
ABSTRACT

Offline reinforcement learning (RL) has gained significant attention in recent years as a

promising approach for training intelligent agents without the need for real-time interaction with

an environment.

This capability addresses a significant limitation in traditional reinforcement learning, where

direct interaction with environments is required, limiting its widespread adoption, especially

in domains where such interactions are dangerous or impractical. With offline reinforcement

learning, the potential for creating autonomous agents extends to various fields where direct

environment interaction is challenging, enabling safer and more efficient deployment in areas

such as healthcare, finance, and hazardous environments.

Successful implementations of offline reinforcement learning could derive optimal policies

from the given data, facilitating the automation of diverse decision-making realms, including but

not limited to healthcare, education, and robotics.

In this thesis, we explore the application of offline RL techniques in the context of World of

Tanks, a popular online multiplayer tank combat game.

This study evaluated several offline RL algorithms, including Conservative Q-Learning (CQL),

Implicit Q-Learning (IQL), Decision Transformer (DT), and Deep Deterministic Policy Gradi-

ent (DDPG). The results showed that CQL and IQL achieved significant returns under various

discount factors, demonstrating robustness and adaptability in offline settings. The choice of

discount factor (γ) had a notable impact on the algorithms’ performance, with higher discount

factors leading to better cumulative returns, particularly for CQL and IQL. Handling data distri-

bution shifts is crucial for the robustness of offline RL policies; techniques such as regularization

Ioa
nn

is 
Pas

tel
las



in CQL and modified architectures in IQL were effective in mitigating the effects of distribution

shifts. The volume of training data significantly influenced the performance of offline RL al-

gorithms, with larger datasets improving learning effectiveness. The study also highlighted the

inherent challenges in evaluating offline RL policies due to the absence of real-time interaction

with the environment. Methods such as model-based dynamics and policy value estimation were

employed, though they have limitations in accurately predicting real-world performance.
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Chapter 1

Introduction

1.1 Motivation

World of Tanks is a popular online multiplayer game where players command historically

accurate tanks in team-based battles. The game’s strategic and tactical aspects make it an ideal

environment for exploring reinforcement learning techniques. However, training RL agents in

such an online setting can be challenging due to the need for real-time interaction, which often

requires substantial computational resources and can disrupt the gaming experience for human

players, or it is not feasible at all due to other reasons.

Offline reinforcement learning, also known as batch reinforcement learning, offers an alter-

native approach by learning from a static dataset of previously collected experiences. This thesis

aims to investigate the potential of offline RL in training intelligent tank AI agents for tactical

decision-making in World of Tanks.

1
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2

1.2 World of Tanks Game

”World of Tanks” [1], developed by Wargaming Group Limited, is set in the historical con-

text of World War II and the Cold War era, with a primary focus on armored warfare. The game

features an extensive collection of accurately modeled tanks and armored vehicles from various

nations involved in these conflicts. This historical backdrop serves as the foundation for the

game’s immersive and authentic tank battles.

”World of Tanks” offers players the opportunity to command a wide array of tanks, each with

distinct characteristics, strengths, and weaknesses. Players can choose from various tech trees,

each representing a different nation’s tanks. Tanks can be further customized with upgrades and

equipment, allowing players to fine-tune their vehicles to suit their preferred playstyle.

The core gameplay of ”World of Tanks” revolves around team-based battles where two teams

of players, typically consisting of 15 members each, engage in strategic tank warfare. Players

must work together to achieve objectives, depending on the gamemode, such as capturing flags

or eliminating enemy tanks, while also considering terrain, cover, and their tank’s capabilities.

The gameplay in ”World of Tanks” is characterized by its tactical complexity. Players must

employ a combination of strategic planning, map awareness, and tank-specific knowledge to

succeed. The vast selection of tanks, each with unique attributes, such as health of tank etc,

which adds layers of complexity to decision-making. This complexity provides a challenging

environment for reinforcement learning agents to navigate and learn from.Ioa
nn
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3

1.3 Objectives

1. Assessing Offline RL Algorithms: The primary objective was to evaluate the perfor-

mance of different offline RL algorithms within the context of the World of Tanks game.

This involved assessing how well these algorithms could learn from a fixed dataset without

additional online interactions.

2. Impact of Key Parameters: Another objective was to investigate the impact of key pa-

rameters, such as discount factors and dataset size, on the performance of offline RL

algorithms.

3. Algorithm Comparison: The study aimed to compare the performance of standard RL

algorithms like DDPG with specialized offline RL algorithms such as CQL and IQL to

identify which approaches are more effective in offline settings.

1.4 Contributions

1. Demonstration of Offline RL Feasibility: The study demonstrated that offline RL algo-

rithms could effectively learn and perform well in complex game environments like World

of Tanks, which traditionally require real-time interactions for training.

2. Algorithm Insights: Provided detailed insights into the strengths and weaknesses of var-

ious offline RL algorithms, particularly highlighting the robustness of CQL and IQL in

handling data distribution shifts and achieving high returns.Ioa
nn
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3. Evaluation Framework: Developed a comprehensive framework for evaluating offline

RL policies using policy value estimation and especially model-based dynamics , con-

tributing to the methodology of offline RL research.

4. Recommendations for Future Research: Suggested directions for future research, in-

cluding enhancing exploration techniques, improving dataset quality, adapting to con-

cept drift, and developing multi-agent learning approaches for better team coordination in

games.
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Chapter 2

Background

2.1 Related Work

2.1.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning concerned with how agents

ought to take actions in an environment to maximize cumulative reward. This learning paradigm

is inspired by behavioral psychology, where an agent learns to achieve goals through trial and

error, receiving feedback from its own actions and experiences.

2.1.1.1 Core Concepts of Reinforcement Learning

At the heart of RL are several key concepts:

• Agent: The learner or decision maker that interacts with the environment.

• Environment: Everything the agent interacts with and operates within.

• State (s): A representation of the current situation or configuration of the environment.

5
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6

• Action (a): A decision or move made by the agent.

• Reward (r): Feedback from the environment in response to an action taken by the agent.

• Policy (π): A strategy or mapping from states to actions, defining the agent’s behavior.

• Value Function: A prediction of future rewards used to evaluate the goodness of states or

actions.

2.1.1.2 Key Algorithms in Reinforcement Learning

Several algorithms have become fundamental to RL, each contributing uniquely to the field:

• Q-Learning: Proposed by Watkins in 1989 [38], Q-Learning is a model-free algorithm

that seeks to learn the value of an action in a particular state. It uses the Bellman equation

to update Q-values iteratively, ensuring convergence to the optimal policy. A lot of Offline

RL algorithms are based on Q-Learning.

• SARSA (State-Action-Reward-State-Action): Unlike Q-Learning, SARSA updates its

Q-values based on the action actually taken by the policy, making it an on-policy method.

This allows SARSA to learn more conservative policies suitable for specific applications

where safety is a concern.

• Deep Q-Networks (DQN): Introduced by Mnih et al. in 2015 [22], DQN combined Q-

Learning with deep neural networks, enabling RL to scale to high-dimensional state spaces

like those encountered in Atari game environments. This marked a significant milestone,

demonstrating the capability of RL to handle complex tasks.
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7

• Policy Gradient Methods: These methods, including REINFORCE and Actor-Critic al-

gorithms, directly parameterize the policy and optimize it using gradient ascent. This

approach is particularly useful for problems with continuous action spaces or where value-

based methods struggle.

2.1.1.3 Applications of Reinforcement Learning

RL has been successfully applied across various domains:

• Game Playing: RL algorithms have achieved superhuman performance in games [30] like

chess, Go, and various Atari games. AlphaGo, developed by DeepMind, is a prominent

example, defeating the world champion in Go using a combination of RL and Monte

Carlo Tree Search (MCTS). More over, it is succesfully used in worldwide video games

like Minecraft

• Robotics: In robotics, RL is used for training autonomous agents to perform tasks such as

navigation, manipulation, and locomotion. Robots learn to adapt to dynamic environments

and execute complex sequences of actions [32].

• Healthcare: Personalized treatment plans and drug discovery are areas where RL shows

promise. By modeling patient responses and optimizing treatment sequences, RL can

potentially improve outcomes and efficiency in healthcare delivery [19].

2.1.1.4 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a mathematical framework used in reinforcement

learning to model decision-making problems. It consists of the following components:
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• States (S): A finite set of possible situations or configurations that the agent can be in.

• Actions (A): A finite set of possible actions that the agent can take.

• Transition Probability Function (P ): P (st+1|st, at) is the probability that taking action

at in state st will lead to state st+1.

• Reward Function (R): R(st, at) is the immediate reward received by the agent for taking

action at in state st.

• Discount Factor (γ): A value between 0 and 1 representing the preference for current

rewards over future rewards.

The goal in MDPs is to find a policy π, which is a mapping from states to actions, that

maximizes the expected cumulative reward over time.

2.1.2 Offline Reinforcement Learning

With the widespread adoption of deep learning, reinforcement learning (RL) has gained

significant popularity, tackling previously insurmountable challenges such as playing complex

games from pixel observations, engaging in sustained conversations with humans, and control-

ling robotic agents, as mentioned before. Despite these advancements, many domains remain

inaccessible to RL due to the high costs and dangers associated with interacting with the envi-

ronment

Offline RL, also known as batch RL, is a data-driven RL paradigm that is used for tackling

the above issue. Unlike the classical RL, the learning process is based exclusively on static

datasets comprised of previously collected experiences. In this model, a behavior policy interacts

Ioa
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with the environment to gather experiences (or experiences are already collected), which are

subsequently used to learn a new policy without any further interaction.

This approach is particularly valuable in contexts where online interaction is impractical—such

as in robotics, education, healthcare, and autonomous driving—due to the high costs or dangers

associated with real-time data collection. Additionally, even in scenarios where online inter-

action is feasible, utilizing previously collected data can offer enhanced generalization across

complex domains. In addition to that, Offline RL can utilize the huge dataset already available

or already pre-trained Models. Offline RL distinguishes itself by learning from a static dataset

without ongoing updates from environment interaction, unlike online and off-policy RL which

continually adapt their policies through direct engagement. After an offline policy is developed,

there remains the option to fine-tune this policy through online methods, providing a safer and

potentially less costly initial approach compared to starting with a random policy.

Another common term is ”batch reinforcement learning” [28]. For clarity purposes, this

work uses the term ”offline reinforcement learning.”

For more formal and more thorough, survey, on definition, problems, algorithms and appli-

cations, [27] and [18] are a great start.

2.1.3 Offline Reinforcement Learning Process

In offline reinforcement learning (RL), we work with a given static dataset to train a policy,

rather than interacting with the environment in real-time.Ioa
nn
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10

Formal Definition

More formally, the offline dataset D consists of tuples (s, a, s′, r) sampled from some un-

known policy πβ , often referred to as the behavior policy. It is important to note that πβ may

represent a mixture of different policies. For example, in the setting of World of Tanks, there

is a mixture of different policies, as the data consists of episodes derived from a lot of different

players.

The state s is sampled from a distribution Dπβ (·), the action a is sampled according to the

behavior policy πβ(·|s), the subsequent state s′ follows the state transition probability p(·|s, a),

and the reward r is a function of the current state and action, r(s, a).

Objective

The objective in offline RL is the same as the standard RL, and is to maximize the expected

sum of rewards:

max
θ

∑
t

Est∼Dπβ (·),at∼πθ(·|st) [r(st, at)]

2.1.4 Offline RL Properties

Offline reinforcement learning (RL) exhibits several distinctive properties that differentiate

it from traditional online RL settings:

• Static Data Source: The learning algorithm operates entirely on a pre-collected, static

dataset. Unlike online RL, the agent cannot interact with the environment to collect newIoa
nn
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data, which limits its ability to adapt based on new experiences. However, it is common

that both offline and online interaction is used when online interaction is possible.

• Absence of Exploration-Exploitation Trade-off: In offline RL, the traditional exploration-

exploitation dilemma, which involves deciding whether to explore new actions or exploit

known rewarding ones, is not applicable. Instead, the challenge is to extrapolate or gener-

alize from the existing data to unseen situations.

• Data Stiching Effective offline RL methods have the capability to ”stitch together” good

behaviors from disparate parts of the dataset. Even if the overall policy that collected the

data was suboptimal, these methods can extract and combine the most effective actions

from different contexts within the data.

• Derivation of Novel Actions: A crucial property of offline RL is its goal to derive actions

that differ from those recorded in the dataset. This is essential because achieving superior

performance often requires the policy to deviate from the behavior previously exhibited

by the data-collecting agent. Offline RL algorithms, with the help of Data Stiching. must

leverage the existing data to infer potentially better actions that were not explored during

data collection, essentially combining different behaviours from the dataset.

These properties underscore the unique challenges and opportunities presented by offline

RL, requiring specialized algorithms and approaches to effectively learn from static datasets

without direct interaction with the environment.Ioa
nn
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2.1.5 Challenges Problems in Offline Reinforcement Learning

While Reinforcement Learning (RL) represents a critical frontier in the quest for creating

intelligent systems, offering the potential to empower machines with the ability to learn solely

from data, however the field faces a multitude of open problems and challenges that stem from

its inherent complexity and the diversity of potential applications. Key among these challenges

is the distributional shift between the data available in the offline dataset and the policy be-

ing learned, which can lead to significant performance degradation if not properly addressed.

Additionally, Offline RL must contend with the issues of data diversity and coverage, as the

quality and comprehensiveness of the pre-collected dataset directly impact the effectiveness of

the learned policy. Another critical challenge is the evaluation and validation of policies with-

out the luxury of trial-and-error in the environment, necessitating the development of robust

evaluation methodologies that can accurately predict real-world performance. Moreover, the

integration of domain knowledge and constraints into the learning process remains a complex

problem, essential for ensuring the safety and feasibility of deployed policies. Addressing these

challenges requires innovative solutions and advancements in algorithmic techniques, making

Offline RL a fertile ground for research with the potential to significantly broaden the applica-

bility of reinforcement learning in the real world. Below there is more analytical description of

open problems [18, 27, 14].

2.1.5.1 Distribution Shift

Suppose, since we are using static dataset, use the standard off-policy algorithms and objec-

tives. Consider the

Ioa
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L(θ) =
∑

(s,a,s′)∼D

[
(Q̂θ(s, a)−

(
r(s, a) + γmax

a′∈A
Q̂θ(s

′, a′)

))2

], (1)

The problem is where a’ is not Present in the D. This can cause the following

• The policy may be unreliable on out-of-distribution (OOD) actions.

• There is a tendency for the policy to seek out actions where the value function is over-

optimistic.

• After values propagate, the estimated Q-values can become substantially overestimated.

Below, it is more visible the overestimation of value due to distribution shift. In the figure 1,

the blue line represents the true (unknown) Q function, while the orange line shows the current

estimation based on the recorded data points (green dots). The estimated Q function is accurate

in areas dense with data points but tends to deviate from the true Q in regions with sparse data,

leading to both positive and negative errors.

The critical point is that if new points are selected according to a policy similar to equation

(1), the selection tends to focus on points where the error from the true Q has the largest positive

value. This approach misses the true maximum points, but more importantly, it leads to selecting

points with high positive errors.
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14

Figure 1: Illustration of Overestimation issue in Offline RL. Q-Value on actions not appearing in

dataset (green dots) have higher estimated value than their true value. This results to erroneous

selection of actions that are not optimal in the true Q-function context. [14]

2.1.5.2 Confounding Variables

Hidden confounding introduces a significant bias in the estimation of policies from offline

data. Since the decision-making process and the outcomes are influenced by factors not ac-

counted for in the data, traditional offline RL methods can lead to incorrect inferences about

the effectiveness of certain actions. This can result in the learning of suboptimal policies that,

when deployed, perform poorly or even dangerously in the real world. The issue is particularly

pronounced in sequential decision-making tasks, where the impact of confounding variables can

accumulate over time, leading to increasingly larger errors as the horizon extends.
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For example, in autonomous driving, the decision-making process of the observational pol-

icy might be influenced by unobserved factors such as road conditions. These hidden variables

affect both the actions taken by the driver and the subsequent outcomes, such as the safety and

efficiency of the driving behavior. Similarly, in healthcare settings, decisions made by physi-

cians could be influenced by unrecorded patient information, such as socio-economic status or

subtle visual cues, which also affect patient outcomes. These unobserved factors create a discon-

nect between the recorded data and the actual decision-making process, making it challenging

to accurately evaluate and improve policies based on offline data.

A great work, that takes into consideration this issue, is presented at [24].

2.1.6 Offline Reinforcement Learning Algorithms

2.1.6.1 Behavioral Cloning

Behavioral Cloning, often referred to as ”imitation learning,” attempts to replicate the be-

havior of an expert in a supervised learning manner. By learning from the expert’s behavior,

Behavioral Cloning (BC) aims to mimic their actions and decision-making processes. In the

context of this thesis and applications such as World of Tanks, BC endeavors to learn player

policies and behavior using a collected dataset. Since BC focuses on imitating action distribu-

tions, its performance will be close to the mean behavior observed in the dataset.

In a continuous action scenario, BC must model a probability distribution over actions con-

ditioned on the state. To achieve this, a softmax activation function is employed in the outputIoa
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layer of the Behavioral Cloning network. This allows the network to generate a probability dis-

tribution over possible actions for a given state, aligning with common practices in policy-based

reinforcement learning methods.

Let πθ(st) represent the policy network’s prediction of action given the state st. The mean

squared error (MSE) loss is used to measure the dissimilarity between the predicted continuous

action πθ(st) and the expert actions. The equation for the MSE loss is as follows:

L(θ) = Eat,st∼D

[
(at − πθ(st))

2
]

Where:

• at represents the expert action at time t.

• πθ(st) is the policy network’s prediction of the action given the state st.

• D is the dataset of state-action pairs.

The goal is to minimize this MSE loss, encouraging the BC network to produce action

predictions that closely match the expert actions for each state.

2.1.6.2 Conservative Q-Learning

CQL stands as a data-driven deep reinforcement learning algorithm rooted in the Soft Actor-

Critic (SAC) framework [16]. It excels in addressing offline RL challenges, consistently deliv-

ering top-tier performance.

CQL addresses overestimation by explicitly penalizing the Q-value estimates for actions not

present in the dataset. This penalty discourages the value function from assigning high values
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to unseen actions, thus reducing overestimation bias. The CQL objective can be formulated as

follows:

Q̂π
CQL ← argmin

Q
max
µ(a|s)

(
αEs∼data,a∼µ(a|s)[Q(s, a)]− αEs,a∼data[Q(s, a)]

)
+ Es,a,s′∼data

[(
r(s, a) + γEπ[Q̂(s′, a′)]−Q(s, a)

)2
] (2)

The main idea behind CQL is to learn Q-functions (value functions) that ensure the expected

value of a policy is not overestimated, and thus it should at least be as good as the true value of

the policy.

Breaking down the equation, we have:

• Outer Objective: Q̂π
CQL ← argminQmaxµ(a|s)

This indicates that CQL is trying to solve for the Q-function that minimizes the maximum

expected value under some policy µ. This minimax formulation helps to find a conserva-

tive estimate of the Q-function.

• First Term: αEs∼data,a∼µ(a|s)[Q(s, a)]− αEs,a∼data[Q(s, a)]

This difference represents the CQL regularizer. The algorithm minimizes the Q-values

under a chosen policy distribution µ while maximizing them under the data distribution.

This term acts as a regularizer that prevents overestimation of Q-values of unseen actions.

alpha , is the reqularizer variable that controls this term.

• Second Term: Es,a,s′∼data

[
(r(s, a) + γEπ[Q̂(s′, a′)]−Q(s, a))2

]
This is the standard Temporal Difference (TD) error term used in Q-learning algorithms.

The TD error measures the difference between the current estimate of the Q-function and
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the target Q-function, which includes the reward plus the discounted value of the next

state-action pair.

CQL can be to conservative at some times and in more comple real scenarios.

Despite that, CQL has demonstrated effectiveness in various offline RL tasks, significantly

reducing the overestimation bias and improving the robustness and performance of the learned

policies.

2.1.7 Implicit Q-Learning

Implicit Q-Learning (IQL) is an Offline Reinforcement Learning (RL) algorithm designed

to estimate advantages using Temporal Difference (TD) updates without querying the Q-values

on out-of-distribution (OOD) actions. This approach aims to enhance policy learning efficiency

by leveraging in-distribution actions and values.

The core idea behind IQL is to estimate the value function V (s) using an expectile regression

loss, which allows for the adjustment of the learning process to focus on either higher or lower

expectiles. The expectile regression loss is defined as follows:

ℓτ2(x) =


(1− τ)x2 if x < 0

τx2 otherwise

where τ is a parameter controlling the expectile level. This loss function is asymmetric,

providing flexibility in emphasizing different parts of the value distribution.

The IQL algorithm proceeds with the following steps:
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1. Fit V (s) with expectile loss: The value function V̂ (s) is updated by minimizing the

expectile loss, ensuring that the estimated values appropriately reflect the desired expectile

level.

2. Update Q(s, a) with typical MSE loss: The Q-values Q̂(s, a) are updated using the

standard Mean Squared Error (MSE) loss, incorporating the rewards and the discounted

estimated values of the next state.

3. Extract policy with Advantage Weighted Regression (AWR): The policy π̂(a|s) is de-

rived by maximizing the expected log probability of actions weighted by the exponen-

tiated advantages, ensuring that the policy improvement is implicit and computationally

efficient.

V̂ (s)← argmin
V

E(s,a)∼D

[
ℓτ2(V (s)− Q̂(s, a))

]

Q̂(s, a)← argmin
Q

E(s,a,s′)∼D

[(
Q(s, a)−

(
r + γV̂ (s′)

))2
]

π̂ ← argmax
π

Es,a∼D

[
log π(a|s) exp

(
1

α
(Q̂(s, a)− V̂ (s))

)]
The benefits of IQL include:

• No need to query OOD actions: The algorithm avoids evaluating Q-values for actions

outside the dataset distribution.

• Policy training on in-distribution actions: The policy remains robust by training solely

on actions within the dataset.
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• Decoupling actor and critic training: This separation enhances computational effi-

ciency, making the training process faster.

This innovative approach allows IQL to effectively utilize the available data, resulting in a

more efficient and robust policy learning process in offline settings.

2.1.7.1 Decision Transformer (DT)

Decision Transformer (DT) [6] is a cutting-edge approach in the field of Reinforcement

Learning (RL) that has shown significant promise in addressing the challenges of offline RL. In

the context of our study on Offline Reinforcement Learning DT offers a novel perspective on

how agents can learn from historical data to make decisions.

In offline RL, the agent’s objective is to learn a policy from a fixed dataset of past experiences

without interacting with the environment. Decision Transformer, however, offers a different

paradigm on addressing Offline Reinforcement and Reinforcement Learning in general. Instead

of taking taking account the Markov Decision Process, where the action taken in the current

state is inferred by using a value indicating the quality of the action , it views the Reinforcement

Learning problem as a Sequence modelling Problem .

Thus, the core idea of DT is to model a Reinforcement Learning problem as a sequence mod-

eling problem that progressively predict future actions, conditioned on previous states. actions,

rewards and desired reward. So, the end goal of the transformer-based architecture is generate

future actions that can achieve this high reward, as soon as possible.Ioa
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Since the transformer should predict actions that lead to the states with the most possible

future rewards instead of using past rewards the authors use rewards-to-go (the sum of the re-

wards for all future states starting with the current step). At test time a starting state and a target

reward are provided as conditioning information. The target reward is decremented after each

taken action by the achieved reward.

Mathematically, the problem is formulated as follows:

Let D = {(ot,at, rt,ot+1)} be the dataset of tuples representing states, actions, rewards,

and next states, respectively.

Decision Transformer (DT) leverages the power of self-attention mechanisms[36] to model

sequential data efficiently.

The self-attention mechanism is a critical component in the architecture of transformer mod-

els, enabling them to weigh the importance of different tokens in a sequence when producing an

output. The self-attention mechanism operates on three primary vectors: Query (Q), Key (K),

and Value (V).

- Query (Q): Represents the current token for which we are calculating the attention.

- Key (K): Represents the tokens against which the Query is compared.

- Value (V): Represents the actual values that are combined or weighted to produce the final

output.

Self-Attention is given by

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3)

Where:
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- Q is the Query matrix.

- K is the Key matrix.

- V is the Value matrix.

- dk is the dimension of the keys (which is also typically the dimension of the queries and

values).

- QKT represents the dot product of the Query matrix with the transpose of the Key matrix.

- The result of QKT is scaled by 1√
dk

to mitigate the impact of large dot product values,

which can destabilize the gradients during training.

- The softmax function is applied to the scaled dot product to obtain the weights, which are

then used to sum the Value matrix V .

The self-attention mechanism allows each token to focus on different parts of the input se-

quence dynamically, which is essential for capturing dependencies that are not necessarily local.

The difference with the basic Transformer model , is that in the case of Reinforcement

Learning scenario, the input to transformer is not a sequence of words but instead a sequence

of the 3-modal tuple (return-to-go, state, action). A more illustrative explanation can be seen

below. In the figure, the sequence of tuples (RtG, s, a) (that serve as tokens) go through the

Transformer architecture, which then outputs the next actions. It is important to note. that DT

does not have the concept of Value function, so value-based evaluation cannot be used.
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Figure 2: The abstract architecture of Decision Transformer

There also other differences as proposed in the original paper of Decision Transformer [6].

The summation/softmax over the n tokens in the standard Transformer for Language Models is

replaced with the summation/softmax only the previous tokens in the sequence.

The output (Action) construction then happens using:

π(a|s) = (DTpolicy(s)), (4)

where is the trajectory up to t timesteps(consists of previous states)

2.1.8 Offline Reinforcement Learning Evaluation

Evaluating the performance of offline RL algorithms presents unique challenges, primarily

because the ultimate goal is to maximize online performance, which is not directly observable

from the static dataset. When simulators are available, they provide a cost-effective means toIoa
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conduct online evaluations without real-world interaction. These simulations allow for bench-

marking the performance of different algorithms by simulating the outcomes of their prescribed

actions within a controlled environment.

In the absence of simulators, or as a complementary approach, Off-Policy Evaluation (OPE)

[35] techniques are employed to estimate the performance of policies without requiring explicit

online interaction. OPE attempts to predict the real-world effectiveness of a policy based on

the data generated by a different policy. This area is notably complex and remains an active

field of research, as it involves estimating what would happen under hypothetical conditions that

are not represented in the data. Because this is an active research area, there several works and

approaches. [10], presents a more highlighted view and benchmarks of Off-Policy Evaluation.

This presents unique challenges and necessitates the development of specialized evaluation

methods. This section outlines several approaches to the evaluation of offline RL models.

2.1.8.1 Evaluating on actual environment

This involves an online interaction of the learned policy with the actual environment. So, as

mentioned above this the most straightforward and most accurate and robust way to measure the

performance of learned policies, by mean return, or task completion. However, this conflicts,

with the general idea of offline RL, which involves learning from data, due to the fact that online

interaction is costly. dangerous or not feasible at all.Ioa
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2.1.8.2 Value Estimation & Related Metrics

This evaluation approach includes methods that estimate the value ( V(s) ) of the learned

policies, via Fitted Q Evaluation (FQE), or other methods. Recall that, value of a learned policy

states, how well we expect the policy to perform by following that policy on that particular state.

Notably, in [25], they propose as a evaluation metric, the use of value estimation on initial states,

as a way to measure the performance, of policies, denoting that higher initial values will lead to

higher rewards if the corresponding policy is used.

2.1.8.3 Importance Sampling

Importance Sampling (IS), [26], is a statistical technique used to estimate the expected return

of a policy under the target distribution using data collected from a different distribution. In the

context of offline RL, IS can adjust the estimates of a policy’s performance to account for the

discrepancy between the behavior policy (which generated the data) and the target policy (which

we want to evaluate). Despite its theoretical appeal, IS suffers from high variance, especially in

long-horizon tasks, which can make its estimates unreliable.

2.1.8.4 Direct-Method Regression-based

Direct-Method Regression-based (DM) [17, 34] approaches are typically model-based and

involve using regression techniques to estimate the value of the policy directly. The key idea is to

fit a model to the observed data to predict the expected return or Q-values for given state-action

pairs. The regression-based method is often biased due to the assumptions and inaccuracies

in the model but tends to have significantly lower variance compared to importance sampling
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methods. This makes DM particularly useful in practical applications where variance reduction

is crucial for stable and reliable policy evaluation. In this work ,we focus on DM method, of

estimating the policy value and use it as an evaluation metric.

2.1.8.5 Doubly-Robust

Doubly-robust (DR) [13, 7] techniques are an advanced approach to off-policy policy evalua-

tion that combine the advantages of both importance sampling (IS) and direct-method regression-

based (DM) methods. The doubly-robust estimator uses the model-based estimates from DM to

reduce the variance and the reweighting from IS to correct for the bias, thus achieving a balance

between the two. This combination results in more accurate and reliable policy evaluation, espe-

cially in complex environments where data distributions and policy behaviors vary significantly.

DR methods have been shown to be particularly effective in various empirical studies, offering

a robust solution for evaluating policies using historical data.

2.1.8.6 Model-Based Evaluation

Model-Based Evaluation involves training a model of the environment(a transition model,

and a reward model) from the offline dataset and then simulating the execution of the policy

within this learned model. Similar approach presented in [23], [2], and [40]. This approach

can provide insights into how a policy might perform in the environment without requiring

actual deployment. However, the accuracy of the evaluation is heavily dependent on the fidelity

of the environment model. Misestimations of the environment dynamics can lead to incorrect

assessments of a policy’s effectiveness.
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Transition Model

The transition model, predicts the next state of the environment given the current state and

action. This model is crucial for simulating the trajectory that an agent would experience under a

specific policy. Accurately modeling the transitions enables the evaluator to predict the outcomes

of actions even in states or situations not covered by the offline dataset. Techniques such as deep

learning and Gaussian processes are commonly used to construct transition models that can

capture complex dynamics.

Reward Model

The reward model predicts the immediate reward received after taking an action in a given

state. Like the transition model, the reward model is essential for simulating the outcomes of

policy decisions, as it allows for the estimation of returns from a sequence of actions and states.

The reward model can be learned from the offline dataset by fitting a function that maps state-

action pairs to rewards, using regression techniques or deep neural networks.

By combining these models, researchers can simulate policy rollouts in a synthetic environ-

ment that mimics the behavior of the actual environment. This simulation involves iteratively

applying the transition model to predict the next state and the reward model to estimate the im-

mediate reward, given the actions chosen by the policy being evaluated. The cumulative rewards

from these rollouts provide an estimate of the policy’s expected return, offering insights into its

potential performance in the real world.Ioa
nn

is 
Pas

tel
las



28

2.1.9 Benchmarks and Datasets of Offline Reinforcement Learning

Offline reinforcement learning (RL) research often relies on benchmark environments and

datasets to evaluate algorithms and compare performance. While specific benchmarks and

datasets for offline RL are still emerging, several existing frameworks and datasets provide valu-

able resources for researchers and practitioners:

2.1.9.1 OpenAI Gym

OpenAI Gym [4] is a popular framework for benchmarking and developing RL algorithms.

While primarily designed for online RL, researchers have adapted Gym environments to support

offline RL by pre-generating datasets from simulated environments or replay buffers collected

during online training. In addition to that, using the OpenAI Gym, everyone can populate their

replay buffers from tuples generated by interacting with Gym’s built-in environments.

2.1.9.2 DeepMind Control Suite

The DeepMind Control Suite [33] offers a collection of continuous control tasks suitable for

offline RL research. While initially designed for online RL, researchers have utilized this suite

to generate offline datasets for benchmarking algorithms in continuous action spaces.

2.1.9.3 D4RL

The most popular, offline RL related benchmark [9]. introduces a set of benchmarks specifi-

cally designed for the offline reinforcement learning (RL) setting, which reflect the complexities
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encountered in real-world applications. The benchmarks focus on key properties of datasets that

are critical for practical deployments. Notable aspects include:

• Dataset Variety: The benchmarks include datasets generated via various methods, such

as hand-designed controllers, human demonstrators, and combinations of multiple poli-

cies. This variety helps ensure the benchmarks’ relevance to a range of real-world scenar-

ios.

• Multitask Learning: The inclusion of multitask datasets, where an agent performs dif-

ferent tasks within the same environment, tests the versatility and adaptability of offline

RL algorithms.

• Beyond Simple Tasks: Moving beyond the simpler, often synthetic tasks typically used in

benchmarks, these datasets are collected from environments operated by partially-trained

RL agents, revealing critical deficiencies in current algorithms that may not be apparent

under less challenging conditions.

• Comprehensive Evaluation and Tools: Along with the benchmarks, a comprehensive

evaluation of existing algorithms is provided. An evaluation protocol and open-source

examples are also released, supporting transparent and replicable research.

• Community Engagement: The release of these benchmark tasks and datasets serves as

a common starting point for the community. This initiative encourages the identification

of shortcomings in existing offline RL methods and fosters collaborative efforts towards

advancements in this emerging field.
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The datasets provided by D4RL is designed to address different aspects of offline RL chal-

lenges( such as data stiching) . These datasets include:

• Maze2D

• AntMaze

• Gym-MuJoCo

• Adroit

• FrankaKitchen

• Flow

These datasets provide a comprehensive testing ground for evaluating the robustness and

efficiency of offline RL algorithms across a range of complex tasks and environments.

2.1.10 Libraries for Offline Reinforcement Learning

Several libraries and frameworks support offline RL research by providing tools for dataset

management, algorithm implementation, and evaluation:

2.1.10.1 d3rlpy

The d3rlpy [29] library is a leading framework in the domain of reinforcement learning

(RL), offering state-of-the-art, ready-to-use algorithms for both offline and online RL scenarios.

It features user-friendly scikit-learn-style APIs, accessible to users at all levels of expertise. The

key features of d3rlpy include:
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• Offline Reinforcement Learning: d3rlpy is particularly effective for offline RL. It sup-

ports many offline RL algorithms and pre-collected datasets without the need for real-time

data interaction.

• Online Reinforcement Learning: In addition to its offline capabilities, d3rlpy supports

conventional online RL training algorithms without compromising on performance, en-

abling the solution of a broad spectrum of RL problems with a single library.

• User-Friendly API: Designed for ease of use, the API requires no prior knowledge of

deep learning libraries, ideal for those aspiring to become RL engineers. The library

is also fully documented, offering extensive support including tutorials and scripts that

replicate the algorithms described in original research papers.

• Beyond State-of-the-Art: d3rlpy is the first RL library to integrate distributional Q func-

tions across all algorithms. This method greatly enhances the effectiveness of Q-learning

methods, elevating performance beyond traditional state-of-the-art benchmarks.

2.1.10.2 TorchRL

TorchRL [3], a recently added library, has been developed as a comprehensive control li-

brary for PyTorch, addressing the gap in native support for decision and control tasks within the

framework. While this library is still in its infancy ,is designed to meet the demands of large de-

velopment teams working with complex real-world data and environments, and hold very good

promise. Key features of TorchRL include:Ioa
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• Generalistic Control Capabilities: TorchRL offers a broad suite of well-integrated com-

ponents that are also capable of functioning as standalone units, making it a versatile tool

for a wide range of control and decision making tasks.

• Introduction of TensorDict: A new and flexible PyTorch primitive, TensorDict, is in-

troduced, enhancing the development process across various branches of Reinforcement

Learning (RL) and control. This primitive facilitates streamlined algorithm development

and implementation.

• Comprehensive Overview: The library provides a detailed description of its building

blocks, offering an extensive overview of its capabilities across different domains and

tasks.

• Experimental Validation: TorchRL’s reliability and flexibility have been experimentally

validated, with comparative benchmarks demonstrating its computational efficiency.

• Open Source and Community Support: Aimed at fostering collaboration within the

research community, TorchRL is publicly available on GitHub. This openness ensures

greater reproducibility and facilitates long-term support.

2.1.10.3 SCOPE-RL

SCOPE-RL Library Overview

SCOPE-RL [15] is a comprehensive open-source Python software specifically tailored for

offline reinforcement learning (offline RL), off-policy evaluation (OPE), and selection (OPS)..

Key features of SCOPE-RL include:
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• Integration of Offline RL and OPE: Unlike most existing libraries focused solely on

policy learning or evaluation, SCOPE-RL offers a seamless integration of these two cru-

cial aspects, enabling more flexible and comprehensive implementations.

• Emphasis on Off-Policy Evaluation: SCOPE-RL places a strong focus on its OPE mod-

ules, providing a variety of OPE estimators and robust evaluation protocols. This approach

allows for more in-depth and reliable evaluations, enhancing the overall effectiveness of

OPE compared to other available packages.

• Risk-Return Tradeoff in OPE: The library extends the evaluation of OPE by presenting

the risk-return tradeoff in the results, which offers a more comprehensive understanding

than the typical accuracy assessments found in existing literature.

• User Accessibility: Designed with user-friendliness in mind, SCOPE-RL features intu-

itive APIs, thorough documentation, and a variety of easy-to-follow examples. These re-

sources assist researchers and practitioners in effectively implementing and experimenting

with various offline RL methods and OPE estimators tailored to specific problem contexts.

Of course there are other many libraries, tools, or github repositories that provide easy inte-

gration of Offline RL processes and algorithms. But, this work, utilizes only the above tools.
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Chapter 3

Methodology

The methodology of this thesis is structured around the collection and processing of replay

data from the online game World of Tanks. Specifically, our focus is on a single map and

game mode to ensure consistency and control over the data variables. Initially, raw replay data

is collected from numerous game sessions. This data undergoes a parsing process to extract

relevant features and game events. Subsequently, this parsed data is used to generate a Markov

Decision Process (MDP) replay buffer. The MDP replay buffer serves as the foundational dataset

for training Offline Reinforcement Learning (RL) algorithms. By structuring the data in this

manner, we aim to create a robust framework for developing and evaluating offline RL models

within the specific context of World of Tanks gameplay.

3.1 Data Collection

The collection of data for this research was facilitated by Wargaming, the developer of the

video game. Wargaming provided the necessary data in the form of chunks of subfolders, each

34
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corresponding to a specific replay. Within these subfolders, the data is organized as a collection

of numpy arrays, each containing essential information relevant to the game, such as health,

position, and other gameplay-related metrics. This section outlines the data collection process

and the structure of the data provided.

The transformation of replay data from Wargaming scenarios into a format suitable for in-

corporation into a MDP replay buffer involves a multi-stage process. This process is essential

for developing decision-making models that can operate under uncertainty, a hallmark of the

MDP framework. This section outlines the methodology adopted to parse, process, and encode

replays into a compatible format for MDP analysis.

3.1.1 Parsing Replay Data

The initial step involves the extraction of raw replay data from the Wargaming. This data

typically encompasses a detailed log of game states, actions taken by players, and the outcomes

of those actions. The outcomes can be translated into win, tie, or loss as well as some highlight

events as appeared in the logged data. The parsing process is designed to identify and isolate

these elements, converting them into a structured format for further analysis.

Input: Raw wargame replay files

Output: Structured replay data (Game states, Actions, Outcomes)

Algorithm:

1. Read raw replay files.

2. Identify player observation, player actions, and rewards.

3. Normalize data structures for consistency.
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4. Output structured replay data.

3.1.2 Data Structure

The data provided by Wargaming was structured in a hierarchical manner. Each replay was

stored in a separate subfolder, with each subfolder containing a set of numpy arrays. These

arrays encapsulated various aspects of gameplay data, allowing for a comprehensive analysis of

player performance. The primary numpy arrays included, but were not limited to:

Stream data ( data containing information per tick/timestep about a specific feature, e.g.

position)

• Health Array: This array stored information related to the health points of the player’s

character or vehicle. It allowed for tracking changes in health over the course of the game,

critical for understanding player survival and combat effectiveness.It is also use the enemy

health at each timestep that is used for calculating enemy health rewards in next sections.

• Position Array: Positional data was represented in numpy arrays, enabling the tracking

of player movement throughout the replay. Positional data is crucial for spatial analysis,

and also used for calculating other features and values, such as enemy distances, and the

enemy base distance reward.

• Shoot Array: This array stored information related to the shooting events of player’s

character or vehicle. It allowed for tracking shoot actions, so shoot data is used to form

the actions in the MDP formation.Ioa
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• Vehicle Roll, Vehicle Pitch, Vehicle Yaw , Turret Yaw, Gun Pitch Arrays: These arrays

contained information about the orientation and rotation of the player’s vehicle and its

turret and gun, which is important for analyzing player actions and situational awareness.

It also use for calculation of other features , such as enemy targeting, direction of enemy

base etc.

• Spotted Array: This array recorded information about the spotting of enemy vehicles,

contributing to an understanding of player visibility and awareness.

• Damage Array: Information on damage dealt or received was stored in this array, allow-

ing for an analysis of combat effectiveness.

Other metadata about the replay:

• Team Information: Information about the teams. For e.g., which team was victorious, the

team each agent belongs. This information is crucial for shaping the reward for winning/

losing (or even tie).

• Highlights: This data is very important, as it contains events happening in the game such

as killing, base capture start / complete / exit and etc. This events help give more rewards

to agents.

• Position of the bases and obstacles: Positional data about some static objects in the map.

this essentially helps calculates other resulting features derived from this data. Such as,

distance from enemy base, or if there is collision with obstacles.
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3.1.3 Data Preprocessing

Before conducting any analysis, the data underwent preprocessing to ensure uniformity and

consistency. This included steps such as data cleaning, imputation of missing values, and stan-

dardization of data formats. The preprocessing stage was vital to guarantee the reliability of the

subsequent analysis and to remove any potential data anomalies.

3.1.4 Feature Engineering

Besides the raw data including in the streams and used as features, new features are con-

structed by utilizing the raw data. More specifically information about the other enemy players

(distance, targeting angle), the enemy base (direction, distance) and other metadata info (number

of enemy tanks left, capture mode etc.)

3.1.5 Feature Extraction

Given the structured replay data, the next phase involves the extraction of features relevant

to the MDP model. This typically includes observable elements of the game state, actions taken

by all players, and the immediate outcomes of these actions. The MDP is defined solely from

the information of this data.

The feature extraction is done by first defining the game state, or WoT state as found in

the code. This state consist of all data fro the 30 players in each replay. So essentially, the

initialization of this state, read all stream information as mention above (Health, Position , etc.)

and creates 3 arrays that hold the information about the observations, actions and rewards for all

the time-steps/ticks and all 30 players in the replay. So the shape of 3 arrays is (T, A, K), where
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T is the number of ticks in the replay, A is number of players (30) and K the dimension of each

component (states, actions, rewards). Essentially these 3 arrays, are used to retrieve the states,

actions and rewards of each of the 30 players. So , from each replay, 30 episodes are generated

each containing the states, actions and rewards for each of the 30 players.

3.1.6 Feature Scaling

In reinforcement learning (RL), feature scaling is a crucial preprocessing step that can sig-

nificantly influence the performance of learning algorithms. Proper scaling ensures that the state

representation remains consistent across different environments, aiding in the convergence of

learning algorithms and improving their efficiency. This subsection outlines the scaling methods

applied to the features in this work: Min-Max scaling and centering around zero.

3.1.6.1 Min-Max Scaling

Min-Max scaling is a normalization technique that adjusts the features to ensure they range

between 0 and 1. This is particularly useful in RL where different features may have varying

scales and ranges, potentially leading to biases in the learning process. The transformation is

defined as follows:

Scaled Value =
Observation−Min Value
Max Value−Min Value

(5)

where ”Min Value” and ”Max Value” are the minimum and maximum values observed for

that feature across the dataset. This scaling method is straightforward and ensures that all fea-

tures contribute equally to the learning process, making it easier for the algorithm to learn.
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Below is the overall procedure of generating the MDP data from the structured replay data:

Input: Structured replay data

Output: Feature vectors representing states, actions, and outcomes.

Algorithm:

1. For each game state in the replay data, extract features.

2. Encode actions and outcomes as vectors.

3. Calculate rewards

4. Output observations, actions, rewads as 3-D arrays of shape

(# of ticks, # of agents, dimension of states/actions/reward).

3.1.7 Encoding for MDP Replay Buffer

The final step in preparing the data for the MDP replay buffer involves encoding the extracted

features into a format that is directly usable by MDP models. This includes structuring the data

into tuples of (state, action, reward), which are essential for training reinforcement learning

algorithms under the MDP framework. The next state and done flags, required, are calculated

during the training

Input: Feature vectors from previous step

Output: MDP-compatible replay buffer data

Algorithm:

1. Initialize an empty replay buffer.

2. For each set of feature vectors, create a tuple (s, a, r, s’, done).

3. Populate the replay buffer with these tuples.
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4. Ensure compatibility with MDP model training routines.

5. Output the populated MDP replay buffer.

More specifically a tuple (s, a, r) holds the below information
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3.1.7.1 State

Observations

Feature Description Dim

Health Health of the agent at t 1

Position The coordinates of the vehicle 3

Enemy Distance distance from enemy agents 15

Pitch Records information on the pitch of the vehicle 1

Roll Records information on the roll of the vehicle 1

Turret Yaw Records information on the yaw of the turret 1

Gun Pitch Records information on the pitch of the gun 1

Yaw Records information on the yaw of the vehicle 1

Enemy Targeting relative angle between agent and enemy agents indi-

cating targeting or not

15

Spotted Logs information on spotting enemy vehicles 1

Damage Stores information on damage received and the part

of the vehicle that reaceive the damage

2

Enemy Tanks

Count

Logs information on remaining number of enemy

tanks

1

Enemy Base Direc-

tion

Records information about the agent direction to en-

emy base (x, y)

2

Object Collision A boolena value indicating if there is intersection be-

tween agent position and one of the obstacle objects

1
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Table 1: State of the MDP

3.1.7.2 Actions

In this Markov Decision Process (MDP) framework, the agent can perform a set of determin-

istic continuous actions. Note that some actions cannot be performed together. For e.g. move

right vs move left, gun up vs gun down, etc. And these actions are not exist in the dataset. The

table below 2 summarizes these actions and their corresponding descriptions:

Actions

Action Description

Move Right makes agent move right

Move Left makes agent move left

Move Backward makes agent move backward

Move Forward makes agent move forward

Turret Right makes agent rotate the tank’s turret to the right

Turret Left makes agent rotate the tank’s turret to the left

Gun Pitch Up makes agent rotate the tank’s gun upside

Gun Pitch Down makes agent rotate the tank’s gun downside

Shoot makes agent shoot

Table 2: Deterministic Continuous Actions of the MDPIoa
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3.1.7.3 Rewards

In reward modeling, the agent receives rewards based on its actions and interactions with the

environment. These rewards will be used to reward agents during the training. These rewards

can include:

• Sparse Rewards: At the conclusion of each match, the agent receives a win reward if its

team emerges victorious, a tie reward if the match ends in a draw, and a loss reward if its

team is defeated. These rewards incentives the agent to contribute to its team’s success

and penalize undesirable outcomes. Sparse rewards also includes Highlight rewards.

• Immediate Rewards: Rewards received by the agent immediately after taking an action

in a given state. In the context of World Of Tanks, immediate rewards, are rewards given

from being close to opponent’s base or reward for reducing enemy total health. Note that

these reward will be used for evaluation (see next section), and for training of the Decision

Transformer (since for its evaluation, it needs the previous collected rewards). For other

algorithms (IQL, CQL, DDPG), all the other rewards are used, and not the immediate

rewards.

• Return-to-go: The cumulative sum of rewards obtained from a specific timestep t over a

sequence of actions and states until the end or a terminal T. This is only applicable, in the

Decision Transformer algorithm.

Gt =

∞∑
k=0

γkRt+k+1
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• Highlight Rewards: Various events during game play trigger rewards or penalties for

the agent. For instance, successfully eliminating an opponent (kill) results in a positive

reward, while being eliminated by an opponent incurs a negative reward. Additionally,

events related to capturing objectives, such as capturing a base, beginning/ending a cap-

ture process, or completing a capture, can lead to rewards or penalties depending on the

strategic significance of the action.

the values of these rewards are given below:

• Win Reward: 100

• Tie Reward: 0

• Loss Reward: -100

• Kill Reward: 50

• Capture Begin Reward: 20

• Capture Complete 75

• Capture Exit: -20

• Enemy base distance Reward: 1- Euclidean-distance(posagent − posenemy−base)

• Enemy Health Reward: 1- normalized-enemy-health-remaining

Each of these rewards plays a crucial role in shaping the agent’s behavior and guiding its learning

process in reinforcement learning tasks. It is noted, that all the rewards( except the enemy base
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and health which are already normalized when calculated) are scaled by multipling it with 0.01,

so are in the [-1, 1] range.

3.2 Modeling

In this section, we delve into the modeling of Offline Reinforcement Learning (RL) algo-

rithms, which are designed to learn optimal policies from a fixed dataset without further interac-

tion with the environment.

To address this, we use or modify several state-of-the-art implementations of offline RL

algorithms supported by both d3rlpy and TorchRL.These includes Implicit Q-learning (IQL),

Conservative Q-Learning (CQL), Decision Transformer (DT), DDPG and Behavioural Cloning.

These algorithms incorporate various strategies to mitigate the issues of overestimation and dis-

tributional shift. CQL penalizes the Q-values of out-of-distribution actions to prevent the learned

policy from exploiting these actions. IQL queries and updates Q values only in actions seen in

the Dataset. DDPG, is used to see what is the effect of including algorithms that do not account

for the offline RL problems, such as overestimation. Finally, DT offers a different paradigm

in Offline RL, and does not suffer from overestimation of value, since it has different architec-

ture, however it does not have the property of stiching different good behaviours from dataset

together.

The training process involves the iterative optimization of the policy and value functions

using the MDP replay buffer generated from the parsed game data. We use standard RL tech-

niques such as Q-learning and policy gradients, adapted to the offline setting. The performance

of these algorithms is evaluated based on their ability to achieve high rewards and generalize
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to new game scenarios within the constraints of the offline dataset. By comparing the results

across different algorithms, we aim to identify the most effective approaches for offline RL in

the context of World of Tanks gameplay.

The hyperparameter details of each algorithm can be found at the end of this document.

3.3 Evaluation

This sections covers the evaluation of the learned policies.

3.3.1 Policy Value Estimation

The Direct Method (DM) is a model-based approach that uses the initial state value esti-

mated by Fitted Q Evaluation (FQE)[17]. It first learns the Q-function from the logged data

via temporal-difference (TD) learning and then utilizes the estimated Q-function for OPE as

follows:

ĴDM (π;D) := 1

n

n∑
i=1

∑
a∈A

π(a|s(i)0 )Q̂(s
(i)
0 , a) =

1

n

n∑
i=1

V̂ (s
(i)
0 ),

where Q̂(st, at) is an estimated state-action value and V̂ (st) is the estimated state value.

DM has lower variance compared to other estimators but can produce large bias caused by

approximation errors of the Q-function.

The key advantage of FQE is that it produces a Q function that can estimate evaluation

metrics more accurately than the Q function learned during the training phase. By focusing

on the evaluation aspect, FQE enhances the reliability of the policy performance assessment,

ensuring that the metrics reflect the true quality of the policy more precisely.
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Essentialy, it outputs the initial policy value estimation meaning that the higher the initial

value the more rewards the policy will return when deployed to the initial states.

3.3.2 Evaluation using Model-Based Dynamics

In reinforcement learning, evaluating the performance of a learned policy is crucial for as-

sessing its effectiveness. One approach to evaluating a policy is through model-based dynamics

of the environment, where deep neural networks are used to predict the next state transition and

reward based on the current state and action.

3.3.2.1 Designing a Reward Function for Building a Dynamics Model

In the development of reinforcement learning systems, particularly those involving com-

plex environments like games similar to World Of Tanks with strategic objectives (e.g., warfare

scenarios involving tanks), it is crucial to distinguish between the reward functions used for

training policies and those used for modeling dynamics, which include both transition and re-

ward models. The need for this distinction often arises from the inadequacies of conventional

reward structures, especially when dealing with sparse rewards, which are typical in environ-

ments where significant events (like destroying an enemy tank) are rare, in the an horizon of a

game.

Sparse rewards pose a significant challenge in training robust neural networks because they

provide limited feedback signals for learning. To address this issue, we introduce a continuous

reward function inspired by the idea of Reward-consisted Dynamics in [20] specifically designedIoa
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for the dynamics model, which aims to more effectively capture the nuances of policy perfor-

mance through a blend of immediate rewards. This tailored reward function incorporates two

primary components:

• Remaining Health of Enemy Tanks: The reward increases as the remaining health

of enemy tanks decreases. Mathematically, this can be expressed as Rhealth = 1 −

remaining health of enemy tanks, where a lower health value results in a higher reward.

• Distance from Enemy Base: The closer the agent is to the enemy base, the higher the

reward. This is quantified as Rdistance = 1− normalized distance from enemy base, pro-

moting aggressive forward movement and positioning.

Penalties for Simultaneous Incompatible Actions

In scenarios such as tank simulations, certain actions are mechanically or strategically in-

compatible, such as moving forward and backward simultaneously. To discourage the selection

of these conflicting actions, a penalty is imposed whenever they are executed concurrently. The

penalty can be mathematically represented as follows:

Rpenalty =



−1 if actions that cannot be performed simultaneously

(e.g., forward/backward, gun up/gun down)

0 otherwise
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This penalty is subtracted from the total reward for the time step, thereby reducing the overall

reward obtained when these incompatible actions are taken.

Penalty for Inaction

While the model allows for no action as a valid choice, strategically, continual inaction

(when other actions are possible and could yield a better strategic position) is undesirable.

This is particularly true in dynamic environments where proactive measures are necessary to

achieve objectives. Therefore, a penalty is also applied for inaction, to promote engagement and

decision-making in the simulation:

Rinaction =


−1 if there is no action at all

0 otherwise

The combination of these factors into a single continuous reward function Rt is formulated

as follows:

Rt = αRhealth + βRdistance +Rpenalty +Rinaction

The combination of these factors into a single continuous reward function Rt is formulated

as follows:

where α and β are weighting factors that balance the importance of health reduction ver-

sus positional advancement. The values of α and β are ranged between 0 and 1 and together

they add up to one. This design facilitates the generation of a more informative and consistent

training signal for the dynamics model, thereby enhancing the model’s ability to predict and
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evaluate the effectiveness of various policies in achieving strategic objectives. Ultimately, the

design of such a continuous reward function aims to build a more robust neural network model

capable of accurately simulating and predicting complex interactions in dynamic and strategic

environments.

3.3.2.2 Model Architecture

Two separate deep neural networks are trained to model the dynamics of the environment:

1. Next State Prediction Model (NSPM): This model takes as input the current state s and

action a and predicts the next state s′.

2. Reward Prediction Model (RPM: This model takes as input the current state s and action

a and predicts the reward r received from transitioning from state s to s′.

Both models are trained using backpropagation and optimization algorithms such as stochas-

tic gradient descent (SGD) or Adam on historical data collected during the agent’s interaction

with the environment.
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Model Parameters Type

Next State Prediction Model (NSPM) Layers: 2 Fully Connected

Units per layer: 128

Hidden Layer Activation function: ReLU

Activation function: Linear

Reward Prediction Model (RPM) Layers: 2 Fully Connected

Units per layer: 128

Hidden Layer Activation function: ReLU

Activation function: Sigmoid

Table 3: Parameters details about the two models that define the dynamics model, the transition

model, and the reward model

Both models are trained on 10M (s,a,s’,r) training data tuples that derived from the replays.

And evaluated on 400K testing tuples.

3.3.2.3 Evaluation using Mean Squared Error (MSE)

To evaluate the performance of the NSPM and RPM, Mean Squared Error (MSE) is com-

puted on a validation dataset. The validation dataset consists of state-action pairs (s, a) and their

corresponding next states s′ and rewards r, which are not seen during training.

The MSE for the NSPM is calculated as:Ioa
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MSENSPM =
1

N

N∑
i=1

∥s′i − ŝ′i∥2

where N is the number of samples in the validation dataset, s′i is the true next state, and ŝ′i

is the predicted next state by the NSPM.

Similarly, the MSE for the RPM is computed as:

MSERPM =
1

N

N∑
i=1

∥ri − r̂i∥2

where ri is the true reward, and r̂i is the predicted reward by the RPM.

A lower MSE indicates better accuracy of the models in predicting the next state and reward,

respectively. These metrics provide insights into the performance and generalization capabilities

of the NSPM and RPM in modeling the dynamics of the environment.’

Below are the losses of the above models, indicating a resonanbly low values,
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3.3.2.4 Offline Policy Evaluation Procedure

To evaluate the learned policy, the following procedure is followed:

1. Rollout: The evaluation starts with an initial state s0 obtained from the test dataset. The

policy is then executed in the environment, generating a sequence of actions according to

the policy, for k steps.

2. Model Prediction: Using the next state prediction model, the next state s′ is predicted

for each state-action pair encountered during the rollout. Similarly, the reward prediction

model is used to predict the reward r received at each state-action pair.

3. Policy Evaluation: The performance of the policy is evaluated based on the predicted

next states and rewards. More specifically, mean return of rollouts on the initial states of
Ioa
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the test dataset are computed and compared against a baseline(return on actions taken in

the states in the test dataset).

3.3.2.5 Baselines

In addition to the above, we predict the reward for the state - actions pairs taken in the

evaluation dataset, of high rewards episodes, to see how they perform using the above criteria and

reward function, and compare them with the learned policies. And we also, use the Behaviour

Cloning policy as well.

Baseline 1: Behaviour Cloning (BC) Policy

• The Behaviour Cloning (BC) policy is trained on the entire training dataset.

• Evaluation is conducted through simulated rollouts in the dynamics model.

• The rollouts are done by using both the next transition and reward model.

Baseline 2: High Reward Episodes

• High reward episodes are defined as episodes falling into the 66th percentile (total reward

≥ 0.5 normalized) of evaluation dataset.

• Only the reward model is used to predict the returns for these episodes, as the transitions

are already available in the dataset.

3.3.2.6 Challenges

However, model-based evaluation also poses some challenges and limitations:
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• Model Accuracy: The accuracy of the learned models directly affects the reliability of

policy evaluation. Especially, in the World Of Tanks scenarios, where the episodc steps

are long, error accumulates, making it more prone inaccurate results. Inaccurate models

may lead to biased performance estimates.

• Reward : The reward function used for this model, does not contain the actual and more

representative rewards in the World of Tanks context. Since originally, the nature and the

data of the replays (in the World of Tanks context, include more represantive rewards such

as win/loss, capture/kill rewards, which are sparse rewards difficult to be predicted by a

model. However, using the above continuous and consistent over time reward function we

can get an indicating performance of the policies.

Overall, model-based dynamics provide a powerful framework for evaluating learned poli-

cies in reinforcement learning, offering both efficiency and interpretability in assessing policy

performance.
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Chapter 4

Experiments

In this section, we present the details of the experiments conducted to evaluate the perfor-

mance of Offline Reinforcement Learning (RL) algorithms in the context of World of Tanks.

The primary objectives of the experiments were to assess the impact of training data size on

algorithm performance and to compare the performance of different RL algorithms on the same

dataset.

4.1 Libraries Used for Training Offline RL in World of Tanks

The training of Offline Reinforcement Learning (RL) models for the World of Tanks game

was facilitated using a variety of specialized libraries. These libraries provided essential tools

for data processing, model implementation, and evaluation. Below is a detailed description of

the key libraries employed:

57

Ioa
nn

is 
Pas

tel
las



58

• NumPy [11]: In our experiments, NumPy was specifically used for processing game

replays and converting them into a Markov Decision Process (MDP) replay buffer, as

well as some other supplemnentary functions.

• d3rlpy: . It was primarily used for saving the replay buffers into a compressed .h5 file

format, which is efficient for handling large replay files. Additionally, d3rlpy was utilized

for training the Decision Transformer algorithm, and Behaviour Cloning.

• TorchRL : In our experiments, TorchRL was used for training several algorithms, includ-

ing Conservative Q-Learning (CQL), Implicit Q-Learning (IQL), and Deep Deterministic

Policy Gradient (DDPG).

• Matplotlib [12]: It was used for visualizing the training progress and performance metrics

of our RL models, including plotting the different results obtained from various training

sessions and algorithms.

• SCOPE-RL In our experiments, SCOPE-RL was utilized to evaluate the performance of

different policies trained via Offline RL, using Policy Value Estimation.

The combination of these libraries provided a robust and flexible framework for training

Offline RL models in the context of the World of Tanks game, enabling effective data processing,

model training, and performance evaluation.

4.2 Algorithms

The algorithms used in the experiments are the ones already mention in chapter 1 and related

work. These algorithms are :
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1. Conservative Q-Learning

2. Implicit Q-Learning

3. Behavioural Cloning

4. Decision Transformer

5. DDPG

4.3 List of Experiments Conducted

This section details the specific experiments conducted to evaluate the efficacy of offline

reinforcement learning (RL) algorithms in the World of Tanks game environment. Each exper-

iment is designed to explore the effects of varying key parameters—discount factor (γ), Disti-

bution Shift effect , and dataset size—on the performance of Conservative Q-Learning (CQL),

Implicit Q-Learning (IQL), and Decision Transformer algorithms.

4.3.1 Experiment 1: Impact of Discount Factor (γ)

Objective: To assess how the choice of γ influences the algorithms’ prioritization of immediate

versus future rewards.

Parameters: • Discount Factor (γ): 0.99, 0.995, 0.9995, 0.9999

• Dataset Size: 178k episodes

Algorithms Tested: CQL, IQLIoa
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4.3.2 Experiment 2: Distribution Shift effect

Objective: Comparison of standard RL algorithm (DDPG) vs offline RL algorithms(IQL, CQL)

that handle overestimation and OOD(Out-Of-Distribution) actions.

Hypothesis: Since DDPG does not account (Out-Of-Distribution) actions, we expect that DDPG

will overestimate actions that are not seen in the dataset. And, while we have a huge

dataset, recall that there still out-of-distribution actions, since the way we model actions

allow the presence of move forward and backward actions together. Whilst, in data this is

not the care since these actions can be taken by player and thus not recored in the data.

Parameters: • Discount Factor (γ): 0.9999

• Dataset Size: 178K episodes

Algorithms Tested: DDPG vs CQL

4.3.3 Experiment 3: Dataset Size Comparison

Objective: To explore how the volume of training data affects the algorithms’ ability to learn

effective policies.

Parameters: • Discount Factor (γ): 0.9999

• Dataset Size: 600, 178k episodes

Algorithms Tested: CQL, IQLIoa
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Each experiment is systematically designed to isolate the effects of one or more variables,

providing insights into the optimal deployment of offline RL algorithms in complex game en-

vironments. The results from these experiments are expected to contribute significantly to the

field of reinforcement learning, particularly in applications where live interaction with the envi-

ronment is constrained.

4.3.4 Evaluation Metrics

Since there is no access to environment to retrieve actual returns of the policies, the evalua-

tion metrics that are gonna be used fro the evaluation of the learned policies are:

• Policy Initial Value Estimation ( V(s0) )

• Return from Model-Based Environment Rollouts (R-MDP)

4.4 Results and Analysis

This section discusses the evaluation results of different reinforcement learning algorithms

including Deep Deterministic Policy Gradient (DDPG), Implicit Q-Learning (IQL), Conserva-

tive Q-Learning (CQL), and Decision Transformer (DT). We compare the policy value estima-

tions and mean returns of these algorithms through visual analyses.

4.4.1 Policy Value Estimation

The evaluation of the learned policies was conducted using estimated policy value estima-

tion. However, this approach is only applicable to value-based approaches (CQL, IQL, DDPG),

and it is important to note that this method is not the primary source of evaluation due to the
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tendency of offline reinforcement learning to suffer from policy value overestimation. It can still

be used to indicate the performance, but having it also check if corresponds to other evaluation

metrics like the return of the environments.

This evaluation is mainly used to highlight this issue.

4.4.2 Mean Return Comparison

Similarly, the mean returns for each algorithm are illustrated in Figure 6. These returns are

indicative of the overall performance of the algorithms and their ability to maximize rewards.

Each of these plots provides a comprehensive overview of the algorithms’ performances and

are essential for making informed decisions regarding the selection and further development of

reinforcement learning strategies.
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LIST OF TABLES

E1

Policy Value Estimation

Algorithms γ-0.99 γ-0.997 γ-0.9995 γ-0.9999

CQL -400 -0.005 0.12 0.18

IQL 0.03 0.05 0.08 0.15

DDPG - - - 3.5

Table 4: Estimated Policy (Initial) Value Estimation of the model-based algorithms for Various

Discount Factors. For DDPG, only one experiment is done just to see the data distribution shift

effect.

Experiment 1 and 2

Estimated Mean Return

Algorithms γ-0.99 γ-0.997 γ-0.9995 γ-0.9999

CQL 19 86 126.0 151.0

IQL 26 60 97 110.0

DDPG - - - -120

Table 5: Estimated Mean Return of Model-based Algorithms for Various Discount Factors. For

DDPG, only one experiment is done just to see the data distribution shift effect.
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Experiment 1 and 2

Estimated Mean Return

Algorithms γ-0.9999

BC 79.85

CQL 151.0

IQL 110.0

DT 126

DDPG -120

Table 6: Estimated Mean Return of Different Algorithms at gamma 0.9999 .

Experiment 3

Estimated Mean Return( CQL )

Data Size g-0.9999

600 47

178K 151

Table 7: Estimated Mean Return of CQL in two different data sizes. The difference showcases

importance of data in Offline RLIoa
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4.4.2.1 Gamma Effect

Figure 3: Estimated mean return plot of IQL and CQL at different gamma values. In addition ,

estimated mean return of baselines is plotted (Behavioural Cloning and high reward policies.

The plot illustrates the impact of the discount factor, gamma, on the predicted mean cu-

mulative return for two Offline Reinforcement Learning (RL) algorithms: Implicit Q-Learning

(IQL) and Conservative Q-Learning (CQL). As gamma increases from 0.990 to 1.000, both al-

gorithms exhibit an upward trend in their mean cumulative returns. Initially, for gamma values

close to 0.990, both algorithms perform below the high reward policies from the dataset, repre-

sented by the red dashed line, and behaviour cloning algorithm represented by green line. This

red dashed line signifies the return on high reward episodes within the dataset. However, as

gamma approaches 1.000, the performance of both algorithms improves significantly. Green

line, showcases the return of the BC algorithm of its rollout in the dynamics model. Notably,

CQL demonstrates a more pronounced increase in returns compared to IQL, especially at gamma
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values closer to 1.000, where it surpasses IQL and achieves a higher mean cumulative return.

This phenomenon can be attributed to the extended time horizon in the replays, which spans

around 800 timesteps, and not only that most of the rewards( win/loss, and highlights rewards)

happen much later to the game. With a higher gamma, which places more emphasis on future

rewards, the algorithms are better able to exploit the longer-term benefits and also able to see the

rewards from this long-term events such as kill rewards.

Another effect of gamma can be seen, also in the probability distribution of actions, of the

learnt policies. Below we can see the action probability distribution in the rollouts of CQL

trained with gamma at 0.99 and then with gamma at 0.9999.

Note that negative returns happens, because there many noop or contradicting actions at the

same time (e.g move forward and move backward together).

Figure 4: CQL percentage of actions taken of actions at gamma 0.99
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Figure 5: CQL percentage of actions taken at gamma 0.9999
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Chapter 5

Discussion

5.1 Results

5.1.1 Evaluating Offline Reinforcement Learning Properties in Experiments

The experiments conducted as part of this thesis were meticulously designed to evaluate

several core properties of offline reinforcement learning. Offline RL, which involves training a

policy entirely from a fixed dataset without additional online interactions with the environment,

poses unique challenges and opportunities. Key aspects examined in these experiments include

the improvement of policy behavior over the baseline behaviors(high rewards episodes, BC)

present in the dataset, the impact of data distribution shifts, and the performance divergence of

derived policies from the original data-collecting policies.

Improvement Over Dataset Behaviors

One of the primary objectives was to assess whether the trained policies could surpass the

performance of the behavior policies that generated the training data. By leveraging advanced
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offline RL algorithms capable of effectively learning from offline data and also mitigating sev-

eral challenges, mainly, data distribution shift.The experiments demonstrated noticeable im-

provements in performance within the simulated environment using the dynamics model, with

a specific simpified reward function. These improvements were quantified by comparing the

mean return of simulated rollouts, against those exhibited by the baselines. More specifically,

all offline RL algorithms ( CQL, IQL, DT) acquiring mean return of 151, 110, 126 respectively,

outperformed both BC and high rewarded policies, of mean returns of 79.85 and 68.

Handling Data Distribution Shifts

Another significant aspect of the investigation focused on the robustness of policies when

faced with scenarios not well-represented in the training data. Offline RL inherently suffers from

issues related to data distribution shifts, where the policy encounters state-action pairs that are

underrepresented or absent in the training dataset. Through the application of various regulariza-

tion techniques(CQL) and modified architectures(IQL), the experiments aimed to mitigate these

effects, enhancing the policies’ generalization capabilities, and from the results we can see that,

based on the returns but also the value estimations, IQL and CQL mitigate this problem, while

DDPG suffers extremely. DDPG has quite large initial policy value (3.5) compared to the other

two. However, it has return of -120, mainly because it perform actions simultaneously that are

forbidden, and thus penalized.

Decision Transformer, Behaviour Cloning, are prone to this problem, since they do not rely

on value functions, and that’s why they don’t perform action together that are forbidden.Ioa
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Policy Performance Divergence

Finally, the experiments explored how the derived policies performed under conditions that

differed from those of the training data. And that in general, the learned policies, behave differ-

ently, than the dataset. This exploration is crucial in offline RL, as it indicates the policy’s ability

to generalize beyond the confines of its training environment and the data, and that hopefully

will learn to stich different good behaviours and trajectories together. The findings revealed that

while some policies adapted well and maintained high performance levels, others exhibited a

drop in effectiveness, underscoring the importance of careful algorithm selection and tuning to

address the challenges posed by offline RL.

This is highlighted by the plots below, showcasing the action probabilities of the dataset and

the learned policies.
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Figure 6: Percentage of actions taken in Dataset

Figure 7: Percentage of actions taken by Behaviour Cloning
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Figure 8: Percentage of actions taken by Conservative Q-Learning
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Figure 9: Percentage of actions taken by Implicit Q-Learning

Figure 10: Percentage of actions taken by DT
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Figure 11: Percentage of actions taken by DDPG

5.2 Limitations of Offline Reinforcement Learning in World of Tanks Scenario

Offline reinforcement learning (RL) techniques, where an agent learns from a fixed dataset of

previously collected experiences, offer several advantages such as sample efficiency and safety

during training. However, when applied to complex and dynamic environments like the World

of Tanks scenario, several limitations arise:
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5.2.1 Limited Exploration

In World of Tanks, the environment is vast and complex, with a wide range of possible states

and actions. Offline RL relies on the assumption that the collected dataset adequately covers

the state-action space. However, due to the sheer size of the environment, it’s challenging to

collect a diverse dataset that captures all possible scenarios. This limitation can lead to poor

generalization and suboptimal policies, especially in unseen or rare situations.

5.2.2 MDP formation

In this work, we have employed a Markov Decision Process (MDP) framework to model the

World of Tanks, solely from the data available. . However, it is important to acknowledge that

the MDP defined for our problem is incomplete and does not capture the full and accurate MDP

of the problem.

5.2.3 Evaluation

As previously discussed in this thesis, evaluating the efficacy of offline RL policies is fraught

with inherent challenges, largely stemming from the non-interactive nature of their assessment.

The absence of real-time environmental interaction restricts our ability to directly observe how

these policies would perform under actual conditions, presenting a significant barrier to compre-

hensive evaluation.Ioa
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Complications Arising from Off-policy Evaluation (OPE)

The limitations of Off-policy Evaluation (OPE), a method explored in earlier chapters, be-

come particularly salient in this context. While OPE allows us to estimate the effectiveness of a

policy using data generated by a different policy, it is dependent on the assumption that the data

sufficiently represents the scenarios that the new policy will encounter. This method, however,

lacks definitive techniques and is still an active area of research, indicating the ongoing need for

refinement to address its inherent biases and potential inaccuracies.

Limitations of Model-based Evaluation Techniques

Additionally, the dynamics model-based approaches discussed earlier are also subject to

specific limitations. The reward function within these models, designed to simulate potential

outcomes, does not accurately capture the complex and sparse reward structures characteristic

of many real-world scenarios. These models, while useful, are indicative at best; they attempt

to estimate performance based on simplified assumptions that may not hold true under varied or

unexpected conditions. This discrepancy underscores the need for caution when relying on such

models for policy evaluation.

As we conclude this thesis, it is clear that the evaluation of offline RL policies still faces

considerable obstacles. Both OPE and model-based approaches require ongoing development

to overcome their current limitations. Enhancing the fidelity of these evaluation techniques is

crucial for advancing the field and ensuring that offline RL can be effectively applied in moreIoa
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dynamic and unpredictable environments, such as World Of Tanks. The need for more sophis-

ticated and accurate evaluation methods will undoubtedly be a focal point of future research in

offline reinforcement learning.

5.3 Future Work

5.3.1 Enrich with more features

As discussed above, the information the agent sees as state, is limited and simplified, and

does not capture the full state information needed, to be able to perform as well as possible.

Incorporating richer state information, such as visual data, to provide the agent with a more

comprehensive understanding of the environment. This would involve integrating sensory inputs

that can help the agent perceive and react to its surroundings more effectively.

5.3.2 Enhancing Model Generalization

Improving the generalization capabilities of offline reinforcement learning models is cru-

cial. Future efforts should aim at developing models that can adapt to the ever-evolving game

dynamics, such as new tanks, maps, and other future updates.

5.3.2.1 Improving Dynamics Model for Evaluation

This is very important as the current dynamics model is an indicative model of the environ-

ment. Future work could include the creation of closer and accurate dynamics model (Transition

Model, Reward Model) that more precisely captures the complexity and behaviour of the actualIoa
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environment, to get more proof results of the performance of the learnt policies. Or even better,

to test these policies in an actual online environment.

5.3.2.2 Different Architectures

As this thesis has established a foundational approach to developing and implementing a

robust dynamics model for offline reinforcement learning in strategic environments like World

of Tanks, a promising direction for future work involves exploring more sophisticated neural

network architectures such as the Q-Transformer [5, 39], which merges deep Q-learning with

transformer-based models. The Q-Transformer architecture could leverage the transformer’s

capacity to understand complex sequences of actions and states due to its self-attention mech-

anisms, enhancing the model’s ability to generalize from historical data and address challenges

like distributional shift between training data and execution scenarios.

5.3.3 Multi-Agent Learning

Exploring collaborative multi-agent offline reinforcement learning, is a way to expand this

work and introduce team-based strategies in World of Tanks. Future work could focus on using

existing work on MARL, such as MADT [21], which implement a multi decision transformer

model, or MA-CQL [8], which implements a multi-agent version of Conservative Q-Learning.

MARL will enable policies that not only optimize individual player performance but also en-

hance team coordination and synergy, properties needed in a multiplayer game with team vs

team scenarios and game modes.Ioa
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5.3.4 LLM-powered Agents

With the recent development, of LLM-based agents ([37], but also inspiring from this work

[31], where it states the potential benefit of using LLM pre-trained models in Offline RL scenar-

ios, is natural to see how LLM-based agents can be build utilizing both Offline RL and already

pre-trained LLMs models , to create a lifelong agent that can master different skills in World Of

Tanks.

5.4 Conclusion

The application of offline reinforcement learning (RL) in a World of Tanks scenario presents

several challenges and limitations. Despite these challenges and limitations, our analysis has

shown that algorithms like CQL , IQL, DT are capable of producing significant returns under

various discount factors, showcasing their robustness and adaptability in offline settings. This

indicates that, while offline RL faces specific hurdles, there are promising avenues for achieving

reliable and high-performance policy learning that least in some sub-tasks of the game, such as

going to enemy base.

Moreover, offline RL exhibits properties such as improvement over the actions taken in the

dataset, at least based on the estimated return on the dynamics model, and data stitching, where

different behaviors are effectively combined to create more cohesive and optimized policies.

These properties enhance the potential of offline RL to leverage diverse and suboptimal datasets

to achieve superior performance.Ioa
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Key limitations include the absence of actual online enviroment for evaluation the algo-

rithms, , the presence of concept drift as the environment evolves, concerns regarding safety in

competitive gameplay, and the limited MDP formation( lack of complete state information etc.).

Addressing these limitations requires innovative solutions that account for the unique char-

acteristics of the World of Tanks scenario. Future research efforts should focus on developing

techniques that enhance exploration, improve dataset quality, adapt to concept drift, use of more

advanced architectures, multi-agent learning and use of more stable and robust evaluation meth-

ods.

Despite the challenges, offline RL remains a promising approach for learning in complex

scenarios like World of Tanks. By overcoming these limitations, offline RL algorithms have the

potential to enhance player experiences, optimize gameplay strategies, and advance the state-of-

the-art in reinforcement learning in the gaming domain.
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CQL Parameter Details
Parameters Value
Layers 2
Units per layer 256
Learning rate 3.0e-4
Optimizer Adam
Hidden Layer Activation function ReLU
Output Activation function(Critic) Linear
Output Activation function(Actor) Tanh
alpha (α) controlled by optimizer
Lagrange-threshold (specific parameter) 10

Table 8: CQL Hyperparameter details

IQL Parameter Details
Parameters Value
Layers 2
Learning rate 3.0e-4
Units per layer 256
Optimizer Adam
Hidden Layer Activation function ReLU
Output Activation function(Critic) Linear
Output Activation function(Actor) Tanh
Expectile (specific parameter) 0.7

Table 9: IQL Hyperparameter details

DT Parameter Details
Parameters Value
Layers 3
Units per layer 512
Learning rate 1.0e-4
Optimizer Adam
Num of Heads 1
Hidden Layer Activation function ReLU
Output Activation function(Critic) Linear
Output Activation function(Actor) Tanh

Table 10: DT Hyperparameter details
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BC Parameter Details
Parameters Value
Layers 2
Units per layer 256
Learning rate 0.001
Hidden Layer Activation function ReLU
Output Activation function(Critic) Linear
Output Activation function(Actor) Tanh

Table 11: BC Hyperparameter details

DDPG Parameter Details
Parameters Value
Layers 2
Units per layer 256
Learning rate 3.0e-4
Hidden Layer Activation function ReLU
Output Activation function(Critic) Linear
Output Activation function(Actor) Tanh

Table 12: DDPG Hyperparameter details
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