Stochastic linear programs with restricted recourse
Date
1997Source
European Journal of Operational ResearchVolume
101Pages
177-192Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
Stochastic programs with recourse provide an effective modeling paradigm for sequential decision problems with uncertain or noisy data, when uncertainty can be modeled by a discrete set of scenarios. In two-stage problems the decision variables are partitioned into two groups: a set of structural, first-stage decisions, and a set of second-stage, recourse decisions. The structural decisions are scenario-invariant, but the recourse decisions are scenario-dependent and can vary substantially across scenarios. In several applications it is important to restrict the variability of recourse decisions across scenarios, or to investigate the tradeoffs between the stability of recourse decisions and expected cost of a solution. We present formulations of stochastic programs with restricted recourse that trade off recourse stability with expected cost. The models generate a sequence of solutions to which recourse robustness is progressively enforced via parameterized, satisficing constraints. We investigate the behavior of the models on several test cases, and examine the performance of solution procedures based on the primal-dual interior point method. © 1997 Elsevier Science B.V.