Show simple item record

dc.contributor.authorRu, Y.en
dc.contributor.authorHadjicostis, Christoforos N.en
dc.creatorRu, Y.en
dc.creatorHadjicostis, Christoforos N.en
dc.date.accessioned2019-04-08T07:48:12Z
dc.date.available2019-04-08T07:48:12Z
dc.date.issued2009
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/44814
dc.description.abstractIn this paper, we study fault diagnosis in discrete event systems modeled by partially observed Petri nets, i.e., Petri nets equipped with sensors that allow observation of the number of tokens in some of the places and/or partial observation of the firing of some of the transitions. We assume that the Petri net model is accompanied by a (possibly implicit) description of the likelihood of each firing sequence. Faults are modeled as unobservable transitions and are divided into different types. Given an ordered sequence of observations from place and transition sensors, our goal is to calculate the belief (namely, the degree of confidence) regarding the occurrence of faults belonging to each type. To handle information from transition and place sensors in a unified manner, we transform a given partially observed Petri net into an equivalent (as far as state estimation and fault diagnosis is concerned) labeled Petri net (i.e., a Petri net with only transition sensors), and construct a translator that translates the sensing information from place and transition sensors into a sequence of labels in the equivalent labeled Petri net. Once this transformation is established, we focus on the computation of beliefs on faults in a given labeled Petri net and construct an online monitor that recursively produces these beliefs by tracking the existence of faulty transitions in execution paths that match the sequence of labels observed so far. Using the transformed labeled Petri net and the translated observation sequence, we can then compute the belief for each fault type in partially observed Petri nets in the same way as in labeled Petri nets. © 2009 Springer Science+Business Media, LLC.en
dc.sourceDiscrete Event Dynamic Systems: Theory and Applicationsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-70350229994&doi=10.1007%2fs10626-009-0074-7&partnerID=40&md5=708f13b02e23b169e85bfc4ac0fc4859
dc.subjectDiscrete event systemsen
dc.subjectFailure analysisen
dc.subjectSensorsen
dc.subjectPetri netsen
dc.subjectGraph theoryen
dc.subjectUnobservableen
dc.subjectPetri net modelsen
dc.subjectFault diagnosisen
dc.subjectFiring sequencesen
dc.subjectLabelsen
dc.subjectPartial observationen
dc.subjectDegree of confidenceen
dc.subjectExecution pathsen
dc.subjectFault typesen
dc.subjectOn-line monitorsen
dc.subjectSensing informationen
dc.titleFault diagnosis in discrete event systems modeled by partially observed petri netsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/s10626-009-0074-7
dc.description.volume19
dc.description.issue4
dc.description.startingpage551
dc.description.endingpage575
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών / Department of Electrical and Computer Engineering
dc.type.uhtypeArticleen
dc.source.abbreviationDiscrete Event Dyn Syst Theory Applen
dc.contributor.orcidHadjicostis, Christoforos N. [0000-0002-1706-708X]
dc.gnosis.orcid0000-0002-1706-708X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record