Show simple item record

dc.contributor.authorDimopoulos, Yannisen
dc.contributor.authorKakas, Antonis C.en
dc.contributor.editorLavrac̃, Nadaen
dc.contributor.editorWrobel S.en
dc.creatorDimopoulos, Yannisen
dc.creatorKakas, Antonis C.en
dc.date.accessioned2019-11-13T10:39:54Z
dc.date.available2019-11-13T10:39:54Z
dc.date.issued1995
dc.identifier.issn0302-9743
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/53861
dc.description.abstractIn this paper we present a framework for learning non-monotonic logic programs. The method is parametric on a classical learning algorithm whose generated rules are to be understood as default rules. This means that these rules must be tolerant to the negative information by allowing for the possibility of exceptions. The same classical algorithm is then used to learn recursively these exceptions. We prove that the non-monotonic learning algorithm that realizes these ideas converges asymptotically to the concept to be learned. We also discuss various general issues concerning the problem of learning nonmonotonic theories in the proposed framework. © Springer-Verlag Berlin Heidelberg 1995.en
dc.source8th European Conference on Machine Learning, ECML 1995en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84948980648&partnerID=40&md5=feb8dc11b3380d60c938119b9377cc01
dc.subjectAlgorithmsen
dc.subjectLearning algorithmsen
dc.subjectArtificial intelligenceen
dc.subjectLogic programmingen
dc.subjectLearning systemsen
dc.subjectFormal logicen
dc.subjectDefault ruleen
dc.subjectMonotonic learningen
dc.subjectNegative informationen
dc.subjectNonmonotonicen
dc.subjectNonmonotonic logicen
dc.titleLearning non-monotonic logic programs: Learning exceptionsen
dc.typeinfo:eu-repo/semantics/article
dc.description.volume912
dc.description.startingpage122
dc.description.endingpage137
dc.author.faculty002 Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Πληροφορικής / Department of Computer Science
dc.type.uhtypeArticleen
dc.description.notes<p>Sponsors: Commission of the European Unionen
dc.description.notesESPRIT European Network of Excellence in Machine Learningen
dc.description.notesFoundation for Research and Technology - Hellas (FORTH), Heraclionen
dc.description.notesGMD, Sankt Augustinen
dc.description.notesJ. Stefan Institute, Ljubljanaen
dc.description.notesMLneten
dc.description.notesConference code: 147189en
dc.description.notesCited By :25</p>en
dc.source.abbreviationLect. Notes Comput. Sci.en
dc.contributor.orcidDimopoulos, Yannis [0000-0001-9583-9754]
dc.contributor.orcidKakas, Antonis C. [0000-0001-6773-3944]
dc.gnosis.orcid0000-0001-9583-9754
dc.gnosis.orcid0000-0001-6773-3944


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record