dc.contributor.author | Kountouris, P. | en |
dc.contributor.author | Agathocleous, Michalis | en |
dc.contributor.author | Promponas, Vasilis J. | en |
dc.contributor.author | Christodoulou, Georgia | en |
dc.contributor.author | Hadjicostas, S. | en |
dc.contributor.author | Vassiliades, Vassilis | en |
dc.contributor.author | Christodoulou, Chris C. | en |
dc.creator | Kountouris, P. | en |
dc.creator | Agathocleous, Michalis | en |
dc.creator | Promponas, Vasilis J. | en |
dc.creator | Christodoulou, Georgia | en |
dc.creator | Hadjicostas, S. | en |
dc.creator | Vassiliades, Vassilis | en |
dc.creator | Christodoulou, Chris C. | en |
dc.date.accessioned | 2019-11-13T10:40:47Z | |
dc.date.available | 2019-11-13T10:40:47Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1545-5963 | |
dc.identifier.uri | http://gnosis.library.ucy.ac.cy/handle/7/54295 | |
dc.description.abstract | Filtering of Protein Secondary Structure Prediction (PSSP) aims to provide physicochemically realistic results, while it usually improves the predictive performance. We performed a comparative study on this challenging problem, utilizing both machine learning techniques and empirical rules and we found that combinations of the two lead to the highest improvement. © 2006 IEEE. | en |
dc.source | IEEE/ACM Transactions on Computational Biology and Bioinformatics | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859176544&doi=10.1109%2fTCBB.2012.22&partnerID=40&md5=d955a21ddfc96aeab55e63e5cc36b9a2 | |
dc.subject | article | en |
dc.subject | human | en |
dc.subject | Humans | en |
dc.subject | protein | en |
dc.subject | comparative study | en |
dc.subject | Animals | en |
dc.subject | animal | en |
dc.subject | chemistry | en |
dc.subject | artificial intelligence | en |
dc.subject | Filtration | en |
dc.subject | Recurrent neural networks | en |
dc.subject | protein secondary structure | en |
dc.subject | Bioinformatics | en |
dc.subject | Proteins | en |
dc.subject | protein database | en |
dc.subject | Protein Structure, Secondary | en |
dc.subject | machine learning | en |
dc.subject | Comparative studies | en |
dc.subject | Learning systems | en |
dc.subject | Databases, Protein | en |
dc.subject | Bidirectional recurrent neural networks | en |
dc.subject | Protein secondary structure prediction | en |
dc.subject | Machine learning techniques | en |
dc.subject | bidirectional recurrent neural networks. | en |
dc.subject | filtering | en |
dc.subject | Machine-learning | en |
dc.subject | Predictive performance | en |
dc.subject | structural bioinformatics | en |
dc.title | A comparative study on filtering protein secondary structure prediction | en |
dc.type | info:eu-repo/semantics/article | |
dc.identifier.doi | 10.1109/TCBB.2012.22 | |
dc.description.volume | 9 | |
dc.description.issue | 3 | |
dc.description.startingpage | 731 | |
dc.description.endingpage | 739 | |
dc.author.faculty | 002 Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences | |
dc.author.department | Τμήμα Πληροφορικής / Department of Computer Science | |
dc.type.uhtype | Article | en |
dc.description.notes | <p>Cited By :7</p> | en |
dc.source.abbreviation | IEEE/ACM Trans.Comput.BioL.Bioinf. | en |
dc.contributor.orcid | Promponas, Vasilis J. [0000-0003-3352-4831] | |
dc.contributor.orcid | Christodoulou, Chris C. [0000-0001-9398-5256] | |
dc.gnosis.orcid | 0000-0003-3352-4831 | |
dc.gnosis.orcid | 0000-0001-9398-5256 | |