Show simple item record

dc.contributor.authorMavronicola, E. A.en
dc.contributor.authorPolycarpou, Panayiotis C.en
dc.contributor.authorKomodromos, Petros I.en
dc.creatorMavronicola, E. A.en
dc.creatorPolycarpou, Panayiotis C.en
dc.creatorKomodromos, Petros I.en
dc.date.accessioned2019-04-18T06:19:27Z
dc.date.available2019-04-18T06:19:27Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/45699
dc.description.abstractSummary Structural impact between adjacent buildings may induce local and, in some extreme cases, severe damage, especially in the case of seismically isolated buildings. This study parametrically investigates in the three-dimensional domain the effect of pounding on the peak response of base-isolated buildings, which are simulated as nonlinear three-dimensional multi-degree-of-freedom systems. Firstly, it is shown that considering unidirectional, instead of bidirectional, excitations may lead to underestimation of the base drift demands. Subsequently, the peak responses of seismically isolated buildings utilizing lead rubber bearings are studied while varying important parameters, such as the incidence angle of seismic excitations, the available seismic clearance, and mass eccentricities, under the action of bidirectional horizontal excitations. A large number of numerical simulations are performed using a specially developed software that implements an efficient approach to model impacts, taking into account arbitrary locations of contact points. It is found that the peak interstory drift ratio is significantly influenced by the directionality of the ground motion. Therefore, the seismic performance of structures should ideally be assessed examining the peak structural response while bidirectional ground motions are imposed at various incident angles. Furthermore, it is also observed that the interstory drift ratios increase while decreasing the available gap size, up to a certain value. Finally, the parametric analyses indicate that the effects of impact are more severe for structures with mass eccentricities, and in which case, the estimation of the critical incidence angle becomes more laborious. Copyright &copyen
dc.description.abstract2016 John Wiley & Sons, Ltd.en
dc.language.isoengen
dc.sourceEarthquake Engineering & Structural Dynamicsen
dc.source.urihttps://search.proquest.com/docview/1899037469?accountid=17200
dc.subjectEccentricityen
dc.subjectEngineering–Civil Engineeringen
dc.subjectIncidence angleen
dc.titleSpatial seismic modeling of base-isolated buildings pounding against moat walls: effects of ground motion directionality and mass eccentricityen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doihttp://dx.doi.org/10.1002/eqe.2850
dc.description.volume46
dc.description.issue7
dc.description.startingpage1161
dc.description.endingpage1179
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος / Department of Civil and Environmental Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidKomodromos, Petros I. [0000-0001-6803-5013]
dc.gnosis.orcid0000-0001-6803-5013


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record