A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth
Date
2017Source
PLoS Computational BiologyVolume
13Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature. © 2017 Vavourakis et al.
Collections
Cite as
Related items
Showing items related by title, author, creator and subject.
-
Article
Energy-based model reduction methodology for automated modeling
Louca, Loucas S.; Stein, J. L.; Hulbert, G. M. (2010)In recent years, algorithms have been developed to help automate the production of dynamic system models. Part of this effort has been the development of algorithms that use modeling metrics for generating minimum complexity ...
-
Article
A review of proper modeling techniques
Ersal, T.; Fathy, H. K.; Rideout, D. G.; Louca, Loucas S.; Stein, J. L. (2008)A dynamic system model is proper for a particular application if it achieves the accuracy required by the application with minimal complexity. Because model complexity often-but not always-correlates inversely with simulation ...
-
Conference Object
A model accuracy and validation algorithm
Sendur, P.; Stein, J. L.; Peng, H.; Louca, Loucas S. (American Society of Mechanical Engineers (ASME), 2002)Dynamic models of physical systems with physically meaningful states and parameters have become increasingly important, for design, control and even procurement decisions. The successful use of models in these contexts ...