Show simple item record

dc.contributor.authorKirmizis, Antonisen
dc.contributor.authorSantos-Rosa, H.en
dc.contributor.authorPenkett, C. J.en
dc.contributor.authorSinger, M. A.en
dc.contributor.authorVermeulen, M.en
dc.contributor.authorMann, M.en
dc.contributor.authorBähler, J.en
dc.contributor.authorGreen, R. D.en
dc.contributor.authorKouzarides, T.en
dc.creatorKirmizis, Antonisen
dc.creatorSantos-Rosa, H.en
dc.creatorPenkett, C. J.en
dc.creatorSinger, M. A.en
dc.creatorVermeulen, M.en
dc.creatorMann, M.en
dc.creatorBähler, J.en
dc.creatorGreen, R. D.en
dc.creatorKouzarides, T.en
dc.date.accessioned2019-11-04T12:51:50Z
dc.date.available2019-11-04T12:51:50Z
dc.date.issued2007
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/53175
dc.description.abstractModifications on histones control important biological processes through their effects on chromatin structure. Methylation at lysine 4 on histone H3 (H3K4) is found at the 5′ end of active genes and contributes to transcriptional activation by recruiting chromatin-remodelling enzymes. An adjacent arginine residue (H3R2) is also known to be asymmetrically dimethylated (H3R2me2a) in mammalian cells, but its location within genes and its function in transcription are unknown. Here we show that H3R2 is also methylated in budding yeast (Saccharomyces cerevisiae), and by using an antibody specific for H3R2me2a in a chromatin immunoprecipitation-on-chip analysis we determine the distribution of this modification on the entire yeast genome. We find that H3R2me2a is enriched throughout all heterochromatic loci and inactive euchromatic genes and is present at the 3′ end of moderately transcribed genes. In all cases the pattern of H3R2 methylation is mutually exclusive with the trimethyl form of H3K4 (H3K4me3). We show that methylation at H3R2 abrogates the trimethylation of H3K4 by the Set1 methyltransferase. The specific effect on H3K4me3 results from the occlusion of Spp1, a Set1 methyltransferase subunit necessary for trimethylation. Thus, the inability of Spp1 to recognize H3 methylated at R2 prevents Set1 from trimethylating H3K4. These results provide the first mechanistic insight into the function of arginine methylation on chromatin. ©2007 Nature Publishing Group.en
dc.sourceNatureen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-35348986412&doi=10.1038%2fnature06160&partnerID=40&md5=3579ec9b1c55bd26b19e358d0220d654
dc.subjectarticleen
dc.subjectpriority journalen
dc.subjectunclassified drugen
dc.subjectnonhumanen
dc.subjectenzymeen
dc.subjectproteinen
dc.subjectgene expressionen
dc.subjectgenetic transcriptionen
dc.subjectDNAen
dc.subjectgene locationen
dc.subjectprotein functionen
dc.subjectarginineen
dc.subjectamino aciden
dc.subjectmethyltransferaseen
dc.subjectimmunoprecipitationen
dc.subjectMammaliaen
dc.subjectSaccharomyces cerevisiaeen
dc.subjectmammalen
dc.subjectDNA modificationen
dc.subjectchromatin structureen
dc.subjecthistone H3en
dc.subjectlysineen
dc.subjectmethylationen
dc.subjectfungus antibodyen
dc.subjectgene activationen
dc.subjectheterochromatinen
dc.subjectlipid storageen
dc.subjectlysine 4en
dc.subjectprotein modificationen
dc.subjectprotein subuniten
dc.subjectSaccharomycetalesen
dc.titleArginine methylation at histone H3R2 controls deposition of H3K4 trimethylationen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/nature06160
dc.description.volume449
dc.description.startingpage928
dc.description.endingpage932
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Βιολογικών Επιστημών / Department of Biological Sciences
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :204</p>en
dc.source.abbreviationNatureen
dc.contributor.orcidKirmizis, Antonis [0000-0002-3748-8711]
dc.gnosis.orcid0000-0002-3748-8711


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record