoC partitions: 4x4, 5x4 and 4x5 partition. 51

5.3 Resulting RoC curves for 4x4, 4x5 and 5x4 partitions. 52

xv

And
rea

s S
av

va

5.4 ANN architecture with the input, hidden and output layers for detec-

tion of fault in whole ANN. 54

5.5 ANN architecture with the input, hidden and output layers for detec-

tion of fault in router. 55

5.6 Training, Validation and Testing results. 56

5.7 RoC graphs for different neurons in hidden layer. 57

5.8 Results for different cycle time intervals. 60

5.9 Resulting RoC graphs for different sentinel values. 61

5.10 Detection results for different traffic patterns with three different in-

jection rates (0.1 – 0.3) and three different fault injection cycles (0, 32K,

64K). 63

6.1 Structure of the neural network. 70

6.2 General results for checking all weights: one bit error. 72

6.3 General results for checking only input weights: one bit error. 72

6.4 Flowchart presenting the process of weight alterations. 73

6.5 Percentage of correct predictions for different weight/bit alteration

cases and different ANN sizes. 76

6.6 Simulation results for different ANN sizes and different numbers of

neuron replication. 77

6.7 Structure of the neural network with redundant neurons/connections. 78

6.8 Steps for replicating the most important neurons/connections for ro-

bustness. 78

6.9 Average percentage of correct predictions for different weight/bit al-

teration cases with redundant neurons/connections. 79

xvi

And
rea

s S
av

va

List of Tables

2.1 Description of the different work categories. 9

3.1 Summary of the key characteristics of PARSEC benchmarks used for

the purposes of this work. 24

3.2 Decision steps for the exploration framework for the ANNs. 26

3.3 Decision steps for the framework. 26

4.1 Power savings/hardware overhead comparisons. 46

5.1 ANN configurations with different number of neurons in the hidden

layer. 57

5.2 ANN configurations for different sentinel values. 58

5.3 Comparisons with related research. 64

6.1 Explanations for different simulation cases. 74

6.2 Comparisons with related research. 80

xvii

And
rea

s S
av

va

List of Abbreviations

ANN Artificial Neural Network

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neural Networks

CPU Central Processing Unit

DNN Dynamic Neural Network

DMR Dual Modular Redundancy

DRAM Dynamic Random Access Memory

DVFS Dynamic Link Voltage and Frequency Scaling

DVS Dynamic Link Voltage Scaling

GPNoC General Purpose Simulator for Networks on Chip

IDS Intrusion Detection System

ITRS International Technology Roadmap of Semiconductors

LSTM Long Short-Term Memory

LUT Lookup Table

MAC Multiply Accumulate Operation

NN Neural Network

NoC Network on Chip

n −MR n-Modular Redundancy

OCP Open Core Protocol

ORION Power-Performance Simulator for Interconnection Networks

PARSEC Princeton Application Repository Shared Memory Computers

PE Processing Element

PoPNet Population Network Simulator

QoS Quality of Service

RFP Robustness-Aware Filter Pruning

xviii

And
rea

s S
av

va

RISC Reduced Instruction Set Computer

ROC Receiver Operating Characteristic

SoC System on Chip

SRAM Static Random Access Memory

SYN Synchronization Packets

USB Universal Serial Bus

VC Virtual Channel

VLSI Very Large-Scale Integration

xix

And
rea

s S
av

va

Chapter 1

Introduction

1.1 General Introduction

Nowadays, with the rapid evolution of hardware, having reliable hardware com-

ponents has become of great importance. Power consumption, reliability and ro-

bustness however, are major limitations in hardware today and researchers have

been constantly working on reducing those issues. Monitoring the hardware and

providing intelligent solutions has been given significant attention from the research

community. For the purposes of this work, Networks on Chip (NoC) will be used as

case study.

NoCs provide scalable on-chip communication and are expected to be the dom-

inant interconnection architectures in multicore and manycore systems. NoCs bor-

rowed many concepts and techniques from packet-switched computer networks and

they provide high performance and reliability. NoCs scale better than traditional

forms of on-chip interconnect and they have better performance characteristics.

Based on those characteristics, using NoCs technologies for the future generations

has become of great importance. NoCs organize the communication between oper-

ating modules located on the chip and ensures maximum data transfer speeds and

reduction in the total number of necessary physical connections. NoCs are trend

to be an emerging technology which can benefit from the ideas of network systems

architecture – switching architectures and will be used as case study for our work.

Some of the most important concerns in designing hardware and networks in

general are the power consumption and fault tolerance. For the purposes of propos-

ing intelligent monitoring techniques and providing optimized solutions for these

1

And
rea

s S
av

va

issues a design exploration framework must be developed first and based on this

framework new intelligent techniques/mechanisms will be proposed. For the devel-

opment of the intelligent framework, analysis and evaluation of all the parameters

of the NoC with the use of Artificial Neural Networks (ANNs) will be presented and

analyzed for high level power management, fault detection and ANN robustness.

While implementing an exploration framework, there are many issues to deal

with, which have inspired researcher’s attention. Starting with the NoC architecture

different parameters should be analyzed and measured for optimal design. It should

be noted here that building a simulator for NoCs from scratch it’s not a thesis

objective and we can rely on an existing simulator which will be altered for the

purposes of our work. Additionally, determining the ANN network structure, the

number of neurons in hidden/output layers and the procedure of the ANN training

are some of those issues. The developed NoC and ANNs are explained and evaluated

and are adaptable in many different hardware systems. First step of this work is to

identify and analyze all the main steps needed for this framework. The developed

exploration framework will help us to develop and evaluate new techniques for the

NoCs and ANNs. All the necessary steps for designing such techniques will be

analyzed, explained and evaluated.

Power consumption, is a major limitation in hardware and NoCs today and re-

searchers have been constantly working on reducing both dynamic and static power.

Motivated by the findings of the previous works for power consumption, we pro-

pose the use of Artificial Neural Networks as a dynamic link power consumption

management mechanism, by utilizing application traffic information. Based on their

ability to dynamically be trained to variable scenarios, ANNs can offer flexibility and

high prediction capabilities [1]. An ANN-based mechanism is developed to intelli-

gently compute dynamically which links can be turned off and on during discrete

time intervals. The ANN receives link utilization data in discrete time intervals,

and predicts the links that should be turned off or on based on appropriate training.

ANNs can be dynamically trained to new application information, and have been

proven that they can offer accurate prediction results in similar scenarios [2]. ANNs

can be efficiently designed in hardware provided they remained relatively small,

through efficient resource sharing and pipelining. Furthermore, by partitioning the

NoC, individual small ANNs can be assigned to monitor each partition indepen-

dently, and in parallel monitor the entire network. We introduce topology-based

2

And
rea

s S
av

va

directed-training as a pre-training scheme, using guided simulation, which helps to

minimize the large training set and the ANN complexity.

One major problem which affects the reliability in hardware systems is the pres-

ence of different types of faults. These faults change the expected behavior of a

hardware system and can be temporary or permanent. Temporary faults occur most

of the times because of the cross-talks and noise. Permanent faults occur due to man-

ufacturing defects. Fault detection in hardware systems and networks remains one

of the top challenges and the development of an intelligent fault-detection scheme

is needed. For the purposes of developing an intelligent fault detection mechanism

with the use of ANNs through the developed framework, a case-study scenario

based on NoCs is used.

In future on-chip generations, there will be a huge increase in faults [3], [4].

According to ITRS (International Technology Roadmap for Semiconductors), in the

near future, the manufacturing defect rate will reach approximately up to 1000

defects/m2 [4]. Interconnection faults can potentially create disconnected networks

and as a result network will not be able to function properly. Studies show that

complex error detection schemes may require high energy dissipation and huge area

overheads, which have direct impact on the performance of the systems introducing

also extra latencies [5], [6]. The fault detection of the NoCs systems can be done

based on the testing of the routers, interconnects and the processing elements. Many

efforts have been made in order to detect faults in hardware systems and NoCs which

include different fault testing/detection strategies [7]–[9]. Most of them present low

level prediction mechanisms. Additionally with the new proposed intelligent fault

detection mechanism our work focuses on the analysis of different aspects of the

framework for high level fault detection with the use of ANNs. Emphasis is placed

on the topological analysis of ANN networks and on the different parameters needed

for the design of the ANN for this purpose.

Additionally with the above, neural networks provide state of the art results

for most machine learning tasks. Unfortunately, they are vulnerable to changes.

This makes it difficult to apply them in critical areas [10]. While neural networks

have achieved prediction capabilities, their accuracy drops in the presence of small

perturbations. One of the main research goals of the analysis of robustness is to

propose different solutions / architectures with increased robustness [11]. This is

probably one of the fundamental problems that need special attention from the

3

And
rea

s S
av

va

researchers in the years to come [11]. Till now, researchers were concentrated on

comparing results based on having/not having adversarial machine learning. Our

work will provide a study for robustness based on weights alterations for ANNs.

Discussion of the robustness of neural networks to changes of weights that might

affect the prediction results will be presented and a robustness technique for ANNs

will be developed.

1.2 Motivation - Goals

Power consumption, reliability and robustness for hardware and networks in general

are some of the most important aspects that researchers have to deal with nowadays.

In order to be able to propose new intelligent methods/techniques to deal with these

issues, an intelligent framework is needed. First part of this thesis will introduce

and develop an intelligent exploration framework which will analyze and evaluate

all the important parameters of NoCs, which will be used as case study for our

work, with the use of Artificial Neural Networks. Our framework will provide an

opportunity for the interconnection network evaluations to be done in a full sim-

ulation fashion with the optimal parameters. In addition, it provides detailed and

accurate NoC and ANN models. Also, it enables the evaluation of new intelligent

techniques which use interconnection on-chip networks. Through this framework,

new intelligent methods will be presented and evaluated in order to minimize power

consumption, increase the error detection accuracy in hardware and NoCs, and in-

crease the robustness of the ANNs. ANNs have shown impressive prediction results

based on the appropriate training and they will be used for this work in order to

provide intelligent monitoring techniques/methods taking advantage of the charac-

teristics that the ANNs can offer. Based on their training property, ANNs provide a

comparative advantage against statical ways, making the framework flexible under

any application it is required to facilitate. The main objectives of this thesis are:

O1: Develop an intelligent dynamic power management policy.

• Study how links that connect the NoC routers affect power consumption.

• Develop an intelligent method for minimizing power consumption for hard-

ware and NoCs with the use of ANNs – Intelligent On/Off dynamic link man-

4

And
rea

s S
av

va

agement for on-chip networks.

• Present the power savings and hardware overheads in comparison with other

methods/techniques.

O2: Develop a design – space exploration framework for ANN-based Fault

Detection in hardware and NoCs.

• Find optimal parameters for the framework for fault detection purposes.

• Develop decision steps for the fault detection in hardware/NoCs (for the ANNs

and the simulator).

• Develop and evaluate an intelligent ANN mechanism for the fault prediction

in NoCs/hardware.

O3: Study the robustness of ANNs based on weight alterations and develop a

robust technique.

• Study the robustness of ANNs used for prediction purposes based on weights

alterations.

• Develop robust technique for ANNs to be included in our work.

• Alter the architecture of the already developed ANNs in order to have high

robustness.

1.3 Thesis Contributions

This work provides firstly, a new intelligent technique for the link power consump-

tion management of the hardware/NoCs. Through this technique, NoC links are

turned off and on through the use of small and scalable neural networks which

intelligently predict the links to be turned off/on. Based on the simulation results

with various synthetic traffic models over various network topologies, the proposed

method reaches up to 13% more power savings when compared to trivial threshold

computation at very low (<4%) hardware overheads. Secondly, a new intelligent

method for the detection of faults in hardware is developed, choosing optimal pa-

rameters for the framework. Simulation results show that the proposed work detects

5

And
rea

s S
av

va

up to 99% of inter-router link faults with a delay less than 60 cycles. Synthesis re-

sults indicate an estimated amount of 0.0633mW power consumption per neuron

for the implemented ANN when computing a complete cycle. Lastly, a method for

increasing the robustness of the ANNs is developed and evaluated. Based on simu-

lations this technique maintains the robustness of the ANNs at high levels, around

98% prediction accuracy with minimum additional hardware overheads. Addition-

ally with the above, this work provides an exploration framework for ANN based

techniques for NoCs to be used as case study. With the use of the framework, the

new intelligent methods/techniques mentioned are developed and evaluated. This

framework also gives an opportunity to the research community to evaluate new

methods and techniques in a full system simulation fashion.

1.4 Thesis Organization

This dissertation is organized in seven chapters, with Chapter 2 presenting the back-

ground and state of the art, Chapters 3 up to 6 containing the technical contributions

of this thesis (exploration framework, intelligent power management policy for

NoCs, high level fault detection technique for hardware and intelligent method for

increasing the robustness of ANNs with minimum additional hardware overheads),

and Chapter 7 summarizing the thesis’ findings and laying out possible future re-

search directions. The codes for the NoC and ANN can be found in [12] and [13]

respectively. A detailed description of each chapter is presented below.

Chapter 2 provides background information regarding NoCs and ANNs tech-

nologies and the different methods used for dynamic power management, fault

detection mechanisms for hardware and NoCs, and lastly robustness methods and

techniques for ANNs. Specifically, technologies and techniques used for NoCs and

hardware are discussed, including Dynamic Voltage Frequency Scaling (DVFS) and

static threshold-based techniques for the link power management. For the fault

detection different techniques with diagnostic abilities are presented and lastly, ro-

bust techniques like n-MR (Modular Redundancy) schemes and techniques based

on adversarial examples are presented for the robustness of ANNs.

In Chapter 3, the experimental framework is presented and discussed, where by

using the proposed framework, new methods and techniques will be developed and

evaluated. Through this chapter, the design of the exploration framework is pre-

6

And
rea

s S
av

va

sented along with the different processing units which are added in the framework.

Further, in this chapter, the ANN development is discussed with the different ANN

parameters and the different decisions for the ANNs and the simulator.

In Chapter 4, the use of the ANNs for intelligent dynamic link management is

proposed. Through this approach, the advantages of the ANNs are used in order to

intelligently predict which links should be turned off and on based on the system

status (link utilization levels). Links are turned off and on via the use of scalable

ANNs. The specific mechanism is presented and compared against non-intelligent

case and other related literature works showing better power savings while having

lower hardware overheads. This technique developed in chapter 4 with all the

different simulation results and conclusions were published in [C1 and J3].

Further, the fault detection in hardware is considered in Chapter 5. In this chapter,

an intelligent approach based on the use of ANNs is proposed which intelligently

detects future faults. Additionally, this chapter provides analysis for the process

of creating an exploration framework for fault detection purposes with optimal

parameters in hardware systems. The framework and fault detection technique

developed in Chapter 5 were published in [J2].

Chapter 6 presents a study based on simulations for the robustness of ANNs

used for prediction purposes based on weights alterations. Additionally, through

this chapter, a robust method for ANNs is developed and evaluated based on re-

dundancy. Through this method, only the most important neurons/connections are

replicated. The work presented in Chapter 6 was published in [J1].

Lastly, Chapter 7 summarizes the findings of this dissertation and discusses

interesting future research directions.

7

And
rea

s S
av

va

Chapter 2

Background

In this chapter, background information regarding NoCs, ANNs and different tech-

niques for power consumption, fault tolerance and ANN robustness are discussed.

NoCs and ANNs are very popular and active research topics in the literature. Vari-

ous studies are done concerning both of them. Through this literature review firstly

we are going to present works about ANNs and their uses for prediction purposes.

ANNs have shown impressive prediction results based on the appropriate training.

For the purposes of this thesis, these prediction capabilities will be used in order to

develop new intelligent techniques for the NoCs and hardware. Based on our work,

the size of the developed ANNs will be kept to minimal and the complexity will be

minimized as well (- will be explained in the next chapters). This will help to keep

the overheads and additional hardware resources to minimum and make optimal

use of ANN’s capabilities. Table 2.1 presents a summary of the different related

works categories covered in this chapter.

Literature review which follows will also cover works for power consumption

management and fault detection in NoCs. Although NoCs have many advantages

there is still the issue of high-power consumption due to the routing requirements.

For the purposes of our work, ANN prediction capabilities will be used to intelli-

gently minimize the power consumption of the links based on the use of the ANNs

characteristics mentioned above. Additionally, ANNs will be used for fault detection

in NoCs and hardware providing new intelligent method based on their prediction

capabilities. At the end of this section, literature about robust techniques for ANNs

will be presented and analyzed. While ANNs have achieved prediction capabilities,

their accuracy drops in the presence of small changes and this might affect seriously

8

And
rea

s S
av

va

Table 2.1: Description of the different work categories.

Related Work Category Description / Summary

1. ANNs and Prediction

Techniques Related works about ANN model approaches for pre-

diction purposes are presented, showing the impor-

tance and the predicting abilities of the ANNs.

2. Link Dynamic Power

Management Techniques Related works for Link Power Consumption are pre-

sented like: Dynamic Voltage and Frequency Scaling

techniques, software-based techniques for power man-

agement and new run-time techniques.

3. Fault Detection

Techniques Related works for Fault Detection are presented like:

new frameworks for fault diagnosis based on new

routing algorithms and works which introduce meth-

ods for fault prediction based on the use on Neural

Networks.

4. Robust

Techniques Related works for Robustness are presented like: n-

MR schemes with redundancy, techniques based on

certifications for the robustness and techniques based

on adversarial attacks.

9

And
rea

s S
av

va

critical decisions. Robustness of ANNs is one of the most important issues that

researchers need to address in the years to come. Our work will provide intelligent

method to increase the robustness of the ANNs.

2.1 ANN and Prediction Related Work

The ANNs are considered to have excellent characteristics such as generalization

capability, robustness and fault tolerance [1]. The neural networks are able to handle

large input data sets and based on appropriate learning, they are able to find com-

plex non-linear relationships among the data in order to make accurate predictions.

Significant efforts have been made in order to develop a prediction framework for

different cases based on ANNs [14]–[17]. Based on these, ANNs offer high pre-

diction capabilities. ANNs also have been successfully applied in various real-life

scenarios which include learning systems [18], neuroscience [19] and engineering

[20]. Through these, it is believed that ANNs are a powerful tool which has the

ability to make predictions based on complex relations of the input and output data.

Motivated by these findings, this work proposes a framework which uses ANNs for

power management, fault detections and robustness. Integrated hardware-based

ANNs are used, and based on the appropriate ANN training they intelligently make

the detection.

There are many approaches to develop ANN models for real life problems which

state the importance of ANNs. ANNs have been used as branch prediction mech-

anisms in computer architecture, as forecasting mechanisms in price prediction of

Share-Market [17]. According to Shamishi et al. [21], it is explained how Matlab

tools can be used in writing scripts, which will help the development of ANN mod-

els in order to predict global solar radiation in United Arab Emirates. Added to

this, Jahirul and Suzuki et al. [14], [16], provide advances of ANN applications on

different situations. They present the methodology and the biomedical applications

of ANNs as well as applications of ANNs in industry and engineering.

A lot of work has been done in the research area for fault prediction in high

level systems with the use of ANNs. An ANN is a mathematical model which

simulates the structure and functionalities of biological neural networks [1]. The

functionality of an ANN can be represented in three basic steps. At the first step,

the inputs of the ANN are weighted. This means that the inputs are multiplied with

10

And
rea

s S
av

va

appropriate weights. During the second step, the summation of all the weighted

inputs is calculated. At the end, this summation of the previously weighted inputs

passes through the activation function. The neuron output is then propagated to the

neurons of the next layer which perform the same operation with the newly set of

inputs and their own weights. This is repeated for all the layers of an ANN [22].

Next sub-section presents some of the previous works done for power manage-

ment in Networks on Chip since in the future ANNs can be used for this purpose.

2.2 Link Dynamic Power Management

Research practice surveys such as [23] which outline the design challenges and lay the

roadmap in future NoC design have emphasized the critical need to conduct research

in NoC power management due to concerns of battery life, cooling, environmental

issues, and thermal management, as a means to safeguard the scalability of general-

purpose multicore systems that employ NoCs as their communication backbone.

Link dynamic power management has been given significant attention by NoC

researchers, as circuit-based techniques such as differential signals and low-voltage

swing hardware using level converters do not seem to adequately address the power

management problem [24], [25]. As such, there is a significant shift towards high-

level techniques such as selective turning of links on and off. The challenge involved

in those techniques, includes the computation of the decision on whether a certain

link is to be turned off, and when it will be turned back on. These decisions typically

rely on information from the system concerning link utilization, and, so far, have

been taken using a threshold-based approach. There have been attempts in dynamic

link frequency and dynamic link voltage (DVFS) management with most using these

thresholds as well.

Among the proposed techniques, some approaches use software-based manage-

ment techniques such as the one in [24], which proposes the use of reducing energy

consumption through compiler-directed channel voltage scaling. This technique

uses proactive power management, where application code is analyzed during static

compilation-time to identify periods of network inactivity; power-management calls

are then inserted into the compiled application code to direct on/off link transitions

to save link power. A similar approach was also taken in [26] for communication

power management using dynamic voltage-scalable links. Both of these techniques,

11

And
rea

s S
av

va

however, have been applied to highly predictive array-intensive applications, where

precise idle and active periods can be extracted. Hence run-time variability, appli-

cable to NoCs found in general-purposed multi-core chips, has not been examined.

Further the work in [27] proposes software-hardware hybrid techniques that extend

the flow of a parallelizing compiler in order to direct run-time network power reduc-

tion. In this work the parallelizing compiler orchestrates dynamic-voltage scaling

of communication links, while the hardware part handles unpredicted online traffic

variability in the underlying NoC to handle unexpected swings in link utilization

that could not be captured by the compiler for improved power savings and perfor-

mance attainability.

Low-level, hardware-based techniques that determine on/off periods and man-

age the voltage and frequency, exhibit however better energy savings as they can

shorten the processing time required for a decision whether to turn a link off or on to

be made. The most commonly used power management policies deal with adjusting

processing frequency and voltage (Dynamic Voltage Scaling - DVS). The works in

[25] and [26] present DVS techniques that feature a utilization threshold, to adjust the

voltage to the minimum value while maintaining the worst-case execution time. In

[28] the authors propose that the dynamic voltage scaling is performed based on the

information concerning execution time variation within multimedia streams. The

work in [29] proposes a power consumption scheme, in which variable-frequency

links can track and adjust their voltage level to the minimum supply voltage as

the link frequency is changed. Furthermore, [30] introduces a history-based DVS

policy which adjusts the operating voltage and clock frequency of a link according

to the utilization of the link/input buffer. Link and buffer utilization information

are also used in [31], which proposes a DVS policy scheme that dynamically adapts

its voltage scaling to achieve power savings with minimal impact on performance.

Given the task graph of a periodic real-time application, the proposed algorithm in

[31] assigns an appropriate communication speed to each link, which minimizes the

energy consumption of the NoC while guaranteeing the timing constraints of real

applications. Moreover, this algorithm turns off links statically when no communi-

cations are scheduled because the leakage power of an interconnection network is

significant. In general on/off links have, in most cases, been more efficient than DVFS

techniques, as links, even if operating at a lower voltage, still consume leakage and

dynamic power [32], [33]. These works therefore present a threshold-based tech-

12

And
rea

s S
av

va

nique that turns links off when there is low utilization, using a statically computed

threshold. Given that static computation by nature is pessimistic, dynamic policies

have been proposed. Research work in [34] proposes a mechanism to reduce inter-

connect power consumption that combines dynamic on/off network link switching

as a function of traffic while maintaining network connectivity, and dynamically re-

ducing the available network bandwidth when traffic becomes low. This technique

is also based on a threshold-based on/off decision policy. Next, the work in [35]

considers a 3-D torus network in a cluster design (off-chip interconnection network)

to explore opportunities for link shutdown during collective communication oper-

ations. The scheme in [36] introduces the Skip-link architecture that dynamically

reconfigures NoC topologies, in order aiming to reduce the overall switching activ-

ity and hence associated energy consumption. The technique allows the creation of

long-range Skiplinks at runtime to reduce the logical distance between frequently

communicating nodes. However, this is based on application communication be-

havior in order to extract such opportunities to save energy. Finally, the related work

in [37] explores how the power consumed by such on-chip networks may be reduced

through the application of clock and signal gating optimizations, shutting power to

routers when they are inactive. This is applied at two levels: (1) at a granular level

applied to individual router components and (2) globally at the entire router.

Run-time link power management has recently gained ground in research to

address the leakage issues as well. As links become heavily pipelined to satisfy

performance constraints, link buffers and pipeline buffers contribute significantly

in leakage power consumption. As such, the problem becomes significant with the

increased on-chip NoC sizes, impacting both the power consumption, as well as

the thermal stability of the chip. Dynamic link management techniques have there-

fore been proposed; the work in [38] proposes an adaptive low-power transmission

scheme, where the energy required for reliable communications is minimized while

satisfying a QoS (Quality of Service) constraint by varying dynamically the voltage

on the links. The work in [39] introduces ideas of dynamic routing in the context of

NoCs and focuses on how to deal with links or/and routers that become unavailable

either temporarily or permanently. Such techniques are a little more complicated

than a threshold-based approach, and inhere performance overheads during each

dynamic computation. As such, the work in [40] introduces the idea of an intel-

ligent method for dynamic (run-time) power management policy, utilizing control

13

And
rea

s S
av

va

theory. A preliminary idea of a closed-loop power management system for NoCs is

presented, where the estimator tracks changes in the NoC and estimates changes in

service times, in arrival traffic patterns and other NoC parameters. The estimator

then feeds any changes into the system model, and the controller sets the voltage

and frequency of the processor for the newly estimated frequency rate.

Motivated by the promising results presented in [40], and the potential perfor-

mance benefits of dynamic threshold computation techniques, our work proposes a

new dynamic, intelligent and flexible scheme based on ANNs for dynamic compu-

tation of the threshold that determines which links can be turned off or on.

Next sub-section presents some of the previous works done for fault detection in

Networks on Chip.

2.3 Fault Detection in Networks on Chip

Sanaye et al. [41], present a new approach based on ANN’s implementation for fault

detection/phase selection for transmission lines. Neural networks in this work are

used in a protective pattern classifier algorithm. The proposed algorithm implement

fault detection, classification and fault phase selection for transmission lines. Au-

thors in [42] have presented a new method for detection high impedance faults in

electrical distributed systems with the use of ANNs. The proposed neural network

was trained and tested based on simulation data from different system conditions

and implemented on a digital signal processor board.

Moreover, authors in [43] propose NoCAlert, an online fault detection mechanism

which is based on the idea of invariance checking. Through the invariance checking,

the outputs of the control logic modules of the NoC are checked for wrongly outputs

based on the current inputs (micro checker models in hardware). In [44], authors

propose uDIREC, a unified framework for permanent fault diagnosis based on the

use of a deadlock free routing algorithm which helps the working links in the NoC

to be maximally utilized in case of fault. uDIREC finds reliable routes which use

the links that are still working in the NoC. Added to this, in [45], authors propose

Hermes, a fault tolerant routing algorithm for NoCs which is deadlock free. Hermes

balances the traffic in order to achieve higher performance for fault free paths and

at the same time provides pre-configured paths in case of faults.

The work in [22], presents an intelligent power management policy for networks

14

And
rea

s S
av

va

on chip where links are turned off and switched back on, based on ANNs predictions.

The ANNs use the link utilizations as feedback from the system and based on these,

they select candidate links for turning off in an effort to achieve power savings

in NoCs. All the aforementioned works present the ANN models for prediction

purposes.

Our work, presented in the next chapters, uses ANNs for detection purposes

and presents how different parameters are used in designing an ANN-based fault

detection framework. Added to this, it takes into consideration all the necessary

constraints like extra hardware overheads, accuracy, speed, latency. Motivated from

previous works and the ideas in [22], our work creates as a case study scenario an

intelligent framework for inter-router link fault detections in NoCs and explains

how integrated small sized hardware based ANNs can be used for this purpose.

Next sub-section presents some of the previous works done for robustness of

ANNs.

2.4 Robust Techniques for ANNs

ANNs and robustness are very popular and active research topics in the literature.

Due to adversarial attacks, many approaches have been developed regarding the

fault tolerance and robustness of ANNs. The authors of [46] proposed a method

based on neural networks in order to detect malicious hosts based on the SYN

packets that are exchanged. With the aid of appropriate training, this method

achieved 98% accuracy based on specific test data. Moreover, the authors of [10]

found that powerful attacks can defeat defensive distillation, demonstrating that

by systematically evaluating several possible attacks, better adversarial examples

can be found than those in existing approaches. This study also concludes that

constructing defenses that are robust to adversarial examples remains challenging.

The study of [11] presents a survey on the robustness of deep networks to changes

that may affect the samples in practice, such as adversarial perturbations, random

noise, and transformations. The authors also discuss different solutions that attempt

to increase the robustness of deep networks. Additionally, the authors of [47] study

the effectiveness of different types of attacks and propose methods for training a

deep-learning-based ID (Intrusion Detection System) with the use of different types

of neural networks in order to increase the robustness of the networks based on a

15

And
rea

s S
av

va

thread model.

Furthermore, n-MR (Modular Redundancy) schemes and redundancy have been

proposed as methods for increasing the robustness of ANNs. The authors of [48]

propose a novel dual modular redundancy framework for DNNs (Deep Neural Net-

works). D2NN checks the fault sensitivity of each neuron in the target DNN based

on performance degradation and shows if the neuron is faulty. Next, D2NN du-

plicates the more sensitive neurons to construct the completed DMR (dual modular

redundancy).

Studies that provide certifications for the robustness of neural networks are pre-

sented next. The authors of [49] present a defense method for neural networks with

one hidden layer. This is based on certifications that, for a given network and test

input, there is no attack that can force the error to exceed a certain threshold: the

computation of an upper bound in the worst-case loss scenario. Additionally, they

optimized this method with different network parameters, providing an adaptive

regularizer that helps robustness. The authors of [50] studied the sensitivity of neural

networks to weight perturbations. They proposed an efficient approach to compute

a certified robustness bound of weight perturbations within neural networks that

do not have erroneous outputs. The authors provided a certified weight perturba-

tion region such that DNNs maintained their accuracy if weight perturbations were

within that region.

Lastly, different novel robust techniques for neural networks have been presented.

The authors of [51] introduced E2CNNs, a new design methodology to improve

robustness against memory errors in embedded systems. This work proposes a

heuristic method to automate the design of a voter-based ensemble architecture.

This design methodology increases the error robustness of CNNs (Convolutional

Neural Networks) by using ensemble architectures. The authors of [52] studied

the sensitivity of weight perturbation in neural networks and its impact on model

performance. They further designed a new theory-driven loss function for training

generalization and robust neural networks against weight perturbations: bounded

weight perturbations. Moreover, the authors of [53] extended the definition of

robustness to any type of input for which some alterations can be defined. They

proposed the ROBY tool, which accepts different types of data, and some alterations

can be performed on these data providing the ability to classify the input data

correctly. The authors of [54] present a new scheme for robust DNNs called coded

16

And
rea

s S
av

va

DNN. This alters the internal structure of DNNs by adding redundant neurons

and edges to increase reliability—a new middle layer is added. The authors of

[55] proposed an approach that is complementary to other forms of defense and

replaces the weights of individual neurons with robust analogs derived from the use

of Fourier analytic tools. Additionally, the authors of [56] propose a new method

called robustness-aware filter pruning (RFP) and utilize this filter pruning method

to increase the robustness against adversarial attacks. In the proposed method, the

filters that are involved in non-robust features are pruned. Lastly, the authors of [57]

designed a novel neuron that uses L distance as its basic operation, known as an

L-dist neuron. They show that the L-dist neuron has a natural 1-Lipschitz function

with respect to the L norm, and the neural networks constructed with this neuron (L-

dist Nets) have the same property [57]. This directly provides a theoretical guarantee

of the certified robustness based on the margin of the prediction outputs.

Motivated by the above related works for robustness, our work presents a thor-

ough study based on simulations for the robustness of neural networks based on

weights alterations. Based on this study, a new robust technique is presented for

ANNs with minimum additional hardware overheads.

17

And
rea

s S
av

va

Chapter 3

Experimental Framework

The first step is to establish a framework for developing and evaluating intelligent

methods/techniques with the use of ANNs. This framework will help us and the

research community to develop and evaluate new techniques in a full intelligent

simulation fashion. Additionally, detailed NoC and ANN models will be developed

through the framework and will be adaptable in different hardware systems and

networks. Through this framework, new intelligent methods/techniques for power

management, fault detection and robustness will be implemented and evaluated.

The two most important parts of the framework are of course the NoC and ANNs.

In order to develop this framework, we started from the creation of the NoC sim-

ulator and then we moved with the implementation of the different components

of the new system. Added to this, we developed the appropriate ANNs in order

to have a complete intelligent simulation and evaluation framework for many-core

architectures which will be used for the evaluation of the new proposed techniques.

3.1 Designing Exploration Framework for NoCs

A complete NoC architecture consists of three main parts: 1) input output data

models, 2) the connecting interface where in NoCs it consists of the routers which

are connected with each other in order to transfer the data, and 3) the processing

units (PEs) like processors, control units, memory which are following the Open

Core protocol (OCP) in order to add them easily in the overall system. Figure 3.1

shows the main parts of a NoC Architecture. PEs are the Processing Units; R stands

for the routers and the connection lines between the routers represents the links.

18

And
rea

s S
av

va

Figure 3.1: NoC Architecture.

At the beginning we started the implementation by studying and analyzing

different already implemented simulators which satisfy the requirements of a many-

core system. Two of them were very close to the requirements of many-core systems.

Those are: Pop-Net (Population Network Simulator) in C++programming language

and gpNoCsim (general purpose NoC simulator) simulator implemented in Java

programming language.

We chose to work with gpNoCsim simulator because it has the high level prin-

ciples of implementation of a framework and also is more flexible in programming

compared with Pop-Net simulator. Added to this, we implemented core models,

memory models as well as input/output units for the data. We managed to imple-

ment a simulation and evaluation framework, in which new units can be added in

order to be evaluated based on power consumption, throughput, latency and relia-

bility of the system. After the completion of the changes/additions in the simulator,

we managed to implement virtual channels as well as priority conditions for our

data.

Firstly, we present a general purpose modeling and simulation framework for

NoC in gpNoCsim — an open-source, component based network simulation en-

vironment that is developed entirely in Java. This framework is built upon the

object-oriented modular design of the NoC architecture components and will be

19

And
rea

s S
av

va

Figure 3.2: Mesh and Torus Architectures.

used to evaluate our new techniques. We demonstrate the use of proposed frame-

work, i.e. gpNoCsim, by simulating several existing, well-known architectures. In

addition, we have provided the guidelines to simulate future architectures by mak-

ing simple modifications. As a general purpose simulator for the NoC architectures,

gpNoCsim provides the designers with the flexibility of incorporating different net-

work and traffic configurations. Network configuration has been considered as the

conglomeration of topologies, switching techniques, and routing algorithms. Re-

configurable topologies allow comparison between different architectures: Mesh,

Torus, Butterfly, Fat Tree. Figure 3.2 shows the Mesh and Torus architectures.

3.2 Processing Units

With the development of the simulation framework, we created the processing unit

models which will be added in the network framework in order to complete the

network simulator. The processing units are just the units which are added as

terminals into the network and they are responsible for processing the data. For this

work, three main categories of processing units are used: processor cores, memory

units and input/output controllers and control units.

The cores which are implemented are simple based on the RISC (Reduced In-

struction Set Computer) philosophy and they are fast. 32-bit and 64-bit models are

created in order for the user to choose the system he wants to evaluate. For the ad-

dition of cores into the simulator framework the Open Core Protocol was followed,

which gives the user the potential of easy addition in the system already made

20

And
rea

s S
av

va

cores which are used in the industry. Next, the memory units are created which are

autonomous (they have the memory controllers) and they follow the Open Source

Protocol. SRAM (Static Random Access Memory) memory models are developed

which is the current technology for memory for NoCs. Added to this, the memory

models include error control units and coherency units for the purposes of correct

data when are used in parallel from two or more cores. Based on the above, the user

can create one centralized memory which can provide data to the cores or he can

create many independent distributed memory units into the system.

Input/output data models are also developed which are communicating with the

network based on the communication protocol of the network but the user can give

the parameters for communication with the outside world in order for the simulation

framework to communicate with different units outside the NoC like external DRAM

(Dynamic Random Access Memory), Ethernet gates and USB (Universal Serial Bus).

Based on the above, we managed to model different units which are crucial for

many-core systems and they will be used for the development of a general system

for simulating many-core systems.

3.3 General for NoC Simulator

Generally, NoCs are the basis for the communication between the cores, the memory

units and the rest of the system units. One network consists from the routers, the

links which connect the routers between each other as well as the routers with the

processing units (PE) and the input output units for the processing data. Added to

these, one network can have control units for the correct transfer of the data. Many

parameters are needed for the simulation and evaluation of a network and they

have to deal with the network topology (mesh, torus, ring), the routing algorithm

(X-Y, adaptive, hierarchical), the size of data packets sending through the routers

and many more.

In order to create the NoC architecture, we developed a simulation framework

based on the Java-based cycle-accurate gpNoCsim simulator (General Purpose Sim-

ulator for Network – on – Chip Architectures) [58]. The framework enables sim-

ulation of multiple topologies, utilizing adaptive dimension-ordered XY routing

algorithm with virtual channel support and 4-stage pipelined router operation. We

experimented with the adaptive XY routing algorithm which induced blocking. The

21

And
rea

s S
av

va

simulated router supports 64-bits flit width, 4 virtual channels per link and two

buffers per virtual channel. The routers used are all the same, and we assume

wormhole flow control. The framework supports various synthetic, realistic and

user-defined traffic models. We assumed an 8x8 mesh topology consisting of 64

routers. Simulations will run for this topology in order to collect training data for

the ANNs. Every x cycles, new training data will be sent to the ANNs for training.

For scalability purposes, partition of the NoC into smaller regions is needed and an

ANN is assigned to be responsible for each region. This partition will help to keep

the ANN sizes relatively small, reusable and easy to implement in hardware. The

ANN mechanism can be considered as a different independent PE, on top of the

NoC topology. Different NoC partitions can be implemented and analyzed in order

to choose which one is appropriate for the monitoring framework. NoC topology

and ANNs are presented and analyzed in details in the next chapters.

Simulations are done over a range of 1,000,000 cycles, with a warm-up period of

100,000 cycles. In the 8×8 topologies, we partitioned the NoC into regions, where

each ANN-based model was assigned as responsible for monitoring. The ANN-

based models monitored all the routers and links in their corresponding partition

and all ANN results related to the size and operation of the ANN are given based

on these architectural details.

Time was divided into x-cycle intervals; at the end of each interval, all routers in

the NoC partition transmit their average utilization data for that span (computed via

a counter and LUT (Lookup Table)-based multiplication with the reciprocal of the

interval). A time-out mechanism equal to the expected delay of each router towards

the ANN mechanism is imposed, to maintain reasonable delays. The ANN receives

one packet from each router with four utilization values, one for each port. The

ANN then proceeds with the prediction mechanisms.

For the power modeling, we adopted the Orion power models for the dynamic

power consumption of each router [59]. Router and link hardware were designed

and synthesized in Verilog and Synopsys Design Compiler in order to obtain the

leakage power values. We used a commercial CMOS (Complementary Metal-Oxide

Semiconductor) 65nm library, and a sequence of random input vectors, for several

thousand cycles, and measured the leakage power of each router and link, through

all computation cycles and combinations of events. The leakage values are then fed

into the simulator, along with the Orion models for active power, and the overall

22

And
rea

s S
av

va

power is computed.

After the development of the simulator, four different traffic models were imple-

mented and checked and they are going to be used for evaluation purposes of the

network along with realistic traffic profiles. Uniform-Random Traffic: In random

traffic, each source is equally likely to send to each destination - is the most commonly

used traffic pattern in network evaluation. Random traffic is very benign because,

by making the traffic uniformly distributed, it balances load even for topologies and

routing algorithms that normally have very poor load balance. Transparent Traffic:

Traffic here is created with the use of matrix transpose or corner – turn operations.

Tornado Traffic: Based on digit permutations in which the digits of the destination

address are calculated from the digits of the source address. The tornado pattern

is designed as an adversary for topologies, whereas modeling traffic measures a

topology’s ability to exploit locality. Neighbor Traffic: Traffic here is created based

on the neighboring nodes. Additionally, PARSEC (Princeton Application Repository

Shared Memory Computers) benchmark suite which is composed of multi-threaded

emerging workloads is used for realistic traffic profiles. These traffic models are

added in the simulation framework. Table 3.1 shows the key characteristics of the

PARSEC benchmarks used for this work [60]. The routing model has the routing

unit, virtual channels, buffers, crossbar switch and the arbitration unit. The devel-

oped simulator is scalable and based on that, the user can add new topologies and

routing algorithms easily.

For the implementation of the framework, Artificial Neural Networks are used

for the proposal of intelligent methods/techniques and for evaluation purposes (next

chapters). Based on these we managed to evaluate the implemented framework with

regards to performance, reliability and the power consumption. Next, the ANNs

development is presented.

3.4 General for ANNs Development

ANNs are able to find complex and non-linear relationships among the data in order

to make accurate predictions. For this work, integrated hardware based ANNs are

used and based on the appropriate ANN training and the received utilization values

in discreet interval times intelligently help the fault detection, power management

and robustness processes. ANNs are developed in MATLAB with the use of nntool.

23

And
rea

s S
av

va

Table 3.1: Summary of the key characteristics of PARSEC benchmarks used for the

purposes of this work.

Program Application Domain Working Set Data Usage: Sharing

/ Exchange

blackscholes Financial Analysis small low/low

bodytrack Computer Vision medium high/medium

canneal Engineering unbounded high/high

facesim Animation large low/medium

ferret Similarity Search unbounded high/high

streamcluster Data Mining medium low/medium

swaptions Financial Analysis medium low/low

vips Media Processing medium low/medium

swaptions Financial Analysis medium low/low

x264 Media Processing medium high/high

For the purposes of this work, different kinds of ANNs are created, one for

each individual traffic pattern used for the prediction purposes – Random, Tornado,

Transpose, Neighbor, PARSEC. The ANNs have the same structure/architecture,

they differ only at the input - hidden layer and hidden – output layer weights. Each

ANN for example has 20 input neurons in the input layer, one hidden layer with 19

neurons and 20 neurons in the output layer. Each different kind of the four ANNs

has its own weights which represent the appropriate traffic pattern.

Each feed-forward ANN follows a fully connected perceptron model. The ac-

tivation function used is hyperbolic tangent which is symmetric and asymptotic.

Hyperbolic tangent produces outputs in scale of [-1, 1] – it is continuous function.

Activation function process the output of each neuron for feeding it to the next ad-

jacent layer or network. A network input function gives the summation of all the

weights and inputs feeded to the network and afterwards the activation function

maps a schema to be feeded to the adjacent layer following it.

The training stage can be done off-line based on the back-propagation ANN

training algorithm. Through the first step, inputs of the ANN are weighted (mul-

tiplied with the appropriate weights – different for each traffic pattern). Second

24

And
rea

s S
av

va

step, summation of all the weighted inputs of the neuron is calculated. At the end,

this summation passes through the activation function. The neuron output is then

propagated to the neurons of the next layer which perform the same operation with

the newly set of inputs and their own weights. This is repeated for all the layers of

the ANN.

The neuron operation can be designed efficiently in hardware since it can be

modeled as multiply-accumulate operation (MAC). Each neuron is implemented as

MAC unit with the accumulators being multiplexed for each neuron so the number

of multipliers is minimized.

The ANN mechanism can be considered as an independent processing element

in the NoC (PE). Each base ANN mechanism is responsible for a specific network

partition. The ANN mechanism monitors all the link utilization values in the region

that is responsible for, and these values are then processed by the ANN.

The size of the ANN is kept relatively small and the ANN complexity is mini-

mized as well as the monitoring of the entire hardware system is done in parallel and

independently by each ANN. Although experiments are performed on small net-

works, the results are considered indicative for larger networks due to the scalable

nature of calculations.

3.5 Framework Methodology

Many different decision steps must be taken in order to choose the optimal pa-

rameters for developing correctly the framework. Table 3.2 shows the decision

steps needed for the general framework from the ANN perspective, while Table 3.3

presents the decision steps needed for the simulator. ANNs can be used in any

hardware system. Starting, a decision step is needed for the partition of the network

into smaller regions. Individual small-sized ANNs can be assigned to monitor each

partition. Following that, decision steps for the architecture of the ANNs must be

taken (neurons in input-hidden-output layers, the training of these ANNs) as well as

decision steps for different simulation parameters like the sampling period, which

is another very important parameter since it is needed for the delay model of the

simulator.

In order to design an efficient framework based on ANNs for detection purposes,

the ANN architecture as well as the simulation framework have to be analyzed.

25

And
rea

s S
av

va

Table 3.2: Decision steps for the exploration framework for the ANNs.

ANN Decision Step Note

1. Topology Exploration Develop in the framework a base network topology –

Collect training data for the ANN.

2. ANN Scalability Experiment with different partitions to choose which

one is better.

3. Parameters of the

ANN - Training Find based on experiments efficient parameters for the

development and training of the ANN.

Table 3.3: Decision steps for the framework.

Framework Decision Step Note

1. Simulation / Evaluation Experiment with different sampling periods to find

which one gives better results.

2. Delay Model Find all the extra delay parameters which will be

added in the simulator.

26

And
rea

s S
av

va

This work is focused firstly on the simulator for the collection of training data for

the ANNs and also for the simulation results (detection vs. delay) at the end. In

addition, the ANN topology and architecture are analyzed, paying more attention

on the design of the ANN, the training phase and the detection delay.

Many experiments are made for the completion of the steps of this work. Those

are presented in the next chapters. At first, starting from the nxm network, this

work chooses a good partition, based on experiments. The architecture of the ANN

is studied and a developed ANN is assigned for each created partition. Based on

more experiments and appropriate ANN training, decisions about the number of

hidden neurons as well as output neurons are taken. Based on these decisions,

the ANNs are implemented for the purposes of detecting inter-router link faults,

power management and robustness. Next, experiments are needed for the simulator

in order to optimally decide different important parameters such as the sampling

period. Moreover, a new delay model is added to the simulator which shows the

total delay of the detection for comparison purposes.

3.5.1 ANN Training

The ANN mechanism operates in two steps, training step and detection step. In order

to train the ANNs correctly, the utilization values collected from the NoC simulation

are used. The ANN receives the link utilization values of all the router ports of

the partition that monitors. Each router keeps a counter which is used for tracking

the travelling packets on each link. If a router fails to transmit its values, then the

counter value is set to a sentinel value, indicating that the buffers of that router are

fully utilized / blocked. The ANN then uses these utilization values for training. A

neural network can be implemented in hardware by using multiplier-accumulator

(MAC) units, and a look-up table (LUT) as activation function [22].

The ANN training stage can be performed off-line when the NoC is not used and

the training weights can be stored in SRAM based LUTs for fast and on-line recon-

figuration of the network. The network is trained with the use of application traffic

patterns, off-line, and any ANN training algorithm can be used. In our experiments

we used synthetic traffic patterns and realistic traffic profiles (PARSEC benchmarks)

and the Matlab ANN toolbox; the weight values were fed to the simulator as inputs,

where the actual prediction was then implemented and simulated.

27

And
rea

s S
av

va

Additional decision steps with simulations and results for the simulator and the

ANNs are presented throughout the next chapters.

3.5.2 Simulation Decisions

Another important decision that needs to be examined is the sampling period. Sam-

pling time is divided into different cycle intervals and the experimental results were

studied. At the end of each interval, all routers in the partition transmit their average

utilization data. The ANN then receives the utilization values and proceeds to the

detection.

In order to find a good sentinel value, which will be used when a router fails to

transmit its values to the ANN, different simulations for different sentinel values are

created.

All these decision steps are presented and analyzed based on simulation results.

Based on the above implemented framework different intelligent techniques will

be proposed and evaluated for power management, fault detection and robustness.

These are presented and analyzed in the next chapters.

28

And
rea

s S
av

va

Chapter 4

Intelligent Dynamic Link

Management for Hardware/NoCs

4.1 Introduction

Links connecting the NoC routers are among the components that consume lot of

power. Several attempts have been made to reduce the link power consumption at

both the circuit level and the system level. This chapter presents an intelligent dy-

namic power management policy for NoCs with improved predictive abilities based

on supervised online learning of the system status (i.e. expected future utilization

link levels), where links are turned off and on via the use of a small and scalable neu-

ral network. Simulation results with various synthetic and realistic traffic models

over various network topologies are implemented for evaluation purposes.

4.2 Power Management for on-chip Interconnects

Power management is a crucial element in modern-day on-chip interconnects. Sig-

nificant efforts have been made in order to address power consumption in networks-

on-chips [32], [33], [38]. One of the most power-hungry NoC components are the

links connecting the routers to each other and the processing elements of the on-chip

interconnection network. Data from Intel’s Teraflop NoC prototype [61], suggests

that link power consumption could be as high as 17% of the network power, and

could be even more given the types of links used as well as the size and pipelin-

ing involved in designing the link structure. These links, which can be designed

29

And
rea

s S
av

va

with differential signals and low-voltage swing hardware using level converters as

circuit-based optimizations for low power consumption, are almost active all the

time, even when not transmitting useful data thus spending energy when no inter

router communication exists. While such traditional hardware design techniques

have contributed towards reducing the power of these links, a system-level tech-

nique becomes necessary for more efficient power reduction, as the number of links

increases with the scaling and increasing sizes of NoCs, and as application-specific

knowledge becomes available. For example, power-aware encoding techniques

[62] such as Gray coding cannot be efficiently used, as the hardware cost in the

encoder/decoder increases drastically as the system scales to a higher number of

network components.

As such, recent research focuses on turning links off and on in order to reduce

power consumption, and has been adopted by several works [30]–[33], [40], as

certain links in the system are severely underutilized during a specific operational

time frame [32]. Techniques such as DVFS (Dynamic Voltage and Frequency Scaling)

applied to the link hardware, [30], [31] have been used to vary the link frequency

and power according to link utilization, however, even when not data is sent across

a link, static power is still being consumed, especially in multi-pipelined links with

pipeline buffers in place. In addition, CMOS technology scaling is pointing towards

an increased portion of the allocated power budget being consumed as static energy

instead of dynamic energy; hence switching on/off links instead of just selectively

reducing their frequency/voltage levels offers better power saving advantages as

links still do burn power even at lower (i.e. non-zero) voltage-frequency settings

[22]. The majority of these on/off link dynamic power-management works employ

traditionally a statically-computed threshold value on the link utilization, and based

on that threshold value, the link is turned off for an amount of time and then is turned

back on when the algorithm decides so. This of course is a pessimistic approach by

nature, and imposes harder performance constraints. Recently, the use of control

theory for managing candidate links for turning off has been proposed as an idea in

[40], with promising results when compared to the statically-based approaches.

Motivated by the findings in [40], this work proposes the use of Artificial Neural

Networks as a dynamic link power consumption management mechanism, by utiliz-

ing application traffic information. Based on their ability to dynamically be trained

to variable scenarios, ANNs can offer flexibility and high prediction capabilities [1].

30

And
rea

s S
av

va

An ANN-based mechanism can be used to intelligently compute dynamically which

links can be turned off and on during discrete time intervals. The ANN receives link

utilization data in discrete time intervals, and predicts the links that should be turned

off or on. ANNs can be dynamically trained to new application information, and

have been proven that they can offer accurate prediction results in similar scenar-

ios [2]. ANNs can be efficiently designed in hardware provided they remained

relatively small, through efficient resource sharing and pipelining. Furthermore,

by partitioning the NoC, individual small ANNs can be assigned to monitor each

partition independently, and in parallel monitor the entire network. This work also

introduces topology-based directed-training as a pre-training scheme, using guided

simulation, which helps to minimize the large training set and the ANN complexity.

4.3 ANN-Based Threshold Computation Methodology

4.3.1 Static Threshold Computation for Off/On Links

The first step in realizing the proposed ANN methodology is to establish a frame-

work for comparing whether an intelligent management is comparable to the non-

intelligent case, not only in terms of energy savings, but also in terms of throughput

and hardware overheads. As such, a trivial case, where a simple threshold mech-

anism was used to determine whether or not a link would turn off or back on,

was first implemented using an NoC simulation framework and the Orion power

models [59]. The mechanism chooses an appropriate threshold based on which the

links turn on and off. This trivial algorithm takes as input the link utilizations of

all the links in the experimental NoC system, and outputs control signals based on

a statically-defined threshold; based on this threshold, the algorithm then decides

which links are turned off and then back on. The statically-defined threshold was

computed based on simulation observations from different synthetic and realistic

traffic models, and based on the observed power savings and throughput reduction

when compared to a system without the mechanism. Figure 4.1 shows the real-time

power savings for four synthetic traffic models and PARSEC traffic benchmarks,

observed over a 4×4 NoC. (The reported result for PARSEC is the average across all

the PARSEC benchmark applications).

This method was introduced in [32], and the results presented therein, as well

31

And
rea

s S
av

va

Figure 4.1: Power savings of a trivial threshold case compared to no on/off links case.

as the experiments with our framework indicate that such mechanisms can be quite

effective. However, a run-time mechanism, which can be benefited from real-time

information stemming from the network, can potentially outperform this method.

Such mechanism is described next. Furthermore, [32] uses an open-loop mechanism,

prone to oscillations that potentially can limit both the attainable performance and

also the power savings, as power is still used during the transition [40].

4.3.2 Mechanism Overview

The ANN-based mechanism can be integrated as an independent processing element

in the NoC, potentially located in a central point in the network for easy access by

the rest of the PEs, and each base ANN mechanism can be assigned to monitor a

NoC partition. Such cases are shown in Figure 4.2-(a). Each base ANN-mechanism

monitors all the average link utilization rates within its region. These values are

processed by the ANN, which computes the links that should be turned off and then

back on, during each interval. Based on this, we turn off any links in the region

that exhibit lower utilization. Links which have been turned off remain off for a

certain period of time. Experiments in related work [32], [40] indicate that such

time should be within a few hundred cycles, as longer periods tend to create a vast

performance drop-off (as the network congestion increases due to lack of available

paths), whereas shorter periods do not incur worthy power savings. The proposed

32

And
rea

s S
av

va

ANN mechanism uses a 100-cycle interval, during which all new utilization rates

are received. This interval was chosen based on existing experiments in [32], which

shows that a 100-cycle interval incurs better performance to power savings. The

interval however, is a system parameter, which can also be taken into consideration

by the system training, and involves future work which is presented in the next

chapter. During the interval span, the ANN computes and outputs the links that

should be turned off and then back on, which are then used by the link control

mechanisms in each router to turn off underutilized links. The links remain off for

another 100 cycles, and turn back on. During the 100-cycle interval, links which

are off, do not participate in the computation of the next interval; instead, they are

encoded with a sentinel value that represents them being fully utilized, so they are

not kept off in two subsequent intervals. This reserves fair path allocation within

the network.

Through this work, adaptive XY routing algorithm is used which can handle

changes in the network topology. When links are turned off/on, the adaptive XY

routing algorithm recomputes dynamically the available paths to reflect the changes.

By rerouting packets using the available paths, the adaptive XY routing algorithm

avoids turned off links. Thus, when links are turned off, reliable data delivery

is guaranteed since adaptive XY routing algorithm dynamically adjust the routing

based on the status of the network. Moreover, adaptive XY routing algorithm helps

to avoid congestion by balancing the network traffic and provides deadlock free

routing.

Each ANN-based mechanism follows a fully-connected multi-layer perceptron

model [1], [2], consisting of one hidden layer of internal neurons/nodes and a single

output-layer neuron. The activation function used in this work is the hyperbolic

tangent function, which is symmetric and asymptotic, henceforth easy to implement

in hardware as a LUT (Look-up Table) [32]. Furthermore, the specific function has

been extensively used in several ANNs, and its accuracy has been great [1]. Back-

propagation training algorithm is used for the training of the ANN. The ANN system

is shown in Figure 4.2-(b). The number of internal neurons was chosen to be the half

of the summation of the input and output neurons plus one [1]. The input neurons

depend on the number of links that the system receives as feedback. As such, the

size of the ANN depends on the number of inputs to the system. The output neuron

chooses the corresponding links that best matches the pattern observed through the

33

And
rea

s S
av

va

Figure 4.2: (a) ANN prediction with NoCs and an 8×8 network partition into four

4×4 networks with their ANNs, (b) Structure of the Neural Network.

Figure 4.3: Neuron Computations.

hidden layer neurons, and outputs the underutilized links to the link controller.

The neuron computation involves computing the weighted sum of the link uti-

lization inputs. An activation function is then applied to the weighted sum of the

inputs of the neuron in order to produce the neuron output (i.e. activate the neuron).

Equation 4.1 shows how the output of a neuron is calculated.

f (x) = K(
∑

i

wigi(x)) (4.1)

K represents the activation function which is the hyperbolic tangent, w represents

the weights which applies to the link utilization inputs which are represented by

g(x) input function. The overall procedure is shown in Figure 4.3.

4.3.3 Intelligent Threshold Computation

While ANNs are heavily efficient in predicting scenarios based on learning algo-

rithms, they require careful hardware design considerations, as their size and com-

plexity depend on the number of inputs received, as well as the number of different

34

And
rea

s S
av

va

output predictions (classes) that they have to do. NoCs consist of a large number of

links which grows exponentially as the size of the NoC grows. Therefore, receiving

link utilization and having to determine which links are candidates for turning off

and then back on, would require an exponentially scalable ANN. As such, we devise

a pre-processing technique, which identifies, based on simulation and observations,

the set of candidate links for turning off and on, eliminating links which are almost

always utilized. This depends obviously on the chosen network topology (for exam-

ple, in a 2D mesh topology, links that are likely to be less busy include links which

are at the edges of the mesh, whereas central links are usually more active and can be

left on all the time), so that the ANN mechanism can handle the output decision in a

more manageable way. Through various synthetic and realistic traffic simulations,

for each given NoC topology, the average utilization values for each link through var-

ious phases in the simulation are computed, and the links with the highest utilization

values, are always assumed that they will be on. Obviously this step reduces a little

the effectiveness of the ANN, but it is necessary to minimize the size and overheads

of the ANN both in terms of performance and in terms of hardware resources. This

step has to be done for a given topology, prior to the ANN training. However, both

steps (determining the links that the ANN will use, as well as the ANN training) can

be done off-line, during the NoC design stage. The ANN training can also be done

repeatedly whenever new application knowledge becomes available that might alter

the on-chip network traffic behavior. This particular property of ANNs, provides

a comparative advantage against a statically computed threshold, making the NoC

flexible under any application that it is required to facilitate. It must be stated that

the number of links that will be considered as likely candidates for on/off activity

(i.e. the ones which do tend to have low utilization during the pre-training stage),

impact both the size of the ANN itself, and the overall size of the mechanism (which

involves logic that sends the appropriate control signals). Through the two steps,

pre-training and training, each ANN can be trained and configured independently

to satisfy its targeted NoC structure (topology and number of monitored links).

Furthermore, large NoCs can be partitioned into smaller regions. As such, a base

ANN architecture can be assigned to monitor each region, and all the link utiliza-

tions of the routers of the NoC partition arrive at the ANN which is responsible for

that region. The size of this NoC region, however, depends on two major factors;

the incurred power savings that the corresponding base ANN offers, which depend

35

And
rea

s S
av

va

Figure 4.4: Power savings versus CMOS hardware overheads corresponding to

various sizes of ANN monitoring regions in a NoC.

on its ability to process and evaluate the input information, and the resulting ANN

size and hardware overheads (and subsequently power consumed within the ANN)

which grow exponentially as the size of the NoC region grows. Choosing a small

NoC region will likely result in a small ANN, but will result in smaller savings since

the ANN will not have enough information to make accurate decision. On the other

hand, a large NoC region will provide the ANN with much more information and

potentially result in a much better decision, but its size and overheads would reduce

the power savings making the ANN ineffective. As such, we experimented with

several NoC regions and base ANNs, comparing their hardware overheads (a prod-

uct of the ANN power consumption and the gate count required to implement each

ANN in hardware) and responding savings incurred with the computed threshold.

Figure 4.4 shows a comparison between hardware overheads (power × gate count)

and power savings in the cases of 3×3, 4×4 and 5×5 ANN sizes for monitoring

regions in an NoC. Results show that computation over a 4×4 NoC region offers

satisfactory power savings and significantly less ANN overheads when compared

to a 5×5 NoC region. A 3×3 NoC region does not provide enough information to

the ANN in order to make accurate predictions. Based on these observations, we

designed the base ANN system to monitor 4×4 NoC regions.

36

And
rea

s S
av

va

Figure 4.5: Main steps of a 4×4 ANN predictor.

4.3.4 Base (4x4) ANN Operation and Hardware Architecture

The ANN mechanism is responsible to compute for all the link utilizations the

minimum values during each interval. Based on these values, the ANN calculates

the links to be turned off. Figure 4.5 shows the procedure of the ANN mechanism for

a 4×4 NoC partition. The ANN mechanism receives all the average link utilizations

from all the links of the 4×4 NoC partition. These values are fed to the ANN to be

used for the prediction process. Each router contains a control hardware monitor

that measures the average link utilization for each of the four links in each router,

and this value is sent to the ANN every n cycles (where n is the size of the time

interval). If a router fails to transmit the values at a single interval, its value is set

to sentinel value, which shows that its buffers are fully utilized. This mechanism

acts also as a congestion information mechanism because links which are heavily

active are not candidates to be turned off. The ANN uses the utilization values to

determine if a link is going to be turned off or on for the next n-cycle interval. As

said earlier, we used 100-cycle intervals [32] (i.e. n = 100) in our simulations.

One of the main advantages of ANNs is their simple hardware implementation

when the number of neurons remains small and the activation function remains

37

And
rea

s S
av

va

simple [1]. The ANN hardware implementation depends on the number of hidden

layer neurons. As mentioned in the Framework chapter, each neuron is implemented

as a multiplier-accumulator (MAC) unit, with the accumulators being multiplexed

for each neuron, so that the number of multipliers is minimized. The base ANN

hardware architecture is shown in Figure 4.6. Utilization values for each link arrive

and sorted through an input coordination unit, which distributes the values to each

of the appropriate multipliers. The multipliers receive these values and through a

shared weights memory, receives the corresponding weight. The weights and inputs

product is then accumulated in the corresponding accumulator, with the entire

process controlled via a finite-state machine controller. Each neuron has an assigned

storage register, to enable data reuse; when one layer of neurons is computed, their

outputs are stored inside a corresponding register. As such, the same hardware is

reused for computing the next layer (i.e. from input layer to hidden layer, and from

hidden layer to output layer). When each neuron finishes its MAC computation, the

result is then computed through the activation function LUT, and propagates to the

output neuron.

An ANN monitoring a 4×4 region in a mesh topology for example, receives 64

different inputs; if we are to assume that each router transmits a packet with its

own link utilization during each interval, and if we also assume one packet per

cycle delivered to the ANN during each interval, then, during each cycle, the ANN

will receive at most 4 input values. Hence, if we use pipelined multipliers, we

need only 4 multipliers for each ANN to achieve maximum throughput. The ANN

therefore remains small and flexible, regardless of the size of the network it monitors.

Furthermore, an ANN monitoring a 4×4 NoC partition, receives 16 packets (one for

each router); as such, it requires 16m cycles (where m is the cycle delay of each

multiplier), plus 16 cycles for each accumulator, plus one cycle for the activation

function plus one cycle for the output neuron, to output the new threshold (total of

16m+18 cycles). The overall data flow and architecture is shown in Figure 4.6.

4.4 Hardware Optimizations and Tradeoffs

In order to make the ANN architecture simpler and smaller we studied how the

number of neurons of the hidden layer affect the total power savings of the system.

Given that the 4x4 ANN monitors sixteen routers, we need sixteen input neurons

38

And
rea

s S
av

va

Figure 4.6: ANN hardware architecture and its hardware realizations.

[2]. Having sixteen neurons at the input layer of the ANN means that the hidden

layer should have seventeen neurons (based on the rule of thumb that a satisfactory

number of the hidden layer neurons equals to half the number of input and output

neurons plus one neuron) [2]. Three different ANNs were developed with seventeen,

sixteen and fifteen neurons at the hidden layer respectively. Figure 4.7 shows the

power savings for these ANNs under the use of four different traffic patterns (Ran-

dom, Tornado, Transpose, Neighbor) and data from PARSEC traffic benchmarks.

Using sixteen neurons therefore (instead of seventeen), in the hidden layer exhibits

the best power savings for all the traffic patterns. (The reported result for PARSEC is

the average across all the PARSEC benchmark applications). In addition, we studied

how the bit representation of the training weights affects the threshold computation

and subsequently the total power savings. Figure 4.8 shows how the bits used in

representing the training weights influence the power savings of the system. As

we can see 24, 16, 8 and 6 bits show similar power savings, but these savings are

significantly reduced when 4 bits are used, due to reduced training accuracy. Based

on the above, we selected the weight bit representation to be 6 bits, which made the

multiplier-accumulation hardware very small, requiring a 6-bit port for each weight

and a 5 bit port for the utilization values. (The reported result for PARSEC is the

average across all the PARSEC benchmark applications).

39

And
rea

s S
av

va

Figure 4.7: Power savings for 17, 16 and 15 neurons in the hidden layer of the ANN.

Figure 4.8: Power savings for different training weight bit representations.

40

And
rea

s S
av

va

4.5 Simulations and Results

In order to evaluate the ANN-based on/off link prediction mechanism, gpNoCsim

simulator is used as previously mentioned [58]. We experimented with 8×8 mesh

and torus topologies. Simulations are done over a range of 1,000,000 cycles, with a

warm-up period of 100,000 cycles. In the 8×8 topologies, we partitioned the NoC

into four regions of 4x4 routers/links, where each ANN-based model was assigned

as responsible for monitoring. The ANN-based models monitored all links in their

corresponding partition, and all links were candidates for off/on, and all ANN results

related to the size and operation of the ANN are given based on these architectural

details.

Time was divided into 100-cycle intervals [32]; at the end of each interval, all

routers in the NoC partition transmit their average utilization data for that span. A

time-out mechanism equal to the expected delay of each router towards the ANN

mechanism is imposed, to maintain reasonable delays. The ANN receives one

packet from each router with four utilization values, one for each port. The ANN

then proceeds to the prediction which is transmitted to each router through a control

packet. Each router then turns off each link, depending on the intelligent prediction.

The router continues operation until the end of the new interval. It must be repeated

that when a link is turned off or on, an extra 100-cycle penalty is inserted into the

simulation, to indicate the impact on the network throughput.

In order to study the power savings and the throughput of the dynamic ANN-

based prediction algorithm for turning links on/off we compare this to a static

threshold-based algorithm and to a system without any on/off mechanism. Using

synthetic and realistic traffic patterns (Random, Tornado, Transpose and Neighbor)

and data from PARSEC benchmark workloads with varied injection rates [60], [63],

we first evaluated the power savings of the ANN-based mechanism when com-

pared to the same system without any on/off link capability, and when compared

to a system that employs a statically determined threshold. The traffic patterns, for

which we experimented, are a superset of the patterns used to train the ANN; we

measured power savings and the impact of the throughput on all the traffic patterns

however. In order to compute the power savings in the torus network, we follow

the guided-training approach as described previously, and we measure link utiliza-

tions in all possible partitions of the torus network to compensate for the toroidal

41

And
rea

s S
av

va

Figure 4.9: Power savings for 8x8 mesh and 8x8 torus networks for the ANN based

technique, static threshold technique and no on/off technique.

links. The link utilizations with the least values (from all the link utilizations, from

all the partitions of the torus network) are then passed through the ANNs. Figure

4.9 shows the comparison when targeting 8x8 mesh and torus NoCs. The power

savings of the ANN-based mechanism are better than the savings in the cases of

statically determined threshold and the case without any on/off links. Results show

that the ANN-based mechanism can achieve 13% additional power savings when

compared to a statically-determined threshold methodology. (The reported result

for PARSEC is the average across all the PARSEC benchmark applications). The

ANN-based mechanism can identify a significant amount of future behavior in the

observed traffic patterns; therefore, it can intelligently select the underutilized links

for the next timing interval.

Next, we measure the impact of the throughput in each mechanism; while having

no on/off mechanism obviously yields a higher throughput, the ANN-based tech-

nique shows better throughput results compared to statically determined threshold

techniques. Figure 4.10 shows the throughput comparisons for an 8×8 mesh and an

8×8 torus network. The ANN-based methodology shows around 6% better through-

put results when compared to statically based methodology. The throughput values

are normalized based on the number of the simulation cycles. (The reported result

for PARSEC is the average across all the PARSEC benchmark applications).

42

And
rea

s S
av

va

Figure 4.10: Average network throughput comparisons for 8x8 mesh and torus

networks.

Figure 4.11 represents the normalized energy consumed in an 8×8 torus network.

We observe that the energy consumed using the ANN mechanism is less than the

cases of statically-computed threshold and without on/off link management algo-

rithm. The ANN exhibits a reduction in the overall energy, because of a balanced

performance-to-power savings ratio, when compared to not having on/off links or

when compared to static threshold computation.

Figure 4.12 presents the average packet delay in packets per cycle for the 8x8

mesh, when the ANN-based mechanism is used compared to the cases where no

on/off mechanism is used and the statically computed threshold case. The ANN-

based mechanism incurs more delay (less than 6% additional packet delay), but we

believe that the delay penalty is acceptable when compared to the associated power

savings. (The reported result for PARSEC is the average across all the PARSEC

benchmark applications).

4.6 ANN Hardware Overheads - Synthesis Results

To compute the hardware overheads of the proposed scheme, the ANN-based mech-

anism for one 4×4 NoC region, was synthesized and implemented targeting a com-

mercial 65nm CMOS technology. The ensuing synthesized ANN-based controller

43

And
rea

s S
av

va

Figure 4.11: Energy consumption for an 8x8 network.

Figure 4.12: Average packet latency for the cases where ANN-based mechanism is

used, when trivial case is used and when there is no on/offmechanism.

44

And
rea

s S
av

va

and the associated hardware overheads in each router, consume approximately 4

K logic gates (for comparison purposes, an NoC router similar to the one used in

our simulation [64] consumes roughly 21K gates), bringing the estimated hardware

overhead for an 4×4 mesh network to roughly 4% of the NoC hardware.

Assuming 50% switching activity probability, the synthesized ANN described

consumes an estimated 0,0022mW when computing one cycle of 16 inputs (one full

router utilization packet). A total of 16 cycles is needed for multiply – accumulate, 1

cycle for the thresholding and 1 cycle for the activation function. Assuming that the

ANN can start receiving data in Cycle 1 and with a steady flow of one utilization

packet from each router, then the inputs need 19 cycles in order to reach the next

layer of neurons. So 19 cycles x 0,0022mW equals 0,0418mW in total, in order to

reach the next layer of neurons. The next stage will use less power and the same

hardware can be reused so there will be no need to compensate for extra area.

4.7 Comparison with Related Works

Lastly, we briefly give a comparison with relevant related works that follow dynamic

threshold techniques in Table 4.1.

In [30], authors use a DVFS technique for power optimization of interconnected

networks based on a history-based DVS policy. This policy realizes up to 30% power

savings with an increase of 15,2% in the average latency. Additionally, based on

synthesis with Synopsis Design Compiler this method presents hardware overheads

– around 500 logic gates per router port. In [32], authors propose a dynamic power

management policy for turning links off/on based on the derivation of a connectivity

graph that balances power and performance and based on a fully adaptive deadlock

free algorithm. This method realizes up to 37,5% reduction in the overall power

and an increase in latency of the scale 48,5% (- no hardware overheads are pre-

sented). In [65], authors propose LEAD (Learning-Enabled Energy-Aware Dynamic

Voltage/Frequency Scaling), which includes a collection of linear regression DVFS

techniques that are all trained offline. This method realizes an average of 20% power

savings with no latency increase. This method presents additional overheads for

the on-chip voltage regulators caused from the addition of switching components

and for the feature set used which includes 39 network parameters. When com-

pared to all [30], [32] and [65], the ANN-based method yields better power savings

45

And
rea

s S
av

va

Table 4.1: Power savings/hardware overhead comparisons.

Related

Work

Characteristics Power Savings Hardware Overhead

[32] 8x8 2-D mesh topol-

ogy, Uniform traffic

Around 37,5% - turn-

ing on/off links

N/A

[30] 8x8 2-D mesh topol-

ogy, Pareto distribu-

tion – 0.5 packet injec-

tion rate

Around 30% (DVFS

technique)

500 equivalent logic

gates per router port

[65] 4x4 mesh topology,

PARSEC benchmarks

Around 20% aver-

age savings (collec-

tion of linear regres-

sion based DVFS)

Additional over-

heads for regulators

and for the feature

set

Proposed

ANN

technique

8x8 2-D mesh topol-

ogy and 8x8 torus

topology Uniform

traffic

Up to 40% - turning

on/off links based on

ANN prediction

4% of the NoC hard-

ware for a complete

4×4 Mesh NoC

46

And
rea

s S
av

va

(around 40%), while still maintaining minimum hardware overheads. Additionally,

our method presents better average latency results when compared to both [30],

[32] works. Our method is easier to implement in comparison with past methods

since the hardware overheads are kept to minimum levels. We must note that while

[40] was the motivating idea behind our work, it presented only a preliminary im-

plementation of the idea, without enough information about hardware overheads

and power savings in order to make an informed comparison. Our method outper-

forms this work since we use real-time information for training. Our work provides

simulations and evaluations of different important parameters in order to achieve

optimal results. Moreover, in our method, power savings are achieved through the

use of small and scalable ANNs. This gives an advantage against statical methods

making our framework easy to adjust to any application that is required to accommo-

date. Additionally, by switching off/on links instead of using Dynamic Voltage and

Frequency Scaling techniques our work provides better power savings advantages

avoiding static energy power consumption.

4.8 Conclusion

This chapter presented how an ANN-based mechanism can be used to dynamically

compute, based on appropriate training, candidate links for turning off and then back

on, in an effort to achieve power savings in an NoC. The ANN-based model utilizes

very low hardware resources, and can be integrated in large mesh and torus NoCs,

exhibiting significant power savings. Simulation results indicate approximately

13% additional power savings when compared to a statically-determined threshold

methodology under synthetic and realistic traffic models.

47

And
rea

s S
av

va

Chapter 5

ANN-Based Fault Detection in

Hardware Systems / NoCs

5.1 Introduction

ANNs can be used for fault detection purposes since they have excellent character-

istics such as generalization capability, robustness and fault tolerance. Designing

an ANN in order to be used for fault detection purposes includes different parame-

ters. Through this chapter, those parameters are presented and analyzed based on

simulations. Moreover, after the development of the ANN, in order to evaluate it, a

case study scenario based on Networks on Chip is used for detection of inter router

link faults. Simulation results with various synthetic and realistic traffic models are

implemented and analyzed.

This chapter provides analysis and evaluation of the procedure of creating an

exploration framework with the use of ANNs for high level fault detection in hard-

ware systems. While implementing a detection framework, there are many issues to

deal with, which have inspired researcher’s attention. Determine the ANN network

structure, the number of neurons in hidden/output layers and the procedure of the

ANN training for fault detection are some of those issues. The aim of this work is to

identify and analyze all the main steps needed for this purpose.

Through this work, all the necessary steps for designing such a mechanism are

analyzed, explained and evaluated. The developed ANN is adaptable in many

different hardware systems. Based on their ability to dynamically be trained to

different case scenarios, ANNs can offer high detection capabilities with minimal

48

And
rea

s S
av

va

additional overheads [1]. An ANN mechanism for fault detection is developed

in order to intelligently detect future faults. The ANN is trained with utilization

data collected from different simulations in which randomly faults were injected

(topology based training). Added to this, individual small ANNs are assigned to

be responsible for different hardware partitions, providing scalability. ANNs can

easily be designed and implemented in hardware and their size for this work remains

relatively small.

5.2 ANN Mechanism Overview

Nowadays, the complexity and density of hardware increases the need for intelligent

fault detection mechanisms. The relation between utilization and fault detection can

be complicate. Likelihood of faults can be increased since high utilization can put

more tension on the hardware. Also, unusual variations in the link utilization rates

may be a sign of hardware issues. Based on this, it’s important to achieve a balance

between fault detection and utilization. Utilization must be taken into account for

effective fault detection methods. Our work, based on real-time data and based on

the use of ANNs, can intelligently predict future faults by taking into consideration

the utilization of the system. Additionally, our work can help maintaining the

utilization high by identifying future faults and reducing their influence on the

system performance.

The ANN mechanism for our work can be considered as an independent pro-

cessing element in the NoC. Each base ANN mechanism is responsible for a specific

network partition. The ANN mechanism monitors all the link utilization values in

the region that is responsible for, and these values are then processed by the ANN in

order to make the detection. Link faults are considered in this work, which involve

faults on the links connecting the routers between them and the processing elements

on the NoC topology. Injecting link faults can represent various types of link fault

scenarios like link failures due to physical damage, circuit faults or manufacturing

defects.

Every x cycles, new link utilization values are coming to the ANNs for training.

The ANN then, based on the training phase, intelligently detects which routers will

be erroneous for each random fault injection. An overview of the procedure that an

ANN mechanism follows in order to detect which routers will be malfunctioning is

49

And
rea

s S
av

va

Figure 5.1: Overview of the ANN detection process.

presented in Figure 5.1.

Next sections present in detail the development of the framework based on the

previously mentioned steps. For each decision step, an 8x8 NoC case-study is going

to be simulated with various traffic patterns in order to evaluate each decision’s

output.

5.2.1 Scalability - ANN partitioning

For this work, partitioning of the NoC case study into smaller parts (e.x. an 8x8 NoC

into four 4x4 regions or four 4x5 regions or 5x4 regions) is needed and an ANN is

assigned to be responsible for each part. The partition will help to keep the ANN

sizes small with minimum complexity.

In order to decide which region size is the best, different partitions are created

and compared. Different simulations for the different partitions are created and the

resulting Receiver Operating Characteristics (ROC) curves are studied. Based on

those plots an appropriate ANN topology is chosen. Figure 5.2 shows the different

NoC partitions studied (4x4, 5x4, 4x5).

Figure 5.3 presents the resulting ROC curves for 4x4, 4x5 and 5x4 topologies

in the case of router fault detection. Different ROC curves were created with the

50

And
rea

s S
av

va

Figure 5.2: Different NoC partitions: 4x4, 5x4 and 4x5 partition.

51

And
rea

s S
av

va

Figure 5.3: Resulting RoC curves for 4x4, 4x5 and 5x4 partitions.

52

And
rea

s S
av

va

use of different traffic patterns. Partition 4x5 is more efficient since it produces

better resulting ROC curves for different traffic patterns compared with 4x4 and 5x4

partitions (- partition 4x5 ROC curves present slightly better results compared with

the results of the 5x4 partition. This is more obvious near the 0.9 value of the true

positive rate in both ROC graphs). Based on the above, we chose to work with 4x5

partitions, for the case of detecting which routers in the region will present fault.

5.2.2 ANN Development for Fault Detection

Each ANN follows a fully connected perceptron model. The activation function

used is hyperbolic tangent, which is symmetric and asymptotic as mentioned in the

previous chapter. This makes it easy to implement in hardware [22]. The neuron

computes the weighted sum of the utilization inputs and then through the activation

function the neuron output is produced.

The ANN is trained, based on different traffic models (Random, Tornado, Trans-

pose, Neighbor and realistic traffic patterns based on the use of data from PARSEC

benchmark suite), using an off-line and back – propagation ANN training algorithm.

One hidden layer is used for the ANN since more hidden layers rarely improve the

system and can converge to local minimum [22]. For the purposes of this work, the

Matlab ANN toolbox is also used along with the different traffic patterns.

The input neurons were chosen based on the number of the inputs to the system.

For the output neurons, two scenarios were studied for this work. In the first

scenario, the ANN is responsible to detect which partition will present a fault. For

the second scenario, the ANN is responsible to detect which routers in the partition

will present fault. For these partitions, in the case of detecting fault in the whole NoC

partition, the ANN should only have one output neuron. For the case of detecting

which routers in the region will more likely present fault, the ANN should have 20

output neurons, one for each region router in the cases of 5x4, 4x5 NoC partitions

and 16 output neurons for the 4x4 NoC partition case.

Figure 5.4 and figure 5.5, present the ANN architecture used in the two different

case scenarios for this work. Figure 5.4 shows the ANN architecture for the case of

detecting the partition which will have a faulty router. Figure 5.5 shows the ANN

architecture for the case of detecting which routers in the NoC region will present

fault. The difference is presented in the output layer. In the first case, only one

53

And
rea

s S
av

va

Figure 5.4: ANN architecture with the input, hidden and output layers for detection

of fault in whole ANN.

output neuron is needed which will show which NoC region might have fault. In

the second case, the number of output neurons depends on the number of the routers

included in the NoC region which is simulated.

5.2.3 (4x5) ANN Based Model

As mentioned in the previous chapter, an ANN which is responsible to monitor a 4x5

region receives 80 different inputs under the assumptions that each router transmits

a packet with its own link utilization and one packet per cycle is delivered to the

ANN at each interval. Based on that, during each cycle the ANN will receive for

each router at most four input values. Only four pipelined multipliers are needed

for each ANN and the ANN remains small and flexible and independent of the size

of the NoC it monitors. The ANN hardware architecture and the overall data flow

are shown in the previous chapter.

5.2.4 ANNs Parameters and Training

The ANN mechanism for this work operates in two steps, training step and detection

step. In order to train the ANNs correctly, the utilization values collected from the

54

And
rea

s S
av

va

Figure 5.5: ANN architecture with the input, hidden and output layers for detection

of fault in router.

NoC simulation are used. The ANN receives the link utilization values of all the

router ports of the partition that monitors. The ANN then uses these utilization

values for training in order to intelligently detect which routers will present fault.

The ANN training stage can be performed off-line when the NoC is not used and

the training weights can be stored in SRAM based LUTs for fast and on-line recon-

figuration of the network, as mentioned in the Framework chapter. The network is

trained off-line, with the use of different application traffic patterns. In our experi-

ments we used synthetic and realistic traffic patterns (Random, Tornado, Transpose

and data from PARSEC benchmark suite) and the Matlab ANN toolbox.

For the purposes of our work, the training sets are not used for evaluation

purposes, ensuring that our method has accurate results - training sets and testing

sets used are mutually exclusive. Back-propagation algorithm is used for training

the neural networks in order to correctly adjust the neural network’s parameters.

Back-propagation updates the weights of the ANNs to minimize the loss.

Figure 5.6 shows the training, validation and testing results. The dashed line

shows the perfect result and the solid line shows the best fit between the outputs

and targets. The R value represents the relationship between the outputs and targets.

55

And
rea

s S
av

va

Figure 5.6: Training, Validation and Testing results.

56

And
rea

s S
av

va

Figure 5.7: RoC graphs for different neurons in hidden layer.

Table 5.1: ANN configurations with different number of neurons in the hidden layer.

ANN Configuration Number of Neurons in the Hidden Layer

ANN Configuration 1: 17 Neurons in the Hidden Layer

ANN Configuration 2: 21 Neurons in the Hidden Layer

ANN Configuration 3: 20 Neurons in the Hidden Layer

ANN Configuration 4: 18 Neurons in the Hidden Layer

ANN Configuration 5: 19 Neurons in the Hidden Layer

If R is equal to 1, this shows that there is an exact linear relationship between the

outputs and targets. If R is near zero then there is no linear relationship between

outputs and targets. Based on our results, the data shows good fit. The validation

and test results have the R near 1 which shows that there are no significant issues

with the training, validation and testing.

The next decision step presented is the number of neurons needed for the hidden

layer. In order to minimize the fault probability and have a well-trained neural

network which will perform well, an optimal value for the neurons of the hidden

layer must be selected. If a small number of neurons are selected, it will lead to faults

for the total framework as the training data might not be well used for detection

within that small number of internal neurons. If a huge number of neurons are

selected for the hidden layer, then this will add extra hardware implementation cost

57

And
rea

s S
av

va

Table 5.2: ANN configurations for different sentinel values.

ANN Configuration Number of Neurons in the Hidden Layer/Sentinel

Value

ANN Configuration 1: 19 Neurons in the Hidden Layer, Sentinel value 70

ANN Configuration 2: 19 Neurons in the Hidden Layer, Sentinel value 50

ANN Configuration 3: 19 Neurons in the Hidden Layer, Sentinel value 20

and faults. The number of hidden layer neurons can be selected to be half of the

summation of the input and output data plus one [1]. Based on these, different

numbers of internal neurons, varying around half of the summation of the input and

output neurons, are studied and simulated.

Figure 5.7, shows the resulting ROC graphs for different number of neurons in

the hidden layer. Table 5.1 presents the configuration parameters used for each

resulting ROC graph.

Based on the figure above, the configuration with 19 hidden layer neurons is

chosen. This is because ROC curve for 19 neurons in hidden layer shows good

results compared to the rest of the cases.

5.2.5 Simulation Decisions for Fault Detection

Another important decision that needs to be examined is the sampling period. Sam-

pling time is divided into different cycle intervals and the experimental results were

studied. At the end of each interval, all routers in the partition transmit their average

utilization data. The ANN then receives the utilization values and proceeds to the

detection. If a small sampling period is chosen, then the utilization data which will

be collected will not be sufficient for the detection. 50, 60, 80, 100 cycle time inter-

vals were studied and based on the experimental results an optimal time interval

is selected. Based on the results of Figure 5.8, the 80 cycles time interval is chosen

because it shows better detection results compared with the rest of the cases.

In order to find a good sentinel value, which will be used when a router fails

to transmit its values to the ANN, different simulations for different sentinel values

are created. Table 5.2 presents the configuration parameters used for each resulting

ROC graph in figure 5.9.

58

And
rea

s S
av

va

59

And
rea

s S
av

va

Figure 5.8: Results for different cycle time intervals.

Figure 5.9, present the resulting curves. The best results comparing the ROC

curves for the different sentinel values are shown in the case of 50 cycles sentinel

value. Based on the results, an efficient value to work with is 50 cycles.

5.2.6 Topology Exploration Setup – Adaptability in Various Hard-

ware Configurations

Simulation experiments were ran over 8x8 NoC topologies, case study scenario,

where partitions into four regions of 4x5 routers are created. Each ANN based

model is responsible for one of these regions. Simulations are done over 1,000,000

cycles with warm-up period of 100,000 cycles. Time is divided into 80 cycles (sample

period), as already explained, and at the end of each sampling period all the routers of

the partition send their average utilization data to the ANN which is responsible for

each NoC partition. Faults are injected randomly (random cycle time and in random

locations). The ANN then receives the average utilization values (one packet from

each router with the average utilization port values of this router). The ANN then

proceeds to the detection of faults.

One simulation runs at a single traffic pattern, with a single traffic injection rate

and one network state consists of 223 different simulations (for all the injection

faults in all the 223 links – single fault injection is assumed.) Traffic injection rate

is varied from 0.1 – 0.3 flits/node/cycle in steps of 0.05 flits/node/cycle from low to

60

And
rea

s S
av

va

Figure 5.9: Resulting RoC graphs for different sentinel values.

high. Added to this, different traffic patterns are studied in three different scenarios

of fault injections (at cycles: 0, 32000 and 64000). Three injection rates multiply three

injection times multiply different traffic patterns multiply 223 links equals more than

8000 fault injection simulations. Simulation results are presented next.

The number of correct detections is measured as well as the number of fault

positives (undetected faults) and the number of full negatives (unexpected faults)

for different traffic patterns. Moreover, the time needed for the ANNs to produce

the detections is measured. In order to succeed this, a delay model was added in the

simulator. This delay model takes into consideration the time needed to finish the

sampling, the time needed for the sample to reach the ANN and the time needed for

the ANN to make the detection.

Time needed to finish the sampling is calculated based on the time the fault was

injected and the time needed for the sampling completion. For example if the fault

was injected at time 20 cycles, then 60 cycles are needed for the sampling completion

(if the sampling period is 80 cycles). Time needed to reach the ANN is the number of

hops needed for the sample to reach the ANN. For the time needed by the ANN to

make the detection each neuron requires three cycles (one for the multiply operation,

one for the accumulation and one for the LTU activation function).

Figure 5.10, summarizes the comparison when targeting the case study scenario of

an 8x8 mesh NoC. For all the traffic patterns, the number of undetected / unexpected

faults, in comparison to the correct detections, is very low (less than 4). Neighbor,

61

And
rea

s S
av

va

Tornado and realistic traffic patterns show better results concerning the percentage

of correct detections (98-99% and 97-99% respectively) and less delay (55 and 58

cycles respectively) compared to Transpose and Random traffic patterns (96-97%).

Added to this, simulations show that the miss detections for the cases of Neigh-

bor, Tornado, Transpose traffic patterns are very low (less than 2). Random traffic

pattern presents more miss detections but this is acceptable compared with the high

percentage of correct detections.

5.3 ANN Costs and Power Consumption

For a 64-input ANN, a hyperbolic tangent activation function, and a single threshold

sub-tractor (i.e. to perform a 64-input complete neuron operation to a single output

from the activation function) the hardware costs are as follows:

Using Verilog and synthesized Synopsys Design Vision, targeting a 65 nm com-

mercial CMOS library, at targeted frequency 500 MHz, at 1 V power supply voltage,

using 20-input neurons, synthesis results indicate an estimated amount of 10,000

gates for a 20-input neuron (performing 5 parallel multiplications and accumula-

tions per cycle).

Assuming 50% switching activity probability, the synthesized ANN described

above consumes an estimated 0.00275 mW when computing one cycle of 20 inputs

(one full router utilization packet). A total of 20 cycles is needed for multiply-

accumulate, 1 cycle for thresholding, and 1 cycle for activation function lookup.

Assuming that the ANN can start receiving data in Cycle 1, and with a steady flow

of one utilization packet from each router (with 5 values enclosed) then the inputs

needs 23 cycles in order to reach the next layer of neurons. So, 23 cycles * 0.00275

mW = 0.0633 mW in total, in order to reach the next layer of neurons. The next stage

will of course use less power, but the same hardware can be re-used so there will be

no need to compensate for extra area.

5.4 Comparison with Related works

Lastly, we briefly give a comparison with relevant related works for fault detection

in NoCs in Table 5.3.

62

And
rea

s S
av

va

Figure 5.10: Detection results for different traffic patterns with three different injec-

tion rates (0.1 – 0.3) and three different fault injection cycles (0, 32K, 64K).
63

And
rea

s S
av

va

Table 5.3: Comparisons with related research.

Related Work Characteristics Fault Detection Hardware Overhead

[7] STRN (Soft

error Tolerant

NoC Router)

architecture

8x8 2-D mesh

topology, Uni-

form and Tor-

nado traffic

Detects most of

the single soft

errors

Additional area overheads

(7%) and additional hard-

ware overheads for the

new NoC router architec-

ture

[8] New fault

detection ar-

chitecture with

Channel Tester

and Detectors

Mesh topol-

ogy, Modified

framework and

NoC routers

High level of

fault tolerance

for all the NoC

links

Additional area overheads

(5%) and additional hard-

ware overheads for the

modified NoC routers -

Channel Tester

Proposed

ANN-based

Technique

8x8 2-D mesh

topology, differ-

ent traffic pat-

terns

Up to 99%

prediction ac-

curacy for fault

detection

10000 gates for a 20-input

neuron (4% of the NoC

hardware)

64

And
rea

s S
av

va

In [7], authors present Soft Error Tolerant NoC router (STRN) architecture. This

architecture can detect soft errors in different control stages of the routing. This

method can detect most of the soft errors with additional area overheads (around 7%)

and additional hardware overheads for the additional NoC router architecture logic.

Authors in [8], propose a new fault detection mechanism for NoC interconnects based

on monitoring module – new fault detection architecture with channel testers and

detectors. This work has high level fault tolerance for the NoC links with additional

area and hardware overheads based on the modifications of the architecture and the

channel testers and detectors. When compared to both [7] and [8], the ANN-based

fault detection technique yields high level of fault detections as well (around 99%

prediction accuracy), while still maintaining lower hardware overheads (less than

4% of the NoC hardware) when compared to both of them.

Through our intelligent method, we introduced the use of ANNs for fault pre-

diction purposes. Based on their characteristics and their training process, ANNs

helped us to achieve high level of fault prediction accuracy and keeping the addi-

tional hardware overheads minimum compared with other relevant works.

Additionally with the new proposed method, our work focuses on the analysis

of the different aspects of the network in order to achieve optimal results. Our

work focuses on the topological analysis of the ANN network and on the different

parameters needed for the design of the framework for high level fault detection

in networks. Our method can also be used for fault detection in different types of

networks and hardware based on the scalable nature of the calculations. By using

real-time data for training our method offers better insights and more accurate results

making our work more competitive against other works.

5.5 Conclusion

This chapter presented a design exploration framework for fault detection in hard-

ware systems with the use of high level ANNs. It analyzed, explained and evaluated

all the necessary steps taken in designing such a mechanism. In order to evaluate the

ANNs, a NoC case study is used. Based on their ability to dynamically be trained

ANNs can be used for the detection of inter-router link faults in NoCs. Based on the

experiments, two important things need to be analyzed and studied, the ANN topol-

ogy/design and the network. For the ANN topology/design, a lot of experiments are

65

And
rea

s S
av

va

developed in order to choose the appropriate ANN architecture and internal ANN

parameters such as neurons in the input/hidden/output layers. From the above an-

alyzed experiments, based on simulated results, 4x5 NoCs/ANNs with 19 neurons

in hidden layer were chosen for this work. Based on experiments on 8x8 NoC net-

works, different simulator parameters were explored and the average router ports

utilization values were developed for the ANN training phase. Added to this, an

efficient delay model was implemented in the simulator for comparison purposes.

The ANN utilizes very low hardware resources and can be integrated in larger

hardware systems easily. Simulation results show good detection results up to

99% under synthetic and realistic traffic models. Thus, it can be concluded that by

designing correctly the ANNs can be very beneficial for detecting faults in networks,

especially in large and complex systems such as NoCs.

66

And
rea

s S
av

va

Chapter 6

Robustness of ANNs Based on Weight

Alterations Used for Prediction

Purposes

6.1 Introduction

Nowadays, due to their excellent prediction capabilities, the use of artificial neural

networks (ANNs) in software has significantly increased. One of the most impor-

tant aspects of ANNs is robustness. Most existing studies on robustness focus on

adversarial attacks and complete redundancy schemes in ANNs. Such redundancy

methods for robustness are not easily applicable in modern embedded systems. This

work presents a study, based on simulations, about the robustness of ANNs used for

prediction purposes based on weight alterations. We devise a method to increase the

robustness of ANNs directly from ANN characteristics. By using this method, only

the most important neurons and connections are replicated, keeping the additional

hardware overheads to a minimum. For implementation and evaluation purposes,

the networks-on-chip (NoC) case, which is the next generation of system-on-chip,

was used as a case study. The proposed study/method was validated using sim-

ulations and can be used for larger and different types of networks and hardware

due to its scalable nature. The simulation results obtained using different PARSEC

(Princeton Application Repository for Shared-Memory Computers) benchmark suite

traffic show that a high level of robustness can be achieved with minimum hardware

requirements in comparison to other works.

67

And
rea

s S
av

va

6.2 ANNs and Robustness

Neural networks yield excellent prediction results if appropriately trained for use

in different application domains [64]. They have the power to extract valuable

information from complex data and predict trends that cannot be easily detected by

other mechanisms. While neural networks have certain prediction capabilities, their

accuracy decreases in the presence of small perturbations. This makes it difficult to

apply them in critical areas [10].

One of the main research goals of the analysis of robustness is to propose different

solutions/architectures with increased robustness [11]. This is one of the fundamental

problems that require extensive future research since ANN faults significantly affect

the accuracy and reliability of these types of networks.

One of the most well-known solutions for robustness improvement and fault

tolerance is to apply triple/dual modular redundancy (n-MR schemes) [48], repli-

cating the entire ANN architecture, but these methods are very restrictive due to

additional hardware overheads. This redundancy includes full replications of ANN

architecture and is not applicable to modern on-chip systems due to area limitations

[66].

Additionally, the robustness of neural networks to adversarial attacks is critical

due to security issues that make these neural networks vulnerable [46], [47], thus

causing poor performance and accuracy. Until recently, researchers concentrated on

comparing results based on having/not having adversarial machine learning attacks

and providing different solutions. Defenses based on adversarial training have been

proposed, but these defenses are often defeated by stronger attacks [47].

Motivated by the above, we focused on the property of robustness of neural

networks used for prediction purposes based on weight alterations. Therefore, we

examined how the prediction accuracy of ANNs is impacted by weight faults. The

networks-on-chip case, which was presented in the framework chapter, was used

as a case study to evaluate the robustness of the ANNs based on simulations. The

goal of this work is to discuss the robustness of neural networks to changes in

weights that might affect the prediction results. This work discusses and analyzes

weight alterations in ANNs based on simulations/implementations and provides a

protection/robustness method for ANNs. This method will help to maintain high

robustness in ANNs with minimum additional hardware overheads. In this work,

68

And
rea

s S
av

va

the architecture of the ANNs was changed by duplicating only the most important

neurons/connections in order to achieve good prediction accuracy for ANNs weight

faults. We analyzed the importance of neurons/connections in ANNs based on

actual simulations/implementations and how the prediction accuracy of the ANNs

is affected in cases of weight faults.

The rest of this chapter is organized as follows. Section 3 introduces the method-

ology and a robust approach for detecting weight faults in ANNs with the support

of simulation results and analysis. Section 4 offers a brief conclusion to the chapter.

6.3 Methodoogy

6.3.1 Development of the ANNs and Network Traffic

In order to verify the robustness of the developed ANNs, we studied how prediction

accuracy is affected by weight alterations in ANNs. For the implementation of the

ANNs, we used MATLAB and the nntool. PARSEC benchmark suite was used for

the traffic requirements [60]. To collect the ANN training data for predictions, we

used NoC as a case study. NoC is an emerging technology that provides high-

bandwidth and low-power on-chip communication between many cores. For the

purposes of this work and for scalability purposes, we partitioned the NoC topology

into smaller parts, and four different ANNs were created, one for each individual

partition of NoC topology based on the explanations provided in our previous

research/chapters [64]. The monitoring of the entire NoC topology/partitions is

carried out in parallel using each developed ANN. Each of the four developed

ANNs is responsible for monitoring one NoC partition, and the ANN receives data

from the specific NoC partition that is used for the training process. The ANNs

can be considered independent processing units in NoC topology. Different-sized

ANNs were studied, and these have the same structure/architecture depending on

the size of the NoC; they differ only in the weights. Figure 6.1 presents the structure

of the neural network.

In this work, integrated hardware-based ANNs with 19 neurons in the hidden

layer were developed and, based on the ANN training and data received from

the NoC simulator, intelligently predicted which routers might present fault, as

explained in [64]. We used ANNs with one hidden layer, which is sufficient since

69

And
rea

s S
av

va

Figure 6.1: Structure of the neural network.

more hidden layers can introduce a risk of converging to a local minimum and might

not improve the model [64]. For the training stage of the developed feed-forward

ANNs, we used a back-propagation training algorithm, and the training was carried

out offline.

For this work, the size of the ANNs is small, and based on the scalable nature

of the calculations, the results are indicative for larger NoCs/ANNs. By using a

simple activation function and having a small number of neurons for each ANN,

we managed to keep the implementation of the ANNs simple. Each feed-forward

ANN uses a hyperbolic tangent as an activation function, which provides simplicity

and accuracy. A hyperbolic tangent produces outputs at a scale of [-1, 1]; it is a

continuous, symmetric, and asymptotic function that is responsible for processing

the output of each neuron in order to feed it to the next adjacent layer.

In the next sections, we describe the verification of how the prediction accuracy

of ANNs was affected by weight alterations using simulations. Based on the results,

we propose a method to maintain robustness in accepted margins with minimum

additional overheads.

Additionally, network performance and a thorough analysis of the different im-

plementations highly depend on network traffic. In order to achieve more accurate

results for our simulations, we used data from the PARSEC benchmark suite, which

70

And
rea

s S
av

va

provides realistic traffic profiles, traces of real applications based on parallel pro-

grams, and state-of-the-art algorithms that help with the study of the implemented

topologies [60], [63], [67].

6.3.2 Simulations to Verify How the Prediction Accuracy of the

ANNs is Generally Affected

Firstly, different random simulations were developed to verify whether weight al-

terations affect the percentage of correct predictions of the ANNs in general. One

NoC topology/partition was randomly chosen, a dedicated ANN is responsible for

this partition, and random ANN weight alterations were injected and simulated.

Different simulation cases were developed using one, two, three, and four different

weight alterations in the case of 8× 8 NoC topologies with 4× 5 NoC partitions/ANN

sizes. For each weight, one random bit was chosen to be altered. All the different

NoC partitions and ANNs were verified in this work. As a starting point, we only

used 8 × 8 NoC topologies with 4 × 5 partitions/ANN sizes and changed one bit for

each weight in order to verify if the percentage of correct predictions is generally

affected. In the following sections, we present more simulations of alterations for

different ANN sizes.

Figures 6.2 and 6.3 present the results for one, two, three, and four weight alter-

ations in the developed ANNs. Figure 6.2 presents the results from the simulations in

the case of checking all the weights of the ANN: one bit alteration. Figure 6.3 shows

the results in the case of checking the input weights only: one bit alteration. The

results show that there is a clear decrease in percentages of the correct predictions of

the different simulated cases.

Based on the graphs/results, we conclude that weight alterations impact the

prediction accuracy of the ANNs. Since the accuracy whereby only the input weight

alterations are checked decreased below 90% on average, and the accuracy whereby

all the weight alterations are checked is above 90% on average, we can conclude that

if the alteration is presented in the input weights, the impact on accuracy is larger

than if the alteration is presented in the remaining weights. This allows us to assume

that the input-hidden connections of the ANN are more influential in the prediction

process than the hidden-output connections of the ANN.

71

And
rea

s S
av

va

Figure 6.2: General results for checking all weights: one bit error.

Figure 6.3: General results for checking only input weights: one bit error.

72

And
rea

s S
av

va

Figure 6.4: Flowchart presenting the process of weight alterations.

6.3.3 More In-depth Simulations and Explanations for the Robust-

ness of the ANNs Based on Weight Alterations

Next, we checked how the alteration of weights impacts the overall prediction pro-

cess for each of the different implemented ANNs in more detail. In order to achieve

this, different sizes of ANN architectures were developed, and random weight alter-

ations were injected into all of the individual developed ANNs. All the individual

ANNs for each partition of the different NoC topologies and all the weights were

checked. Randomly chosen bit alteration of the randomly chosen weight/weights

were checked in this work. Figure 6.4 presents the weight alteration process, and

explanations are provided below.

An exhaustive testing process of all the random possibilities of the weight faults

is developed for each individual ANN. Thousands of different simulations are devel-

oped based on randomly chosen weights and bit for all ANNs. To generate erroneous

weights, we tested all the possible random-weight bit alterations for one or more

weight errors. For each of these simulation cases, we used PARSEC workloads. All

the results were recorded, and based on the prediction results, we managed to con-

clude on the most important neurons/connections of the ANNs. For the purposes of

our method, a neuron/connection is defined as important if the weight/bit alterations

cause the ANN to yield erroneous prediction results. Next, we present some of the

different simulation cases (Table 6.1) with results.

Different sizes of the NoCs/ANNs were developed and simulated. We started

working with one randomly chosen network-on-chip partition: a dedicated ANN

is responsible for each individual partition. All network partitions and different

workloads from the PARSEC benchmark suite were verified and presented. Dif-

ferent simulation cases were developed and checked. Table 6.1 presents some of

the developed simulation cases with appropriate descriptions. Figure 6.5 shows

the results concerning the percentage of correct predictions for each of the above-

73

And
rea

s S
av

va

Table 6.1: Explanations for different simulation cases.

Simulation Case Description

Case A: One randomly

chosen weight error and

one randomly chosen bit

alteration.

Firstly, we randomly choose one weight. The weight

is changed to binary. After this, we randomly chose

one bit to be altered. The bit is changed. We change

the altered weight back to decimals and continue with

the predictions.

Case B: Two randomly cho-

sen weight errors and one

randomly chosen bit alter-

ation.

Firstly, we randomly choose two weights. The weights

are changed to binary. After this, we randomly chose

one bit to be altered for each weight. The bits are

changed. We change the altered weights back to deci-

mals and continue with the predictions.

Case C: Three randomly

chosen weights and one

randomly chosen bit alter-

ation.

Firstly, we randomly choose three weights. The

weights are changed to binary. After this, we ran-

domly chose one bit to be altered for each weight. The

bits are changed. We change the altered weights back

to decimals and continue with the predictions.

Case D: Four randomly

chosen weights and one

randomly chosen bit alter-

ation.

Firstly, we randomly choose four weights. The weights

are changed to binary. After this, we randomly chose

one bit to be altered for each weight. The bits are

changed. We change the altered weights back to deci-

mals and continue with the predictions.

74

And
rea

s S
av

va

mentioned cases in comparison with the case of no weight faults for different ANN

sizes. From the results, we can conclude that weight changes in the ANNs impact

the whole prediction process, and we used thousands of additional simulations to

determine the most important ANN neurons for each case (partition and PARSEC

workload). In the following section, we present and analyze a method/technique for

maintaining the robustness of ANNs in high levels based on the replication of the

most important neurons/connections.

The amount of redundancy that is needed to achieve good levels of robustness

is usually high in overheads. If less redundancy is added, this means that fewer

faults will be tolerated. A balance between this redundancy and robustness in

additional overheads is needed. Based on our research, we attempted to maintain the

robustness of ANNs in accepted margins and have as few overheads as possible by

only duplicating the most important neurons/connections. Our method is presented

in the next section.

6.3.4 Replication of the Most Important Neurons/Connections

Next, we present a method in order to achieve robustness for ANNs based on

the replication of the most important neurons/connections, addressing the issue of

robustness based on redundancy.

Different methods have previously been used for robustness, but these are of-

ten restrictive. Most cases are based on replicating complete ANN architecture or

replicating a certain number of complete layers in the ANNs. Based on past studies,

ANNs are not always fault-tolerant and indicate the need for more robust methods

[10], [68].

Based on the results presented in the previous section for each individual ANN,

as well as the PARSEC benchmark suite workloads, we managed to identify the

most important neurons/connections in the presence of weight (bit) errors. Our

method focuses on the replication of these parts in order to achieve robustness for

the developed ANNs.

In order to check how many redundant neurons/connections are needed for the

different ANN sizes to achieve good robustness levels, different numbers of neurons

were replicated and simulated. Figure 6.6 presents the results from simulations of

different numbers of neuron replications for different ANN sizes.

75

And
rea

s S
av

va

Figure 6.5: Percentage of correct predictions for different weight/bit alteration cases

and different ANN sizes.

76

And
rea

s S
av

va

Figure 6.6: Simulation results for different ANN sizes and different numbers of

neuron replication.

77

And
rea

s S
av

va

Figure 6.7: Structure of the neural network with redundant neurons/connections.

Figure 6.8: Steps for replicating the most important neurons/connections for robust-

ness.

The results show that good robustness results are achieved for the 4 × 5 ANN

with 12 neuron replications. For the 4 × 6 ANN, good results are achieved with 14

neuron replications. For the 5 × 6 ANN, good robustness results are achieved with

17 neuron replications. Figure 6.7 presents the structure of the neural network with

redundant neurons/connections (redundant neurons/connections are shown in red).

Figure 6.8 shows the complete process/steps of our method.

Based on the previous results, since the weight alterations are already known,

we determined the most important neurons/connections for specific ANNs under

different PARSEC workloads. Different simulations are developed with randomly

chosen weights and bit, as explained before. We tested all the possible random

weight bit alterations for one and more weight errors. Next, we replicated the above

important neurons/connections of the specific ANN, changing the architecture of

the ANN in order to increase its robustness. Based on the new and altered ANN

architecture, we carried out simulations to check the prediction accuracy of different

ANNs. Using the new prediction simulation results, we verified the robustness of

the ANNs.

Figure 6.9 shows that the robust method analyzed above (with redundant neu-

78

And
rea

s S
av

va

Figure 6.9: Average percentage of correct predictions for different weight/bit alter-

ation cases with redundant neurons/connections.

rons/connections) helps to increase the robustness of the ANNs used for prediction

purposes. The figure shows the average percentages of correct predictions for each of

the above-mentioned cases with redundancy in comparison to cases with no weight

faults.

In our method, robustness is achieved via the actual ANN process itself by using

the high connectivity of the neurons in the ANNs. The above results show that,

by replicating the most important neurons/connections, ANNs can retain a high

robustness level (around 98% prediction accuracy); these results are reproducible

for larger networks too.

6.4 Comparison with Related Works

Lastly, we provide a brief comparison with relevant related studies, as shown in

Table 6.2.

Authors in [48], propose a fine-grained redundancy framework D2NN based on

dual modular redundancy for hardware vulnerabilities. The DMR consists from

the primary network – the original one and a secondary network is constructed

using newly introduced neurons together with parts of the original DNN. Based on

this framework authors shown good robustness levels but the hardware overheads

are high because of the duplicated network. Authors in [51] present Embedded

79

And
rea

s S
av

va

Table 6.2: Comparisons with related research.

Related Work Overheads Robustness Level

D2NN [48]

(Dual modular

redundancy

framework)

DMR—Primary and secondary net-

works—The primary DNN represents

the original DNN, while the sec-

ondary DNN is constructed using

newly introduced neurons together

with parts of the original DNN.

Faults on the secondary

network are converted

from missed to detected

faults, and the fault miss

rate is reduced, maintain-

ing good robust levels.

E2CNNs [51]

(Convolu-

tional neural

networks:

ensemble archi-

tectures)

The group of architectures is built by

training pruned CNN several times.

The individual predictions are aver-

aged together to compute the output.

(Additional overheads are needed for

the control logic).

A 4-E2CNN increases the

accuracy around 15%.

Our work

(NoCs—different

cases of PAR-

SEC benchmark

suite)

Only the most important neu-

rons/connections are replicated, keep-

ing the overheads to a minimum.

Based on simulated results,

high levels of robustness

are achieved: around 98%

prediction accuracy.

80

And
rea

s S
av

va

Ensemble CNNs (Convolutional neural networks) – E2CNNs. The ensemble is

built by training a pruned CNN several times. Then the individual predictions

are averaged together to compute the output. This method presents additional

overheads for the control logic and an increase in the accuracy (around 15%). When

compared to both [48], [51], our work yields high levels of robustness (around 98%

prediction accuracy) while still maintaining lower hardware overheads.

The number of input–hidden–output units remains the same in our study, with

only the most important neurons/connections changing. By replicating only these,

we kept the overheads to a minimum in comparison to the previous studies that

replicated the complete ANN or complete layers x times. Furthermore, our study

not only considered single-fault assumptions (as in previous research) but verified

all cases of random faults with one and more weights and single bit errors.

Moreover, our method tries to reduce the redundancy needed (in comparison to

previous methods) in order to minimize expenses in terms of the additional units

and links. Our method is easier to implement in practice in comparison to the other

methods that require replications of more neurons / connections (even entire ANNs),

and this makes them impractical in reality.

6.5 Conclusions

This chapter offers fundamental insights into the robustness of ANNs that are sub-

jected to weight alterations and used for prediction purposes. For simulation pur-

poses, NoC was used as the case study. Thousands of different simulations were

created for different NoC/ANN sizes and weight/bit alterations in order to verify how

the prediction accuracy of the ANNs is affected. In this work, we verified all the cases

of random faults with one or more weight and one bit errors. Based on this study,

we managed to draw significant conclusions on the robustness of the ANNs based

on weight alterations. Additionally, we proposed a robustness method for ANNs

based on redundancy. More specifically, the most important neurons/connections,

which were defined based on simulations, were replicated. The proposed method

can be used for larger networks and different hardware due to its scalable nature, and

robustness is achieved through the actual ANN process itself. Our results indicate

that a significant amount of redundancy is needed in order to achieve good levels

of robustness in ANNs. Based on the analytical results from our simulations, we

81

And
rea

s S
av

va

conclude that the proposed method can maintain the robustness of ANNs at high

levels (around 98% prediction accuracy). Lastly, our method minimizes additional

redundant units and links, keeping the additional hardware overheads and costs to

a minimum.

82

And
rea

s S
av

va

Chapter 7

Conclusions and Future Directions

This chapter concludes all topics discussed in this dissertation, along with the key

outcomes achieved by the techniques proposed in the thesis. Moreover, interesting

future research directions regarding the topics considered in this dissertation are

also presented.

7.1 Conclusions

The objective of this dissertation is to design and implement intelligent monitor-

ing techniques for hardware using Artificial Neural Networks. As case study for

simulation and evaluation purposes, the NoC case is used.

This work firstly presents a design exploration framework for new intelligent

techniques with the use of high-level ANNs for hardware systems (NoCs) which

will be used for evaluation purposes. It analyzes, explains and evaluates all the

necessary steps taken for the development of an optimal framework. Lots of different

parameters are analyzed and explained based on simulations. Based on experiments,

two important things are analyzed and studied, the ANN topology/design and the

NoC. For the ANN topology/design, a lot of experiments are developed in order

to choose the appropriate ANN architecture and internal ANN parameters such as

neurons in the input/hidden/output layers. From the above analyzed experiments,

based on simulated results, 4x5 NoCs/ANNs with 19 neurons in hidden layer were

chosen. Based on experiments on 8x8 NoC networks, different simulator parameters

were explored and optimally analyzed and the average router link utilization values

were developed for the ANN training phase. Added to this, an efficient delay model

83

And
rea

s S
av

va

was implemented in the simulator for comparison purposes. The framework is used

for the development of new intelligent mechanisms for hardware/NoCs.

Next, this work continued with the use of the framework for the implementation

of an ANN-based intelligent power management policy. This dynamic method

presents how an ANN based mechanism can be used to intelligently select, based

on appropriate training, candidate links to be turned off and then back on in order

to achieve power savings. The ANN based mechanism can identify a significant

amount of future behavior of the system therefore it can intelligently select candidate

links for turn off. The ANN monitors the link utilization values within its region.

These values are processed by the ANN which computes the links that should be

turned off during each interval – underutilized links are turned off. The ANN-based

model utilizes very low hardware resources, and can be integrated in large mesh

and torus NoCs and hardware, exhibiting significant power savings. Simulation

results indicate approximately 13% additional power savings when compared to

a statically-determined threshold methodology under synthetic and realistic traffic

models at very low hardware overheads (less than 4%). Through this work, power

savings are achieved through the use of small and scalable ANNs which gives an

advantage against statical ways making our work flexible under any application

is required to facilitate. Additionally, static power consumption is minimized by

turning links off and then back on.

This work additionally presented an intelligent mechanism for fault detection in

hardware systems - NoCs with the use of high level ANNs. The ANNs, based on

dynamic training, can be used for detection of inter-router link faults. This work,

analyzes, explains and evaluates all the necessary steps taken in designing such a

mechanism. The new intelligent method can be used for fault detection in different

types of hardware and networks based on the scalable nature of the calculations.

The ANN utilizes very low hardware resources and can be integrated in larger

hardware systems easily. Additionally, by using real time data for the training, this

mechanism offers better insights and more accurate results making our work more

competitive against other works. Simulation results under synthetic and realistic

traffic models show good detection results up to 99% with a delay less than 60 cycles.

Synthesis results indicate an estimated amount of 0.0633 mW power consumption

per neuron for the implemented ANN when computing a complete cycle. Thus, it

can be concluded that by designing correctly the ANNs can be very beneficial for

84

And
rea

s S
av

va

intelligently detecting faults in hardware, especially in large and complex systems

such as NoCs.

Lastly, this work developed an intelligent robust technique for the ANNs. Discus-

sion/study about the robustness of neural networks to changes of weights that might

affect the prediction results is provided and a new technique based on topology re-

dundancy – architectural alteration of the ANN is proposed and evaluated based

on simulations. Based on simulations results, we concluded that weights alterations

impact the prediction accuracy of the ANNs. Through those results we managed

also to conclude that the input weights of the ANN have more impact on the predic-

tion accuracy than the rest of the weights. In-depth analysis and simulations about

how the alteration of weight impact the overall prediction accuracy are presented

and based on the results a new robust method is developed for the ANNs. The new

method introduces redundancy of the most important neurons (and connections)

only, and those are defined based on simulations. In this method, robustness is

achieved through the actual ANN process itself. We take into consideration the

advantages of high connectivity and the rest of the ANNs attributes which are im-

portant characteristics of the ANNs. Added to this, our method tries to minimize

the redundancy needed in comparison with other methods in order to minimize the

expenses on terms of the additional units and links needed. Our method is evalu-

ated based on simulations and we concluded that the proposed method keeps the

robustness of ANNs in high levels with minimum hardware overheads. Compared

with other techniques, this method is easier to implement since it replicates only

the most important neurons minimizing the overheads in comparison with previous

works that replicate complete architectures or layers, making them impractical in

reality.

7.2 Future Research Directions

The combination of power management and fault detection techniques in hardware

is a critical area of research due to the increased complexity and area limitations in

hardware.

Dynamic link power management techniques adjust the link characteristics based

on the link utilization in order to achieve power savings. Fault detection techniques

can be used along with these techniques to monitor the performance of the hardware

85

And
rea

s S
av

va

and predict future faults. Additionally, underutilized links can be turned off and

then back on in order to conserve power. As previously mentioned, fault detection

mechanisms can continue monitoring the hardware in order to detect future faults, in

parallel with the turning off of the links. Moreover, proactive fault detection methods

have the ability to find errors based on past data or based on forecast analysis. These

methods can enable the implementation of power management solutions as well.

Based on this, hardware can predict and prevent faults and achieve good power

savings.

Overall, power management and fault detection mechanisms for hardware allow

the development of more efficient and reliable hardware with the ability to predict

future faults and having good levels of power savings at the same time.

There are a number of intriguing future research directions that are interesting

regarding the contents suggested through this dissertation. Future research could

concentrate on the improvement of the different solutions mentioned through this

work for the power consumption and fault detection of hardware and robustness

of the ANNs and applying the specific ideas in different types of newer and more

complex hardware. Additionally, the usage of the ANNs could be further explored

for the purposes of fault predictions and power management in hardware. Based

on this, future work can explore the usage of ANNs in order to predict the most

power efficient routing paths and this can lead to new power-aware strategies for

the minimization of the power consumption in hardware. The next sections provide

a brief description of different future research directions.

7.2.1 CPU Prediction and Hardware Vulnerabilities Prediction

CPU (Central Processing Unit) is one of the most important sources of measuring

the performance of a system and has the highest levels of demands. Our work

can be used for the monitoring of the CPU and for predicting the future CPU uti-

lization/performance and CPU failures with great accuracy based on appropriate

training with the use of CPU utilization data. ANNs can be developed based on

the guidelines provided in the previous chapters in order to achieve accurate pre-

dictions. The developed ANNs can be used to learn the relationship between CPU

performance and already existed workloads or new ones (- real time) and for pre-

dicting CPU failures. The ANN mechanism can monitor the utilization values of the

86

And
rea

s S
av

va

CPU and these values can be used from the ANN in order to make the prediction

of faults. The ANN can be trained based on utilization values collected from the

CPU in which random faults are injected. Based on the training phase, the ANN can

detect future CPU faults.

Moreover, our work can be used for the prediction of different hardware vulner-

abilities and faults. ANNs can be used for the fault prediction by finding different

patterns in the utilization data based on appropriate training as previously men-

tioned. With the use of this information, researchers can decide about hardware

replacements of malfunctioning components in order to increase the performance

and availability of the different hardware. The developed ANNs are adaptable in

many different hardware systems.

Additionally, our work, based on appropriate training, can predict future hosts

machines failures and disk utilizations/failures. Based on the ideas of our work,

ANNs can be used to intelligently monitor the host machines and the disks uti-

lizations and based on these values, the ANNs can proceed with the prediction of

failures. Developed ANNs can be trained off-line based on values collected from

devices in which random faults are injected. The ANNs then, based on the train-

ing, can intelligently detect faults in host machines and disks and researchers could

conclude on decisions for these machines/devices – for example perform off/on host

machines to deal with future demands or replacing the faulty host machines.

7.2.2 Memory Fault Prediction

Memory errors can lead to failures and the memory failure analysis is one of the most

important aspects in hardware reliability. Our work can be used as a mechanism for

predicting future memory failures. We can observe important aspects of memory

failures, study the impact of memory failures and propose new mechanisms based

on the guidelines provided in this dissertation. We can use the ANNs in order to

find patterns and associations in the memory data for accurate fault predictions. The

developed ANNs can be trained based on real-time memory data (– various memory

parameters) in which random faults are injected. After the training, which can be

done off-line when the ANN is not in use, the ANN can intelligently predict future

memory faults. By repeatedly taking the memory failure data as training data, we

can predict memory failures in the future. After the prediction, error prevention

87

And
rea

s S
av

va

mechanisms such as dynamic substitution with spare memory components can be

proposed.

88

And
rea

s S
av

va

Bibliography

[1] A. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: A tutorial”,
Computer, vol. 29, no. 3, pp. 31–44, 1996. doi: 10.1109/2.485891.

[2] R. Schalkoff, Artificial Neural Networks (McGraw-Hill series in computer sci-
ence). McGraw-Hill, 1997, isbn: 9780070428072. [Online]. Available: https:
//books.google.com.cy/books?id=bbNQAAAAMAAJ.

[3] R. A. Shafik, J. Mathew, and D. K. Pradhan, “Introduction to energy-efficient
fault-tolerant systems”, in Energy-Efficient Fault-Tolerant Systems, J. Mathew,
R. A. Shafik, and D. K. Pradhan, Eds. New York, NY: Springer New York,
2014, pp. 1–10, isbn: 978-1-4614-4193-9. doi: 10.1007/978-1-4614-4193-9_1.
[Online]. Available: https://doi.org/10.1007/978-1-4614-4193-9_1.

[4] B. Hoefflinger, “Itrs: The international technology roadmap for semiconduc-
tors”, in Chips 2020: A Guide to the Future of Nanoelectronics, B. Hoefflinger,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 161–174, isbn:
978-3-642-23096-7. doi: 10.1007/978-3-642-23096-7_7. [Online]. Available:
https://doi.org/10.1007/978-3-642-23096-7_7.

[5] S. Murali, T. Theocharides, N. Vijaykrishnan, M. Irwin, L. Benini, and G. De
Micheli, “Analysis of error recovery schemes for networks on chips”, IEEE
Design Test of Computers, vol. 22, no. 5, pp. 434–442, 2005. doi: 10.1109/MDT.
2005.104.

[6] C. Grecu, A. Ivanov, R. Saleh, E. Sogomonyan, and P. P. Pande, “On-line fault
detection and location for noc interconnects”, in 12th IEEE International On-Line
Testing Symposium (IOLTS’06), 2006, 6 pp.–. doi: 10.1109/IOLTS.2006.44.

[7] P. Poluri and A. Louri, “A soft error tolerant network-on-chip router pipeline
for multi-core systems”, IEEE Computer Architecture Letters, vol. 14, no. 2,
pp. 107–110, 2015. doi: 10.1109/LCA.2014.2360686.

[8] J. Liu, J. Harkin, Y. Li, and L. Maguire, “Online fault detection for networks-
on-chip interconnect”, in 2014 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), 2014, pp. 31–38. doi: 10.1109/AHS.2014.6880155.

[9] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “Bist for network-on-chip inter-
connect infrastructures”, in 24th IEEE VLSI Test Symposium, 2006, 6 pp.–35. doi:
10.1109/VTS.2006.22.

[10] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works”, in 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 39–57.
doi: 10.1109/SP.2017.49.

[11] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “The robustness of deep
networks: A geometrical perspective”, IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 50–62, 2017. doi: 10.1109/MSP.2017.2740965.

89

And
rea

s S
av

va

https://doi.org/10.1109/2.485891
https://books.google.com.cy/books?id=bbNQAAAAMAAJ
https://books.google.com.cy/books?id=bbNQAAAAMAAJ
https://doi.org/10.1007/978-1-4614-4193-9_1
https://doi.org/10.1007/978-1-4614-4193-9_1
https://doi.org/10.1007/978-3-642-23096-7_7
https://doi.org/10.1007/978-3-642-23096-7_7
https://doi.org/10.1109/MDT.2005.104
https://doi.org/10.1109/MDT.2005.104
https://doi.org/10.1109/IOLTS.2006.44
https://doi.org/10.1109/LCA.2014.2360686
https://doi.org/10.1109/AHS.2014.6880155
https://doi.org/10.1109/VTS.2006.22
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/MSP.2017.2740965

[12] A. Savva, Noc code, Accessed: 8 April, 2024. [Online]. Available: https://www.
github.com/Andsa1/NoC_Code.

[13] A. Savva, Ann code, Accessed: 8 April, 2024. [Online]. Available: https://www.
github.com/Andsa1/ANN_Code.

[14] M. J. Islam, W. Senadeera, P. Brooks, R. Brown, R. Situ, P. Pham, and A.
Masri, “An artificial neutral network (ann) model for predicting biodiesel
kinetic viscosity as a function of temperature and chemical compositions”, in
MODSIM2013, 20th International Congress on Modelling and Simulation, Mod-
elling, Simulation Society of Australia, and New Zealand Inc.(MSSANZ), 2013,
pp. 1561–1567.

[15] V. Pacelli, V. Bevilacqua, M. Azzollini, et al., “An artificial neural network
model to forecast exchange rates”, Journal of Intelligent Learning Systems and
Applications, vol. 3, no. 02, p. 57, 2011.

[16] K. Suzuki, Artificial neural networks: methodological advances and biomedical ap-
plications. BoD–Books on Demand, 2011.

[17] Z. H. Khan, T. S. Alin, M. A. Hussain, et al., “Price prediction of share market
using artificial neural network (ann)”, International Journal of Computer Appli-
cations, vol. 22, no. 2, pp. 42–47, 2011.

[18] S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley, B. McGinley, and F.
Morgan, “Advancing interconnect density for spiking neural network hard-
ware implementations using traffic-aware adaptive network-on-chip routers”,
Neural networks, vol. 33, pp. 42–57, 2012.

[19] E. Alkım, E. Gürbüz, and E. Kılıç, “A fast and adaptive automated disease
diagnosis method with an innovative neural network model”, Neural Networks,
vol. 33, pp. 88–96, 2012.

[20] R. C. Minnett, A. T. Smith, W. C. Lennon Jr, and R. Hecht-Nielsen, “Neural
network tomography: Network replication from output surface geometry”,
Neural Networks, vol. 24, no. 5, pp. 484–492, 2011.

[21] M. H. Al Shamisi, A. H. Assi, and H. A. Hejase, “Using matlab to develop
artificial neural network models for predicting global solar radiation in al ain
city–uae”, in Engineering education and research using MATLAB, Citeseer, 2011.

[22] A. G. Savva, T. Theocharides, and V. Soteriou, “Intelligent on/off link manage-
ment for on-chip networks”, in 2011 IEEE Computer Society Annual Symposium
on VLSI, IEEE, 2011, pp. 343–344.

[23] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote, “Outstand-
ing research problems in noc design: System, microarchitecture, and circuit
perspectives”, IEEE Transactions on computer-aided design of integrated circuits
and systems, vol. 28, no. 1, pp. 3–21, 2008.

[24] G. Chen, F. Li, M. Kandemir, and M. J. Irwin, “Reducing noc energy con-
sumption through compiler-directed channel voltage scaling”, ACM SIGPLAN
Notices, vol. 41, no. 6, pp. 193–203, 2006.

[25] T. Pering, T. Burd, and R. Brodersen, “Voltage scheduling in the iparm mi-
croprocessor system”, in Proceedings of the 2000 international symposium on Low
power electronics and design, 2000, pp. 96–101.

90

And
rea

s S
av

va

https://www.github.com/Andsa1/NoC_Code
https://www.github.com/Andsa1/NoC_Code
https://www.github.com/Andsa1/ANN_Code
https://www.github.com/Andsa1/ANN_Code

[26] F. Li, G. Chen, and M. Kandemir, “Compiler-directed voltage scaling on com-
munication links for reducing power consumption”, in ICCAD-2005. IEEE/ACM
International Conference on Computer-Aided Design, 2005., IEEE, 2005, pp. 456–
460.

[27] V. Soteriou, N. Eisley, and L.-S. Peh, “Software-directed power-aware inter-
connection networks”, ACM Transactions on Architecture and Code Optimization
(TACO), vol. 4, no. 1, 5–es, 2007.

[28] E.-Y. Chung, G. De Micheli, and L. Benini, “Contents provider-assisted dy-
namic voltage scaling for low energy multimedia applications”, in Proceedings
of the 2002 international symposium on Low power electronics and design, 2002,
pp. 42–47.

[29] J. Kim and M. A. Horowitz, “Adaptive supply serial links with sub-1-v oper-
ation and per-pin clock recovery”, IEEE Journal of Solid-State Circuits, vol. 37,
no. 11, pp. 1403–1413, 2002.

[30] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links for
power optimization of interconnection networks”, in The Ninth International
Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Pro-
ceedings., IEEE, 2003, pp. 91–102.

[31] D. Shin and J. Kim, “Power-aware communication optimization for networks-
on-chips with voltage scalable links”, in Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis, 2004,
pp. 170–175.

[32] V. Soteriou and L.-S. Peh, “Dynamic power management for power optimiza-
tion of interconnection networks using on/off links”, in 11th Symposium on High
Performance Interconnects, 2003. Proceedings., IEEE, 2003, pp. 15–20.

[33] V. Soteriou and L.-S. Peh, “Exploring the design space of self-regulating power-
aware on/off interconnection networks”, IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 18, no. 3, pp. 393–408, 2007.

[34] M. Alonso, S. Coll, J.-M. Martínez, V. Santonja, P. López, and J. Duato, “Power
saving in regular interconnection networks”, Parallel computing, vol. 36, no. 12,
pp. 696–712, 2010.

[35] S Conner, S. Akioka, M. J. Irwin, and P. Raghavan, “Link shutdown oppor-
tunities during collective communications in 3-d torus nets”, in 2007 IEEE
International Parallel and Distributed Processing Symposium, IEEE, 2007, pp. 1–8.

[36] C. Jackson and S. J. Hollis, “Skip-links: A dynamically reconfiguring topology
for energy-efficient nocs”, in 2010 International Symposium on System on Chip,
IEEE, 2010, pp. 49–54.

[37] R. Mullins, “Minimising dynamic power consumption in on-chip networks”,
in 2006 International Symposium on System-on-Chip, IEEE, 2006, pp. 1–4.

[38] F. Worm, P. Ienne, P. Thiran, and G. De Micheli, “An adaptive low-power trans-
mission scheme for on-chip networks”, in Proceedings of the 15th international
symposium on System Synthesis, 2002, pp. 92–100.

[39] M. Ali, M. Welzl, and S. Hellebrand, “A dynamic routing mechanism for
network on chip”, in 2005 NORCHIP, IEEE, 2005, pp. 70–73.

91

And
rea

s S
av

va

[40] T. Simunic, S. P. Boyd, and P. Glynn, “Managing power consumption in net-
works on chips”, IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 12, no. 1, pp. 96–107, 2004.

[41] M Sanaye-Pasand and H Khorashadi-Zadeh, “Transmission line fault detection
& phase selection using ann”, in International Conference on Power Systems
Transients, 2003, pp. 1–6.

[42] H. Khorashadi Zadeh, “An ann-based high impedance fault detection scheme:
Design and implementation”, International Journal of Emerging Electric Power
Systems, vol. 4, no. 2, 2005.

[43] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “Nocalert: An on-
line and real-time fault detection mechanism for network-on-chip architec-
tures”, in 2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture, IEEE, 2012, pp. 60–71.

[44] R. Parikh and V. Bertacco, “Udirec: Unified diagnosis and reconfiguration
for frugal bypass of noc faults”, in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 148–159.

[45] C. Iordanou, V. Soteriou, and K. Aisopos, “Hermes: Architecting a top-performing
fault-tolerant routing algorithm for networks-on-chips”, in 2014 IEEE 32nd In-
ternational Conference on Computer Design (ICCD), IEEE, 2014, pp. 424–431.

[46] R. Nakamura, Y. Sekiya, D. Miyamoto, K. Okada, and T. Ishihara, “Malicious
host detection by imaging syn packets and a neural network”, in 2018 Interna-
tional Symposium on Networks, Computers and Communications (ISNCC), IEEE,
2018, pp. 1–4.

[47] R. Abou Khamis and A. Matrawy, “Evaluation of adversarial training on dif-
ferent types of neural networks in deep learning-based idss”, in 2020 inter-
national symposium on networks, computers and communications (ISNCC), IEEE,
2020, pp. 1–6.

[48] Y. Li, Y. Liu, M. Li, Y. Tian, B. Luo, and Q. Xu, “D2nn: A fine-grained dual
modular redundancy framework for deep neural networks”, in Proceedings of
the 35th Annual Computer Security Applications Conference, 2019, pp. 138–147.

[49] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against ad-
versarial examples”, arXiv preprint arXiv:1801.09344, 2018.

[50] T.-W. Weng, P. Zhao, S. Liu, P.-Y. Chen, X. Lin, and L. Daniel, “Towards cer-
tificated model robustness against weight perturbations”, in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 6356–6363.

[51] F. Ponzina, M. Peon-Quiros, A. Burg, and D. Atienza, “E 2 cnns: Ensembles of
convolutional neural networks to improve robustness against memory errors
in edge-computing devices”, IEEE Transactions on Computers, vol. 70, no. 8,
pp. 1199–1212, 2021.

[52] Y.-L. Tsai, C.-Y. Hsu, C.-M. Yu, and P.-Y. Chen, “Formalizing generalization and
adversarial robustness of neural networks to weight perturbations”, Advances
in Neural Information Processing Systems, vol. 34, pp. 19 692–19 704, 2021.

[53] P. Arcaini, A. Bombarda, S. Bonfanti, and A. Gargantini, “Roby: A tool for
robustness analysis of neural network classifiers”, in 2021 14th IEEE Conference
on Software Testing, Verification and Validation (ICST), IEEE, 2021, pp. 442–447.

92

And
rea

s S
av

va

[54] N. Raviv, P. Upadhyaya, S. Jain, J. Bruck, and A Jiang, “Coded deep neural
networks for robust neural computation”, in Proceedings of the Non Volatile
Memories Workshop (NVMW), San Diego, CA, USA, 2020, pp. 8–10.

[55] N. Raviv, A. Kelley, M. Guo, and Y. Vorobeychik, “Enhancing robustness of
neural networks through fourier stabilization”, in International Conference on
Machine Learning, PMLR, 2021, pp. 8880–8889.

[56] H. Lim, S.-D. Roh, S. Park, and K.-S. Chung, “Robustness-aware filter pruning
for robust neural networks against adversarial attacks”, in 2021 IEEE 31st
International Workshop on Machine Learning for Signal Processing (MLSP), IEEE,
2021, pp. 1–6.

[57] B. Zhang, T. Cai, Z. Lu, D. He, and L. Wang, “Towards certifying l-infinity
robustness using neural networks with l-inf-dist neurons”, in International
Conference on Machine Learning, PMLR, 2021, pp. 12 368–12 379.

[58] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Z. Islam, and M. M. Akbar, “Gpnocsim-
a general purpose simulator for network-on-chip”, in 2007 International Con-
ference on Information and Communication Technology, IEEE, 2007, pp. 254–257.

[59] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A power-performance
simulator for interconnection networks”, in 35th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2002.(MICRO-35). Proceedings., IEEE,
2002, pp. 294–305.

[60] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Charac-
terization and architectural implications”, in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, 2008, pp. 72–81.

[61] Y. Hoskote, S. Vangal, S. Dighe, N. Borkar, and S. Borkar, “Teraflops prototype
processor with 80 cores”, in 2007 IEEE Hot Chips 19 Symposium (HCS), IEEE,
2007, pp. 1–15.

[62] W.-C. Cheng and M. Pedram, “Low power techniques for address encoding
and memory allocation”, in Proceedings of the 2001 Asia and South Pacific Design
Automation Conference, 2001, pp. 245–250.

[63] G. Southern and J. Renau, “Analysis of parsec workload scalability”, in 2016
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), IEEE, 2016, pp. 133–142.

[64] A. G. Savva, T. Theocharides, C. Nicopoulos, et al., “A design space explo-
ration framework for ann-based fault detection in hardware systems”, Journal
of Electrical and Computer Engineering, vol. 2017, 2017.

[65] M. Clark, A. Kodi, R. Bunescu, and A. Louri, “Lead: Learning-enabled energy-
aware dynamic voltage/frequency scaling in nocs”, in Proceedings of the 55th
Annual Design Automation Conference, 2018, pp. 1–6.

[66] R. B. Tonetto, D. M. Cardoso, M. Brandalero, L. Agostini, G. L. Nazar, J. R.
Azambuja, and A. C. S. Beck, “A knapsack methodology for hardware-based
dmr protection against soft errors in superscalar out-of-order processors”,
in 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration
(VLSI-SoC), IEEE, 2019, pp. 287–292.

[67] A. Savva, Parsec - data, Accessed: 10 June, 2024. [Online]. Available: https:
//www.github.com/Andsa1/PARSEC-Data.

93

And
rea

s S
av

va

https://www.github.com/Andsa1/PARSEC-Data
https://www.github.com/Andsa1/PARSEC-Data

[68] B. Mburano, W. Si, and W. X. Zheng, “A comparative study on the variants of
r metric for network robustness”, in 2021 International Symposium on Networks,
Computers and Communications (ISNCC), IEEE, 2021, pp. 1–6.

94

And
rea

s S
av

va

	Introduction
	General Introduction
	Motivation - Goals
	Thesis Contributions
	Thesis Organization

	Background
	ANN and Prediction Related Work
	Link Dynamic Power Management
	Fault Detection in Networks on Chip
	Robust Techniques for ANNs

	Experimental Framework
	Designing Exploration Framework for NoCs
	Processing Units
	General for NoC Simulator
	General for ANNs Development
	Framework Methodology
	ANN Training
	Simulation Decisions

	Intelligent Dynamic Link Management for Hardware/NoCs
	Introduction
	Power Management for on-chip Interconnects
	ANN-Based Threshold Computation Methodology
	Static Threshold Computation for Off/On Links
	Mechanism Overview
	Intelligent Threshold Computation
	Base (4x4) ANN Operation and Hardware Architecture

	Hardware Optimizations and Tradeoffs
	Simulations and Results
	ANN Hardware Overheads - Synthesis Results
	Comparison with Related Works
	Conclusion

	ANN-Based Fault Detection in Hardware Systems / NoCs
	Introduction
	ANN Mechanism Overview
	Scalability - ANN partitioning
	ANN Development for Fault Detection
	(4x5) ANN Based Model
	ANNs Parameters and Training
	Simulation Decisions for Fault Detection
	Topology Exploration Setup – Adaptability in Various Hardware Configurations

	ANN Costs and Power Consumption
	Comparison with Related works
	Conclusion

	Robustness of ANNs Based on Weight Alterations Used for Prediction Purposes
	Introduction
	ANNs and Robustness
	Methodoogy
	Development of the ANNs and Network Traffic
	Simulations to Verify How the Prediction Accuracy of the ANNs is Generally Affected
	More In-depth Simulations and Explanations for the Robustness of the ANNs Based on Weight Alterations
	Replication of the Most Important Neurons/Connections

	Comparison with Related Works
	Conclusions

	Conclusions and Future Directions
	Conclusions
	Future Research Directions
	CPU Prediction and Hardware Vulnerabilities Prediction
	Memory Fault Prediction

