
 

ABSTRACT 

As indicated by the title of the Thesis, "Brain Magnetic Resonance Imaging Segmentation 

System in MS with Deep Neural Networks" the aim was to develop a system using deep 

neural networks, to analyze medical images. 

 

The main purpose was to create a system for automated analysis of magnetic resonance 

imaging of type T2 and the accurate identification of areas indicating the presence of Multiple 

Sclerosis. To achieve this, it was necessary to create a prediction model that was previously 

required to acquire knowledge from suitably formatted information such as medical images 

accompanied by corresponding masks and to be able to accurately predict the outcome for 

new data. 

 

The tools used to develop the prediction model were the Python programming language 

and deep learning libraries TensorFlow and image processing library OpenCV. The web 

application was implemented using Angular framework and Flask. 

 

In conclusion, the objective of automated detection of the aforementioned areas was 

achieved with an effectiveness of 70%. This effectiveness is quite satisfactory; however, it 

could be increased even further with the provision of additional data and the application of 

specialized techniques concerning data preprocessing. 
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Chapter 1  

 

Introduction 
 

1.1 Motivation 

Medicine has made tremendous progress over the years from the beginning of modern history 

to the present. More specifically, with the rapid technological development of the 20th 

century, medical science has benefited to the greatest extent possible. Accordingly, the 

approach to diagnosis, monitoring, and treatment of various diseases has radically changed. 

 

The development of innovative machines such as CT scanners, MRI scanners, and ultrasound 

has contributed to precise diagnosis and monitoring. The evolution that medical technology 

experienced through technological progress was equally seen in pharmaceutical technology, 

having the ability to develop original formulations that contribute not only to the treatment of 

the patient but also to maintaining or even improving the patient's quality of life. Naturally, at 

this stage, there are no applicable solutions for all diseases and conditions. However, for the 

existing ones, if not applied in the appropriate timeframe, the situation appears bleak and no 

one can guarantee their success. 

 

Here lies the motivation for my Individual Dissertation titled 'Brain MRI Image Segmentation 

System with Deep Neural Networks', which aims to solve the problem of detecting areas in 

magnetic resonance images indicating the presence of Multiple Sclerosis, with the goal of 

implementing an automated solution to simplify the diagnostic process through the doctor and 

to address any problems that may arise in a timely manner. 
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1.2 Challenges 

It is a given that the challenges that exist in such an endeavor are numerous and vary in form. 

Initially, solving such problems involves the importance of artificial intelligence, which in 

simpler words means providing knowledge to the computer, shaping this knowledge to be 

understood by the computer, and then making effective predictions based on the knowledge 

previously acquired. 

 

One of the challenges that had to be addressed was the excessive computational resources 

needed to train such a system, as the process is very demanding. Another challenge is the 

small volume of data. To train a model without any initial knowledge, large amounts of data 

are required, which, however, are not readily available and require a great effort to create, as 

will be explained later. Another obstacle in implementing these issues, due to the nature of the 

problem, is the percentage of effectiveness that is though as satisfactory. In the case of 

medical problems, it is not enough for the results to function with mediocre effectiveness, as 

human lives are at risk and the slightest detail can be crucial both for the progression of the 

disease and for the patient's health trajectory. Health by definition is not just the absence of 

disease or the elimination of the illness, but it is physical, mental, and motor well-being. 

1.3 Strategic Objectives 

Concluding the short-term goal of the Individual Dissertation, it was to study and become 

familiar with using deep neural networks, so as to be prepared for the implementation of the 

long-term goal of automated detection of areas of interest in brain magnetic resonance 

imaging for the evaluation of Multiple Sclerosis. In addition, different models and techniques 

had to be used in order to conclude to the most appropriate handling of data. 

1.4 Contents 

 

In the next chapter, number two, titled "Convolutional Neural Networks," the field of 

deep learning is described, which is the fundamental basis for the use of 
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Convolutional Neural Networks. This chapter outlines the operation of these networks 

and analyzes in depth the functioning of the U-Net Convolutional Neural Network, 

which will be later tested for detecting multiple sclerosis lesions. Other variations of 

the U-Net architecture like Attention U-Net, ResUNet-a, U-Net++ and many more 

will be used to compare the methodologies and results. Their operations include the 

preprocessing of the data they receive as input and analysis. At the end of the chapter, 

it is understood that to have a proper evaluation of performance, appropriate metrics 

must be established as a standardized measure for comparing the results. 

 

Moving forward, a detailed explanation of the available input and output data is 

provided. In between, the application of the Convolutional Neural Network U-Net to 

solve the problem is presented, and the final results achieved using it are shown. 

 

In chapter "Multiple Sclerosis Segmentation Framework” the problem of segmenting 

areas of interest in Brain Magnetic Resonance Imaging for the evaluation of Multiple 

Sclerosis is presented, and the purpose, which is the automated detection of these 

areas, is outlined. Then, an in-depth analysis of the data in their initial form is 

conducted, as well as the process to transform these data into a uniform, 

understandable form for training. At this point, normalization is applied, and the first 

prediction model is created, which does not provide sufficient effectiveness. 

Subsequently, the steps of adding Batch Normalization layers, Data Augmentation, 

increasing the training data, modifying the learning rate, and ultimately restoring the 

original clarity of the data as regards improving effectiveness are described. At each 

point, a comparison with the previous attempt is made, and the differences are 

highlighted. Last, an overview of the framework that encapsulates the automated 
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model is shown, together with the capabilities that such an online responsive tool has 

to offer. 

 

In the last chapter, number six, titled "Conclusion" the evaluation of the final results is 

presented, clarifying their significance. A comparison is also presented with research 

that aimed to solve an identical problem. Finally, a reference is made to a possible 

future research and how it could improve the existing results of the current research. 
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Chapter 2  

Convolutional Neural Networks 
 

2.1 Introduction 

Initially, to understand the logic on which convolutional neural networks are based, 

basic knowledge of biology and more specifically the functioning of the human brain 

must be learned. As indicated by the name Convolutional Neural Networks [31], these 

are networks consisting of layers, with each layer containing neurons, aiming to 

process the input as it transitions between neurons and ultimately understand and 

interpret the initial input. A neuron is a node where the input is processed, and various 

features extracted from the analysis are considered to direct it to the corresponding 

neuron of the next layer and ultimately lead to a conclusion. 

 

In the case of Convolutional Neural Networks, there is full connectivity, meaning 

there is the ability to transition from any node to another node of the next layer of the 

network. The layers that make up a Convolutional Neural Network are defined as the 

architecture of that specific network. The way Convolutional Neural Networks operate 

makes them suitable for machine learning with inputs of images. Some advantages of 

Convolutional Neural Networks over other methods of machine learning, include the 

relatively low preprocessing of input data and the adaptation of processing during the 

learning [1]. The term 'deep neural networks' refers to the multiple layers that these 

networks contain and by extension, the size of the processing intended for the input. 
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Figure 2.1  Comparison of the function of the human brain with a Convolutional Neural Network 

in understanding a visual image (Source: https://medium.com/nerd-for-tech/understanding-

convolutional-neural-network-cnn-9f5ec8a308ac, Last accessed 01/05/24) 

 

The image above contrasts the function of the human brain and Convolutional Neural 

Networks in understanding visual information. The human brain receives information 

through the eyes and directs it through the neurons to derive a conclusion. 

Convolutional Neural Networks attempt to simulate the same process. 

2.2 U-Net 

U-Net [2] is a convolutional neural network structured to facilitate the training of a 

model using images as input, with the ultimate goal of enabling the model to predict 

the contents of another image provided as input, based on the knowledge with which it 

was already been trained on. 

 

Focusing on the operation and architecture of this particular architecture, we can 

easily observe that it is divided into two main parts: encoder and decoder. The first 

part, the encoder, receives the input, which in the context of the Thesis, consists of 
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MRI images of the brain and attempts to analyze the content by applying 

Convolutional 3x3 ReLU, Max Pooling 2x2, Up-Conv 2x2, and Conv 1x1 layers in 

order to extract feature maps and conclude to a prediction. Regarding the data 

provided as input and the training of the system, it is characterized as Supervised 

Learning because along with the input image, a mask is also provided as input for 

each of the images, which depicts the information indicating that in specific areas 

there is a positive indication for the presence of multiple sclerosis, so the model can be 

trained to predict those and calculate its’ performance. The output image is a black 

and white mask that shows the pixels that were verified as positive in white and the 

negative ones in black. The process of splitting the areas of the original input image 

into positive and negative through the extraction of the mask is called Semantic 

Segmentation [3]. 

 

 

Figure 2.2 U-Net architecture (Source: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-

net/, Last accessed 02/05/2024) 
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Figure 2.3 Image (a) contains an area of skin cancer and image (b) is the mask that indicates the 

positive in cancer presence areas as white and negative areas as black (Source: 

https://www.mdpi.com/2079-3197/7/3/44, Last accessed: 02/05/2024) 

 

2.3 U-Net Variations 

The U-Net architecture has become a standard model for medical image segmentation 

because of its effectiveness in handling a wide range of imaging tasks. Several 

iterations of the original U-Net design have been built in recognition of its success in 

order to solve certain issues and enhance the performance of medical image 

processing. In this section, some of the most important U-Net variants are covered. 

These models made several adjustments to the conventional U-Net architecture in an 

effort to increase the model's generalizability across various medical imaging datasets 

and enhance segmentation accuracy. 

 

Adding attention gates (AGs) into the U-Net design, the Attention U-Net [23] assists 

the model in focusing on target structures of various sizes and forms. These attention 
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processes selectively suppress the less significant characteristics while emphasizing 

the prominent ones that are essential to specific tasks. This is especially helpful in 

medical imaging, where it's crucial to precisely locate things like tumors or lesions. 

Attention U-Net is flexible enough to handle the complexities of medical image 

segmentation because its attention mechanisms may change dynamically based on the 

input picture. 

 

ResUNet [24] is an architecture for medical image segmentation that extends on the 

U-Net architecture that makes use of residual learning blocks. By include these 

additional blocks, the issue of the vanishing/exploding [34] gradient is mitigated, 

enabling the training of deeper networks with more efficiency. ResUNet's ability to 

allow gradients to flow across the network allows it to support tasks demanding deep 

anatomical segmentation while permitting the learning of increasingly complicated 

features without sacrificing efficiency. 

 

U-Net++, or Nested U-Net as it is also called [22], presents a series of nested, dense 

skip paths that increase information flow across the network by allowing more 

accurate localization when combined with contextual data from the contracted path. 

This architecture minimizes the semantic gap between the feature maps of the encoder 

and decoder modules in while improving feature representation at multiple resolution 

scales. The goal of U-Net++ is to offer better segmentation with enhanced fine-

grained detail acquisition, which is crucial for medical imaging diagnosis. 

 

TransUNet [25] combines the powerful self-attention mechanisms of transformers 

with the solid structure of CNNs. The hybrid model accurately processes the global 
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dependencies inside the picture by utilizing the advantages of both systems. When 

tasks like organ segmentation need precise prediction and contextual awareness, 

TransUNet typically performs exceptionally well because the transformer part 

examines the picture as a whole and helps to clarify the complex anatomical 

components seen in medical pictures, while the other part operates as the classic U-

Net architecture. 

2.4 Image Preprocessing 

For the analysis of medical images and the proper training of our model, it is essential 

to apply some form of processing [4] to the images that are given as input into the 

network. The structure of the network determines the processing that the images 

undergo, and the corresponding filters are used to implement this processing. But what 

is typically done, is to apply some processing to the images prior to giving them as 

input to the network, in order to ease the network’s feature identification and 

extraction. 

 

Initially, filters serve multiple purposes such as smoothing, enhancing features, 

reducing, enlarging, and many more. To accomplish those, what is known as a Kernel 

is used. The Kernel is essentially a matrix that determines the weight of neighboring 

pixels. To make this more understandable, a kernel can have any size and shape that 

seems appropriate, with different weights for each cell. The kernel is then applied to 

each pixel of the original image, and results in a new value for the corresponding pixel 

which is assigned to another empty as of now image, which is finally turned into the 

final processed image.  
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Figure 2.4    Application of Median filter to a single pixel (Source:  

https://www.southampton.ac.uk/~msn/book/new_demo/median/,  Last accessed: 02/05/2024) 

 

2.5 Image Resolution 

The processing of images provided to the network utilizes the following layers. The 

Convolutional Layer applies a 3x3 square kernel to the input image to produce the 

processed image. The resulting image is reduced by 2 pixels in both the horizontal and 

vertical axes each time the Convolutional Layer is applied, because there are no 

neighboring cell values for the first 2 and last 2 rows and columns since they are on 

the perimeter of the image, and thus the network chooses to ignore these values 

because it does not use any padding. In the Max Pooling Layer, we also have a 2x2 

square kernel from which we draw the maximum value of the square and designate 

this particular value as the new value of the corresponding element. Consequently, the 

resulting image becomes that half the size of the input image. 

 

The second part of the U-Net primarily aims for local accuracy using Transposed 

Convolutions (Up-Conv 2x2). The Transposed Convolution uses a 2x2 kernel, which 

is applied to the original image and the result is of higher clarity as it contains double 

the information. Finally, the Convolution Layer is used again, but with a different 
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kernel size of 1x1. All the images intended for training undergo this process to 

produce the model that we will use in the future for prediction. 

 

Figure 2.5 Max Pool filter with a 2x2 kernel (Source:  

https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47, 

Last accessed: 02/05/2024) 

 

2.6 Evaluation Metrics 

To evaluate the effectiveness of the prediction model that has trained, it is imperative 

to set evaluation metrics so that the model can be compared with other various 

available prediction models or instances of the same model with different 

configurations. Since the prediction involves images and particularly the identification 

of regions in images, the metrics that are easily visible are the percentages where the 

prediction model and the real assessment agree and those where they disagree. 

 

For example, in a medical image concerning the detection of tumors, the trained 

prediction model may identify certain areas as positive, and the doctor will also 

identify his areas of interest. The determination of the areas by the doctor is 

considered absolutely correct, and thus the evaluation metrics [5] emerge as follows: 
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Metric Description 

True Positive (TP) 

Areas for which both the prediction model 

and the doctor agree are positive regarding 

the presence. 

True Negative (TN) 

Areas for which both the prediction model 

and the doctor agree are negative regarding 

the presencE. 

False Positive (FP) 

Areas which the prediction model has 

identified as a positive and the doctor as a 

negative in presence area. 

False Negative (FN) 

Areas which the prediction model has 

identified as a negative and the doctor as a 

positive in presence area. 

Table 1 Evaluation Metrics description 

 

The above table separates the cases when both the true value and the prediction agree 

on the positive value of the area, then the area is marked as True Positive. When both 

agree on the negative value of the area, then the area is marked as True Negative. In 

cases where they disagree, when the true value is positive, then the area is a False 

Negative. When the two disagree, and the value of the true value is negative, then the 

area is a False Positive. 

 

These specific metrics form the basis for producing additional metrics in case we want 

to measure differently the importance of some of these metrics. Some of these are: 
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Metric Equation 

 
 

 
 

 
 

 
 

Table 2 Additional evaluation metrics 

 

The above table outlines the derivation of additional evaluation metrics based on the 

metrics that were previously mentioned. These additional metrics consist of the Dice 

Similarity Coefficient [6], which is in simpler words the percentage of overlap, the 

accuracy, and the ratios of positive and negative areas. 

 

Figure 2.6 Confusion Matrix (Source: https://towardsdatascience.com/taking-the-confusion-out-

of-confusion-matrices-c1ce054b3d3e, Last accessed: 02/05/2024) 

 

The confusion matrix visually represents how the basic evaluation metrics arise based 

on the comparison of the values of the prediction model and the ground truth. Gior
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Chapter 3  

Multiple Sclerosis Segmentation Framework 
 

3.1 Introduction 

Magnetic Resonance Imaging (MRI) refers to the method of visualizing the interior of 

an individual using a magnetic resonance scanner. Initially, a specific part of the body 

is chosen for the magnetic resonance scanner to image, based on the doctor's 

assessment of the area that needs further examination. The result obtained using this 

method is two-dimensional representations of the casing and the interior, which, when 

stacked, produce a three-dimensional representation of the specific area. 

 

For the identification of areas indicative of Multiple Sclerosis, it is necessary for the 

patient to undergo an MRI [30] of the brain to visualize its internal part. At this stage, 

it is essential to clarify that Multiple Sclerosis is a chronic, autoimmune, 

demyelinating disease affecting the central nervous system and subsequently the 

various functionalities it performs. Some aspects include speech, vision, coordination 

of various body parts, multiple brain functions, as well as its contribution to the 

functioning of the muscular and digestive systems [32]. Multiple Sclerosis is 

characterized as the condition where the outer shield of nerves, called myelin, shows 

deterioration, which in turn causes instability in the transmission of messages both 

from the body to the brain and the other way around from the brain to the body [3]. 

 

It also must be clarified that this disease is characterized by relapses, each of which 

can have consequences that finally add up to form the overall clinical picture of the 
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patient. All the above converge on the fact that early diagnosis and immediate 

treatment of any changes can be proven beneficial for the patient. This is because the 

symptoms of each relapse can be treated with specific medication, which can prevent 

problems and avoid permanent and irreversible effects. Hence, there is the need for 

automated detection of these specific areas with as much accuracy as possible. To 

accomplish this, a predictive model must be created that accepts as input an MRI 

image of the human brain and produces a corresponding output image that highlights 

areas where the damaged myelin is observed, if such areas with the corresponding 

characteristics exist [33]. 

 

Figure 3.1  MRI image of the brain with the corresponding mask that indicates multiple sclerosis 

lesions 

 

 

 
Figure 3.2 3D Representation of the brain using 2D slices  

(Source: https://www.hindawi.com/journals/cmmm/2015/450341/, Last accessed 03/05/2024) 
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3.2 Initial Data format and Preprocessing 

Magnetic resonance imaging data that were used are publicly available through the 

Electronic Health Laboratory of the University of Cyprus, which in collaboration with 

the Cyprus Institute of Neurology and Genetics managed to construct the mentioned 

dataset [9]. This specific dataset includes 38 patients, with each patient represented as 

a folder, and each of these 38 folders containing another two folders. The first of these 

two folders contains the MRI images from the patient's initial examination and the 

corresponding information about areas indicating Multiple Sclerosis. The second 

folder contains MRI images of the same patient, taken 6 to 12 months after the first 

examination, and also includes corresponding information about areas indicating 

Multiple Sclerosis [10] [11] [12]. 

 

Figure 3.3 MRI brain images of the patient "ARK" during the first examination accompanied by 

the relevant lesion information. 

 

The MRI images are distinguished into two categories: those in TIF format with 

dimensions of 512x512 and those in Bitmap format with dimensions of 378x378. 

There are 1027 images in TIF format and 811 images in Bitmap format, totaling 1838 

images. Each image is accompanied by a MATLAB format file, which characterizes 

the areas where myelin damage is observed. If the corresponding file is missing, it 

means that the doctor did not identify any areas matching the conditions specified. 
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The MATLAB files represent the area marked as positive for Multiple Sclerosis by 

storing a number of outline points that match the content of the MRI image as follows: 

 

Figure 3.4 The points with white color represent the outline of the positive area. 

 

The goal is to convert the points into a single outline, which will then be used to mark 

all the points of each area and ultimately produce the corresponding mask image for 

each MRI image. 

 
Figure 3.5 The outline of the areas in green color after merging the individual points and 

marking the positive areas on the mask image. 

 

Moving forward, it is necessary to create a blank image of the same size as the MRI 

image and use the polygons derived from the outlines to mark the areas with a value 

of 1, so they will appear as a white color. 

 

Gior
go

s A
da

mide
s 



19 

 

By repeating this process for all areas and all the available images, all the MRI images 

are now accompanied by another image, the mask, that indicates the lesions. For the 

purposes of data uniformity, and after the above actions, all images along with their 

masks were converted to TIF format and to size of 512x512. 

 
Figure 3.3.6 Final form of MRI image and corresponding mask image. 

 

3.3 Data Processing and Experiments 

After the preprocessing of the data was completed, there were 1838 MRI brain images 

and the corresponding 1838 mask images available to train the prediction model and 

to evaluate its effectiveness. 

 

To achieve the two goals of learning and testing the prediction model, it was 

necessary to divide the newly created set again based on the patient. This separation is 

important because having identical or very similar images in the training and testing 

sets could bias the results and not accurately reflect the real capabilities of the 

prediction model. To ensure a balanced distribution of data, it was decided that 80% 

of the patients, or 30 patient folders, would be assigned for training the model, and 

20% of the patients, or 8 patient folders, would be used for testing the model. These 
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percentages and the direct reliance on a small number of available data represent a 

relatively sufficient volume of data for learning and a respectable number of tests to 

accurately assess the effectiveness of the efforts. 

3.3.1 Initialization and Normalization 

The first step in creating the prediction model was the normalization of the data. The 

purpose of data normalization is to adjust the data to a uniform format with the same 

minimum and maximum values, so that when they are fed as input to the model's 

architecture, no imbalances occur. 

 

Focusing on the current problem and since the images are in grayscale, the 

normalization should produce images containing pure black, values equal to 0, and 

pure white, values equal to 255. Various approaches can achieve this specific result. 

 

The chosen approach was Histogram Normalization. Initially, a histogram is a 

graphical representation of the distribution of the pixel values of each image. When an 

image does not show a uniform distribution of these values at the extremes of the 

graph, it is understood that there are no pixels with absolute black or white values or 

both. 
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Figure 3.7 Example of a grayscale image  and the histogram (Source: 

https://www.semanticscholar.org/paper/Face-detection-using-boosting-and-histogram-Derhalli-

Nufal/5b48ed62242d6665a3d3685b4cfcbb63b1abbcd0, Last accessed 03/05/2024) 

 

From the above image with its’ histogram, it is easy to see that the pixel values range 

from 75 to 180. The purpose of histogram normalization is to modify these specific 

values to range from 0 to 255. To achieve this without losing the existing correlations 

of values, a uniform modification must be applied to all pixels in a single image. 

 

For each image, the original value (g(x, y)) the minimum (gmin) and maximum (gmax) 

histogram values are identified, the upper limit (GWM) is set to 255, and the lower 

limit (BWM) to 0, and the new pixel value (f(x, y)) for the resulting image is 

calculated using the formula: 

 

In this way, the data for all images now have a uniform structure and can be provided 

for training the prediction model, ensuring a smoother validation process. 

 

Figure 3.8 Image and histogram after normalization (Source: 

https://www.semanticscholar.org/paper/Face-detection-using-boosting-and-histogram-Derhalli-

Nufal/5b48ed62242d6665a3d3685b4cfcbb63b1abbcd0, Last accessed 03/05/2024) 
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3.3.2 Batch Normalization 

The results achieved using normalization alone were not satisfactory, necessitating the 

implementation of additional methods to optimize the operations and simultaneously 

increase the model's effectiveness. 

 

One method was the addition of Batch Normalization layers [14] to the already 

defined levels of the U-Net architecture. To understand the idea behind this action, it 

is first necessary to comprehend the function of Batch Normalization layers. 

 

Batches are subsets of the original data set, which are sequentially processed through 

the predefined layers of the architecture. By processing these specific batches, the 

activation vectors of the network are accordingly shaped. The Batch Normalization 

layers provide normalization of these activation vectors, hence they are applied 

immediately before or immediately after the activation method. 

 

In the U-Net architecture, the first five layers represent the encoding of the data, and 

the remaining layers represent the decoding. Therefore, their batch normalization layer 

placement is recommended only in the first part of the architecture. 

3.3.3 Data Augmentation 

Applying various modifications to the original form of the data as well as to the 

training algorithm of the prediction model, notable progress was observed, though a 

relatively satisfactory level of effectiveness was not achieved. This prompted the 

question of what was lacking compared to other problems and their solutions, such as 

the problem of automatic detection of the subclavian artery. 
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The answer was clear and directly related to the available volume of data [17]. It is 

evident that an additional number of data helps in feature extraction, better parameter 

tuning during the training process, and in more accurate evaluation of results. 

 

The process of acquiring data is a very time-consuming one, where the physician has 

access to a number of magnetic resonance images from various patients and needs to 

carefully study each one to locate the area of interest and mark the points that make up 

the outline of that specific area to subsequently create the corresponding ground truth 

mask. As it can be understood, taking into account these specific conditions, the 

solution to the problem should rely on the available data. 

 

The solution of Data Augmentation [15], meaning the enhancement and increase of 

data by modifying existing ones, was now the only way forward. Specifically, data 

augmentation is the process where transformations, filters, and other modifications are 

applied to available images so that new images are generated and added to the training 

set. It is worth noting that any changes applied to an image must also be applied to the 

image’s mask, so that a corresponding mask of the produced image is created. If every 

change is applied to all images, then the total number of images doubles each time. 

Thus, each change applied to an image exponentially increases the available number 

of data, which is expected to have a positive impact on the training and evaluation 

process. Therefore, it was decided to apply 3 modifications to the images, resulting in 

an eightfold increase in the final number of data [16]. 

 

The first change decided upon for the images, in order to generate new ones, was the 

randomized rotation of the image and consequently of the corresponding mask within 
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the range of -20 to 20 degrees. The reason for this specific modification was observed 

because there were images in the original data that exhibited a slight inclination. 

Therefore, by adding slightly rotated images, the factor of image tilt as a characteristic 

for locating areas of interest could potentially be eliminated. 

 

Figure 3.9 Original and Rotated image with their masks 

 

The next change, which was applied to the new dataset now available after the 

randomized rotation of the images, was the horizontal flip of the pixels. That is, the 

elements on the left side are mirrored to the right and the other way around. 

 

This swapping of image pixels can simulate one hemisphere of the human brain with 

the other, as in the new image the areas that belonged to one hemisphere appear on the 

opposite one. Thus, the algorithm is trained with the presence of areas of interest on 

both sides and does not interpret the side of their existence as a criterion for locating 

these areas. That is, in the case where a test image contains identical areas on the 
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opposite side, it would be easier for the prediction model to identify them than 

previously. 

 

Figure 3.10 Original and Flipped image with their masks 

 

The last modification applied to the image set, which was now quadruple the size of 

the original, was the randomized zoom focusing on the 80-90% of the image and then 

readjusting it to convert the dimensions to the same size as the original dimensions. 

The reason for this conversion was because several images in the original set were 

observed to have different focuses among them. In this way, the dependence on the 

focus presented by each image as a training parameter for locating areas indicating 

Multiple Sclerosis is eliminated. 

 

The difference in image focus is due to the transformation of the three-dimensional 

shape of the brain into the two-dimensional form of the images. The images that map 

the patient's brain at its extremes, due to the smaller size of the brain at the edges, 

appear to have less focus than the images that map the same brain closer to its center. 
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Figure 3.11 Focus difference between different brain slices 

 

 
Figure 3.12 Original and Zoomed image with their masks 

 

The final size of the training image set was eight times larger than the original. Thus, 

without any additional changes, the prediction model had to be created and then the 

effectiveness evaluated, to reveal to what extent and to what degree the Data 

Augmentation technique helped achieve an increase in effectiveness. 
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3.3.4 Learning Rate 

Another parameter that required particular attention was the learning rate. The 

learning rate [18], determines the rate at which the weights in the training parameters 

are prone to change during the backpropagation stage of updating the weights. 

However, adjusting this specific parameter must be done with great care, as an 

excessive increase in this parameter can lead the prediction model to overfit the initial 

input images, resulting in an inability to readjust to the rest of the data. On the other 

hand, excessively reducing this variable can dramatically decrease training progress, 

thus significantly reducing progress per season and potentially failing to properly 

utilize and adapt all training parameters and getting stuck in a local optimum. The 

initial learning rate was set at 1e-6. 

 

Figure 3.13 Example of a prediction with a high learning rate 

 

During the first trial, the learning rate was adjusted from 1e-6 to 1e-4, which 

ultimately proved too high. As seen in the prediction example with such a learning 

rate value, the prediction model outlined the image contours in black and assigned 

grey values to the remaining pixels, so, intermediate values to balance the 

probabilities of black and white colours, resulting initially in what appeared to be a 

quite satisfactory effectiveness, which clearly did not correspond to reality. 
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In the second trial, it was decided to select an intermediate value, that of 1e-5, with the 

expectation that it would not present the overfitting problems exhibited by the higher 

value of 1e-4. 

3.3.5 Resolution 

As mentioned previously, the dimensions of the images were reduced to dimension of 

256x256 from the original 512x512, impacting the resolution and the quality of the 

image. This change was made for performance reasons and to save computational 

memory. It is understandable that even with the reduced size of 256x256, the 

magnetic resonance imaging (MRI) images were still very demanding in terms of 

processing resources. However, this does not mean that no information was lost 

during the downsizing process [19], information that might have been particularly 

useful and could have aided further improvement in the learning process. 

 

At this stage, the effort to increase the efficiency of the process of building the 

prediction model through the steps previously described becomes immediately 

apparent, as without these steps it would not have been possible to restore the original 

clarity of the images and to create the prediction model. Therefore, having this 

capability, the images were reverted back to their original size of 512x512, and the 

prediction model was trained again. 

3.3.6   Transformation of Mask Areas into Rectangles 

One of the attempted modifications in improving the brain MRI segmentation model 

was transforming the irregularly shaped areas within the masks into rectangles. This 

approach was based on the hypothesis that a standardized shape might simplify the 
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learning process for the neural network. However, this method proved 

counterproductive. The U-Net architecture, designed to process images at a pixel-wise 

level, was less effective when dealing with these artificially standardized shapes. The 

complexity and variability of Multiple Sclerosis lesions, which are inherently 

irregular, meant that the rectangular masks failed to accurately represent the critical 

nuances in the images, leading to a degradation in model performance. 

3.3.7 Increased Number of Filters  

Increasing the number of convolutional filters within the U-Net layers was another 

strategy tested to enhance the model's ability to capture more detailed features from 

the MRI scans. Typically, a higher number of filters can allow for a richer 

representation of the input data. However, in this case, the addition did not lead to the 

anticipated improvements. Instead, the model became more prone to overfitting, 

learning noise and irrelevant details rather than generalizing from the training data. 

This adjustment did not contribute positively to the model's accuracy in segmenting 

MRI images. 

3.3.8 Random Assignment of Filters in Data Augmentation 

The implementation of data augmentation techniques aimed to increase the robustness 

of the model by introducing varied transformations to the training images. One 

specific experiment involved the random assignment of filters to different images, 

rather than applying a consistent set of transformations across all images. This 

approach intended to simulate a more diverse set of possible imaging scenarios. 

3.3.9 Validation Readjustment 

As of now, the validation set was selected randomly from the training data, which led 

to synthetic data from data augmentation being included in the validation set. The 
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model's performance metrics could be affected by the overlap of training and 

validation data, which would give an overestimation on its generalization capabilities. 

 

A new approach has been adopted to construct the validation set in order to address 

this issue and increase the model's ability to generalize on unseen data. Before the 

model training is being initialized, a validation set must be generated. In order to 

ensure that each of the training, validation and test set has a specific patients assigned 

to it, a grouping of patients to match the percentages that correspond to each set has to 

be performed. 

 

This refinement ensures that each set has different patients, thereby eliminating any 

bias that might occur due to the leakage of data into the validation process. Strictly 

separating the data based on patients, sets the model to be trained and validated on 

distinct data samples, which improves its ability to generalize to new and unseen 

datasets. This approach enhances the robustness of the validation process and 

contributes to more reliable assessments of the model’s performance. 

3.3.10 Skull Stripping 

The skull stripping process, crucial for isolating brain tissue from other cranial 

structures, was another focal point for optimization. Given the original TIFF format of 

the MRI images, they were first converted to NIfTI format to utilize certain skull 

stripping algorithms designed specifically for this format. Despite this conversion, the 

process was largely unsuccessful. The conversion resulted in the loss of vital image 

details due to differences in how these formats handle data representation. The 

stripped images lacked critical information necessary for accurately identifying and 
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segmenting the lesions, which impeded the effectiveness of subsequent segmentation 

processes. 

 

These unsuccessful modifications highlight the challenges faced in optimizing deep 

learning models for medical image analysis. Each failed attempt provided valuable 

insights into the intricate balance required between data representation, model 

architecture, and learning process adjustments in developing effective diagnostic 

tools. 

3.4 Transfer Learning 

Transfer learning [26] is a widely used strategy in the context of deep learning, where 

a model trained for one particular task is reused to facilitate learning in a new but 

related task. This approach is useful in cases where a dataset for the new task can not 

cover the needs to support model training from zero, or if there isn't enough 

computing power. 

 

Transfer learning relies on the ability to transfer the internal representations from a 

model trained on a complete and diverse dataset, such as ImageNet, to a new model 

that aims to serve a similar challenge. These internal parameters include the weights, 

the biases, and the architectural features that have been optimized to detect generic 

patterns and features across a broad range of inputs. The concept of transfer learning 

is based on the idea of utilizing already pretrained models as a foundational starting 

point for a task-specific model training. 

  

These models have been trained on a huge amount of relevant information from large 

datasets and they are able to apply this knowledge to new and related tasks. 

Gior
go

s A
da

mide
s 



32 

 

Researchers can rapidly accelerate the learning process by using a pretrained model, 

since it only needs to adapt its learnt pattern slightly in order to conform with the 

specific requirements of this new assignment. 

 

Together with the other advantages, that transfer learning has to offer is the enhanced 

efficiency it brings to the training process. A model that relies on the transfer of 

knowledge typically requires a smaller number of epochs to achieve convergence, so 

it learns more quickly and does not use too much computing power. In areas where 

rapid deployment of accurate models is essential, such as medical diagnostics systems, 

this efficiency makes learning transfer a suitable option. 

3.4.1 Transfer Learning for Multiple Sclerosis 

In this case, transfer learning was implemented using pretrained models from the 

ImageNet dataset [27], which is mostly used for visual object recognition. The dataset 

consists of grayscale MRI images with a single colour channel, which does not 

respond to the input requirements of the commonly used pretrained networks that 

expect a three-channel RGB input. 

 

To align the MRI data with these requirements, the grayscale images were converted 

into three-channel images by replicating the single grayscale channel across the RGB 

channels. This conversion made it possible to utilize the complex feature-detecting 

capabilities of models pretrained on ImageNet, which include a variety of 

architectures trained to recognize thousands of object categories in images. 
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3.5 Framework 

A web application provides a simple and effective way for medical practitioners to 

improve diagnosis procedures, making it a necessary instrument in today's medical 

sector. In particular, the ease of use and speed of this procedure are the main benefits 

of an application that lets users provide MRI scans to receive predictions and the 

lesion outlines on the original images. Since this kind of platform is web-based and 

accessible through any typical web browser, it does not require specialist hardware or 

complicated software instalments. Regardless of geographical or technological 

constraints, the accessibility guarantees that medical practitioners may easily receive 

vital diagnostic information in a timely manner. Furthermore, the online application 

may be utilized easily on a variety of devices because to its’ interoperability across 

multiple operating systems. The direct feedback and visualization provided by the 

application also assist in instant and accurate medical decisions, enhancing patient 

outcomes and streamlining the workflow within medical facilities. 

3.6 Backend 

The web application's development and operating tasks are significantly simplified by 

the use of a RESTful API [29] implemented using with the Flask framework, 

particularly when interacting with artificial intelligence models for medical image 

analysis. Flask is a lightweight, but powerful Python web framework that is 

appropriate for creating RESTful APIs since it is flexible and simplistic. 

 

The Python-based Flask environment offers a uniform platform that makes it easier to 

integrate and manage the application's numerous components, especially the AI 

models and backend services. This is because the backend services and AI operations, 

such processing and analysing MRI images, are all done within the same Python 
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environment, this homogeneity removes the hassle of managing several programming 

languages or frameworks. In this way, developers have access to a set of tools and 

libraries across the entire backend, ranging from web services to AI processing. 

 

Using Flask makes the environment configuration easier since Python has efficient 

package management methods like pip and virtual environments. These tools 

guarantee that, across different development and production environments, all of the 

required libraries and dependencies are consistently updated and maintained. Libraries 

used for the Flask application, and libraries used for image processing or machine 

learning models, such as TensorFlow, can be handled under the same package 

ecosystem. Updates and cross checks for compatibility are simplified and potential 

dependency conflicts are minimized thanks to the uniformity in package management. 

 

The RESTful API design makes it possible for client-server interactions to be carried 

out with greater efficiency, because it uses standard HTTP methods like GET, POST, 

PUT, and DELETE to make resource manipulation simple.  The application's 

simplicity is especially helpful when handling complex data inputs and outputs, such 

as uploading MRI images and receiving the processed outputs plus the AI-generated 

predictions. The application is able to scale to meet the demands of a growing user 

base because of Flask's ability to handle several requests at once. This is relevant in a 

medical context where rapid processing of data is essential. 

The backend is able to distinguish between normal image inputs and the DICOM 

format, which needs a different processing to align with the specifications of the other 

image type files. This is automatically done at the controller level on the backend, so 

the process for the all the other components of the system is seamless. 
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3.7 Frontend 

The web application's frontend was developed using Angular, which is a modern 

framework that is well-known for its strong capabilities of creating dynamic and 

interactive user interfaces. Angular suits applications requiring complicated user 

interactions and real-time data updates, which are typical requirements in medical 

imaging applications. 

 

Given its component-based architecture, developers can create UI components that are 

highly reusable and maintainable. This is essential for medical web applications that 

require a variety of views and functionalities, such as demonstrating the  image 

analysis outcomes. By making it possible to create an interface that is both responsive 

and easy to use, Angular improves the overall user experience. Its' data-binding 

capability makes sure updated data are consistently added to the user interface 

components without necessitating a complete page reload, which is essential for 

applications where medical staff need to see real-time data. The framework's state 

management feature makes it easier for users to navigate between to different 

application sections without losing context, which contributes to smooth user 

experience. 

 

Angular integrates smoothly with RESTful APIs, facilitating effective communication 

between the frontend and the backend. This integration is essential for uploading MRI 

images and receiving the analysed data back from the server. Angular’s HttpClient 

module provides a powerful set of HTTP client tools that make it easy to perform 

HTTP requests and process responses. This is particularly useful for handling the 

upload of large image files and retrieving detailed results from the backend. 
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The application is designed to work seamlessly across different platforms and devices, 

ensuring that medical professionals can access the application from anywhere, 

whether in a hospital setting or remotely. The consistent behaviour across different 

browsers and devices enhances the usability and ensures that all users have the same 

high-quality experience regardless of their access point. 

3.8 Interoperability and Portability 

The interoperability and portability are achieved using Docker's [28] containerization 

technology, which ensures that an application will function consistently across every 

machine. Because of this uniformity, there is no longer the common problem where 

programs will function differently in development and production because of 

differences in operating systems, dependencies, or configurations. The frontend and 

backend subsystems are containerized using Docker, verifying that the system works 

as planned throughout the development, testing, and production phases. 
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Figure 3.14 Framework’s home screen 
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Figure 3.15 Displaying a prediction using the framework Gior
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Figure 3.16 Output is the processed image, the mask prediction and last the overlay between the original MRI image and the prediction in red color 
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Figure 3.17 Multiple Sclerosis Segmentation Framework architecture diagramGior
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Chapter 4  

Results 

4.1 Data Normalization 

Having now the data available in a normalized form, enables them to be used for 

training, as it was done. The number of epochs which was set to 100, because that was 

the point when the stabilization of progress for the validation set was observed. 

 

Figure 4.1 Dice Similarity Coefficient Metric Over Seasons with Data Normalization 

 

It is observed that significant progress in prediction occurred after 60 epochs, and 

began to stabilize at 90 epochs. The highest value achieved during the training period, 

in the validation set, was a Dice Similarity Coefficient of only 0.11. 

4.2 Batch Normalization 
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Figure 4.2 Dice Similarity Coefficient Metric over epochs after adding Batch Normalization 

Layers 

 

Again, it is observed that significant progress in prediction occurred after 60 epochs 

and began to stabilize at 90 seasons, similar to the previous training effort. However, 

the key difference is that in this particular attempt, there was a significant 

improvement in prediction effectiveness, especially considering that the data and 

parameters remained unchanged and only the addition of these layers led to achieving 

a Dice Similarity Coefficient of 0.20, almost a double of increase in comparison to the 

previous attempt. 

 

Figure 4.3 Comparison of Dice Similarity Coefficient metric after the addition of Batch 

Normalization Layers 
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4.3  Data Augmentation 

As seen from the graphical representation, the use of the Data Augmentation 

technique helped the prediction model in adjusting the training parameters, so as to 

achieve a Dice Similarity Coefficient of 0.35 for the validation set of results, a result 

clearly greater than the 0.20 which was achieved without the use of the Data 

Augmentation technique. 

 

It is also worth noting that the prediction model began to show significant progress as 

early as 7 seasons, as opposed to the 65 seasons previously needed to begin progress. 

 

Figure 4.4 Dice Similarity Coefficient in comparison after adding Data Augmentation 
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4.4 Learning Rate 

 

Figure 4.5 Dice Similarity Coefficient metric per Epoch with Learning Rates 1e-6 and 1e-5. 

 

The prediction images from the model with a learning rate of 1e-5 were again as 

expected, including only black and white pixels and no intermediate value. From the 

training results, it is concluded that increasing the learning rate helped in detecting 

new features important for the automatic detection of areas of interest, raising the Dice 

Similarity Coefficient from 0.39 to 0.47. Furthermore, it is observed that the progress 

in the model's effectiveness is evident from the first season and stabilizes by the 20th 

season. Therefore, there was an opportunity for subsequent executions to run for only 

20 seasons, thus having a significant impact on the time it took to create the prediction 

model and, consequently, on the number of tests that could be fulfilled within a 

specific timeframe. 
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4.5 Resolution 

 

Figure 4.6 Dice Similarity Coefficient Metric per Season Retaining Original Clarity 

 

The final value of the Dice Similarity Coefficient, using the original resolution of the 

images, for the validation set skyrocketed to 0.58, a fact that was also verified through 

the test set with a Dice Similarity Coefficient of 0.60. 

4.6 Augmentation randomization and Validation readjustment 

While some of the previously mentioned experiments did not enhance the model 

performance on their own or at all, the cumulative application of some of them proved 

beneficial to a noticeable improvement in the overall performance. Specifically, the 

stacking of some of these effective strategies, and more specifically the data 

augmentation randomization and the validation set readjustment, resulted in an 

increase in the Dice Similarity Coefficient, demonstrating the value of integrating 

multiple successful techniques in the model's development. 
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Models Dice Similarity Coefficient 

U-Net 0.69 

TransUNet 0.61 

Attention U-Net 0.65 

ResUNet-a 0.62 

U-Net++ 0.65 

Table 3 Results comparison between the different architectures 

4.7 Transfer Learning 

Adopting the pretrained weights, the model did not have to learn all features from 

scratch. Instead, it inherited the patterns these networks had already learned, such as 

edges, textures, and gradients to the specific task of identifying lesions in brain MRI 

scans. The primary advantage that it was observed, it was not the improvement in final 

accuracy, compared to models initialized with random weights, but a significant 

acceleration in the convergence rate of the training process. 

Models 

Random Initialization Transfer Learning 

DSC Epochs DSC Epochs 

U-Net 0.69 50 0.68 10 

TransUNet 0.61 50 0.59 10 

Attention U-Net 0.65 50 0.62 10 

ResUNet-a 0.62 50 0.56 10 

U-Net++ 0.65 50 0.61 10 

Table 4 Comparison between transfer learning and random initialization 
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Chapter 5  

Discussion 

5.1 Discussion 

After analysing the steps taken to solve the problem and explaining their 

effectiveness, the results are now ready to be directly compared with other results 

from similar research within the same thematic unit. One such study is that of Andreas 

Georgiou [21], which also aimed at identifying areas indicating the presence of 

Multiple Sclerosis. The similarities between the methodology of this work and the 

aforementioned study focus on the architecture of the Convolutional Neural Network, 

with both approaches using the U-Net architecture and employing the Dice Similarity 

Coefficient as the evaluation metric. 

 

Despite these similarities, the two approaches show significant differences. The first 

and major difference is the data on which they relied. The current research had data 

available from the Electronic Health Laboratory of the University of Cyprus, 

consisting of 38 patients, each at two time points, with T2 type magnetic resonance 

images, totalling 1838 available images with their corresponding masks. The 

comparative approach used part of the ISBI Dataset, utilizing only FLAIR type 

magnetic resonance images, 5 patients, at 4 different time points, having a total of 

3822 available images with their corresponding masks, more than double the data. 
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Another significant differentiation between the two approaches was the preprocessing 

applied to the data. Initially, in the current approach, the images were resized to 

512x512, while in the comparative approach, they were resized to 256x256. Before 

being input into the algorithm, as previously described, they were only normalized. In 

the comparative approach, they underwent significant preprocessing, including image 

smoothing, skull stripping, and meninges removal. 

 

With this information in mind, the current approach, with just half the number of 

available data, managed to achieve a DSC of 0.69, while the researcher of the 

comparative work managed to achieve exact the same DSC of 0.69. Moreover, in the 

comparative work, a system for manual correction of predictions was implemented, 

allowing the prediction model's function to be adjusted according to the accuracy of 

its predictions. With this method, the DSC showed a significant difference, reaching 

0.82, with the author noting, "This large difference was expected, as the system we 

propose has the advantage of knowing some aspects of the morphological 

arrangement of the brain in patients, where the user of the system applied manual 

error corrections during previous visits. Thus, it has an awareness of the morphology 

of the cerebral structure of patients who have been previously evaluated by the 

system." 

 

This comparison highlights not only the effectiveness of the methods used but also the 

potential benefits of incorporating manual adjustments to enhance model accuracy, 

especially in complex medical imaging tasks where understanding the specific 

patient's morphology can significantly impact the accuracy of predictions. 
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Based on the literature, variations of 2D U-Net have been used by multiple researchers 

for Multiple Sclerosis segmentation. Sarica et al. [35] achieved a DSC of 0.67 with a 

2D dense residual U-Net on 3D PDw, T1w, T2w, and FLAIR images, which is 

slightly lower than the DSC in the frame of this thesis, however their method 

demonstrated better performance compared to other state-of-the-art methods. The 

dense residual connections likely helped mitigate the vanishing/exploding gradient 

problem [34], which happens when the data propagated through the network pass 

through several layers causing the gradients to become extremely small or extremely 

big and thus the model becomes non-functional, enhancing feature propagation and 

learning.  

 

On the other hand, Alijamaat et al. [36] used a 2D U-Net based on wavelet pooling on 

3D T1w, FLAIR, and 2D PDw images and achieved a DSC of 0.82, a significant 

increase in performance compared to the previous mentioned studies, emphasizing the 

effectiveness of wavelet pooling, which assists by providing better multi-resolution 

analysis and feature extraction. Additionally, a study performed by Rondinella et al. 

[37] reported a DSC of 0.84 using a 2D U-Net with a C-LSTM unit and attention 

mechanism on 3D FLAIR images. The methodology followed, includes the use of C-

LSTM units and attention mechanisms, which likely contributed to more effective 

feature learning and integration, particularly for temporal or sequential data as the 

dataset used, consists of 4 to 5 timepoints for each of the 5 patients. The higher DSC 

can be attributed either to the lower variability due to the low number of patients or to 

the addition of C-LSTM units and attention mechanisms, which increase the 

capabilities of the model and may be beneficial for lesion segmentation. 
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Apart from the 2D U-Net variations, various studies followed the 3D U-Net 

implementation, which accepts the brain of the patients in a 3D format and process it 

as a whole, instead of slicing the brain as the 2D approach. Gamal et al. [38] 

employed a 3D U-Net with a GAU unit on 2D T1w, T2w, and 3D FLAIR images, 

achieving a DSC of 0.72 equal to the results of Krishnan et al. [39] who used a 3D 

Multi-arm U-Net on 3D T1w and 2D T2w, FLAIR images. The inclusion of the GAU 

unit and the multi-arm architecture, provided a more sophisticated feature extraction 

and simultaneous multi-scale processing capabilities resulting in slightly higher DSC, 

indicating the benefits of integrating such advanced approaches into the U-Net 

architecture. Using two 3D U-Net for brain extraction and lesion segmentation, De 

Oliveira et al. [40] achieved a DSC of 0.89, which has a significantly higher model 

performance compared to all the previous methods mentioned, on 3D T1w and FLAIR 

images. This represents an indication of the advantages of the dual-network approach, 

allowing for more precise segmentation through sequential processing stages. 

 

U-Net variants include models such as the triplanar 2D U-Net  and nnU-Net. Hitziger 

et al. [41] used a triplanar 2D U-Net, and Barasan et al. [42] utilized the nnU-Net both 

on 3D FLAIR images, reporting a DSC of 0.44 and 0.51 respectively. The triplanar 

approach might not be able to fully utilize the 3D context as well as a unified 3D 

network. The low DSCs might indicate that the 2D U-Net approach produced better 

segmentation results in this context, perhaps because of its more simplistic 

architecture, which was better suited for the particular dataset and task at hand. 
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Chapter 6  

Conclusion 
 

5.1 Conclusion 

As previously mentioned, the highest result for the Dice Similarity Coefficient metric, 

after the application of all the mentioned techniques, was 0.60. On a general level, this 

appears to be a mediocre rate of effectiveness. 

 

However, considering that the masks for the MRI images for detecting Multiple 

Sclerosis consist of over 99% black pixels, which indicate that these specific areas are 

not of interest, and taking into account that the Dice Similarity Coefficient does not 

account for the areas that both the physician and the prediction model identified as 

negative (True Negative), the importance of this specific metric becomes clear. 

 

In other words, it is evident that there needs to be great coherence between the real 

areas of interest and those identified by the prediction model to even display a 

relatively satisfactory overlap rate, since these specific areas constitute less than 1% of 

the entire image [19]. 

 

It is necessary to emphasize that the truth masks, which were created by the physician, 

contain points from which the outline of the areas of interest is formed. Therefore, 

these masks should not be considered flawless and may show a slight deviation from 

reality, so a small margin of error must always be considered. 
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Figure 6.6.1 Example of Comparison Between Physician's Mask and Prediction Model 

 

 
Figure 6.6.2 Example of Comparison Between Physician's Mask and Prediction Model with 

Overlay 

 

In this particular case, it is observed that the prediction model is more effective than 

the truth mask, since to create this, the points were joined with straight lines. 

Therefore, the final shape of the area is a polygon and not perfectly identical to the 

area it represents. 

 

The metrics arise after comparing the mask created by the physician with that created 

by the trained prediction model. A simplistic method of comparison is to compare the 

individual pixels and distribute them accordingly. 
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 Pixel Count Percentage 

True Positive 575 0.22% 

True Negative 261155 99.62% 

False Positive 46 0.02% 

False Negative 368 0.14% 

Dice Similarity Coefficient 0.74 

Table 5 Ground Truth and Prediction metrics 

 

At this point, it is appropriate to also present a table that displays the progress for the 

training set, the validation set, and the test set to reveal the contribution of each 

technique. 

 Training Set Validation Set Test Set 

Normalization 0.15 0.11 0.07 

Batch Normalization 0.31 0.20 0.17 

Data Augmentation 0.50 0.35 0.33 

Learning Rate 0.57 0.42 0.43 

Resolution 0.71 0.59 0.60 

Different 

Experiments 
0.79 0.70 0.69 

Table 6 Dice Similarity Coefficient metric per set and technique 

 

Gior
go

s A
da

mide
s 



54 

 

5.2 Future Work 

In a potential future study, it could be investigated how further modifications, both to 

the data and the algorithm, might contribute to improving the results and reducing the 

computational resources required for such a process. Also, as it regards the 

framework, it would be very beneficial both for the system and the medical 

professionals using it, to be able to manually correct the predictions through the User 

Interface and apply continuous training to the model, so it demonstrates progressive 

improvement with each interaction. 
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