Show simple item record

dc.contributor.authorAbdelrahman, M. A.en
dc.contributor.authorNaidu, D. S.en
dc.contributor.authorCharalambous, Charalambos D.en
dc.contributor.authorMoore, K. L.en
dc.creatorAbdelrahman, M. A.en
dc.creatorNaidu, D. S.en
dc.creatorCharalambous, Charalambos D.en
dc.creatorMoore, K. L.en
dc.description.abstractIn this paper we consider the problem of finite-time H∞-optimal control of linear, singularly perturbed, discrete-time systems. The problem is addressed from the game theoretic approach. This leads to a singularly perturbed, matrix Riccati difference equation, the solution of which is given in terms of an outer series solution, and a boundary-layer correction series solution. We show that the disturbance attenuation level achieved by the singular perturbation method, compared to the full-order solution, depends on the order of approximation. The theory is illustrated by considering two examples. © 1998 John Wiley & Sons, Ltd.en
dc.sourceOptimal Control Applications and Methodsen
dc.subjectGame theoryen
dc.subjectApproximation theoryen
dc.subjectDifference equationsen
dc.subjectDiscrete time control systemsen
dc.subjectDisturbance attenuationen
dc.subjectFinite time disturbance attenuationen
dc.subjectH∞ optimal controlen
dc.subjectLinear control systemsen
dc.subjectMatrix riccati difference equationen
dc.subjectNuclear reactoren
dc.subjectNuclear reactorsen
dc.subjectOptimal control systemsen
dc.subjectPerturbation techniquesen
dc.subjectRiccati equationsen
dc.subjectSingularly perturbed discrete-time systemsen
dc.titleFinite-time disturbance attenuation control problem for singularly perturbed discrete-time systemsen
dc.description.endingpage145Πολυτεχνική Σχολή / Faculty of EngineeringΤμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών / Department of Electrical and Computer Engineering
dc.source.abbreviationOptim.Control Appl.Methodsen
dc.contributor.orcidCharalambous, Charalambos D. [0000-0002-2168-0231]

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record