Show simple item record

dc.contributor.authorAlexandrou, Andreas N.en
dc.contributor.authorFlorides, G. C.en
dc.contributor.authorGeorgiou, Georgios C.en
dc.creatorAlexandrou, Andreas N.en
dc.creatorFlorides, G. C.en
dc.creatorGeorgiou, Georgios C.en
dc.date.accessioned2019-12-02T10:33:27Z
dc.date.available2019-12-02T10:33:27Z
dc.date.issued2013
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/56380
dc.description.abstractA standard method used to determine material properties of semi-solid slurries is the squeeze flow experimenten
dc.description.abstracta fixed amount of material is squeezed under constant force or velocity and the relation between the force and the displacement of the sample provides information about the rheology of the slurry. The objective of this work is to contribute to the further development of the squeeze flow methodology in order to accurately determine material properties. This is achieved by a model that accounts for the finite yield stress and the thixotropy of the slurry. More specifically a structural viscoplastic model based on the Bingham plastic constitutive equation is proposed. The yield stress is assumed to vary linearly with the structural parameter which follows a first-order rate equation accounting for the material structure break-down and build-up. Numerical experiments of squeeze flow under either constant load or constant velocity are presented and discussed. Comparisons with their non-thixotropic counterparts are made in the case of compression under constant load. The development of the yielded/unyielded regions in relation to material structural changes is analyzed. The numerical results show that initially thixotropy does not affect the flow. However, once the structure is destroyed, the unyielded regions grow slower than the non-thixotropic case allowing for longer compression of the sample. Under constant force the structure may be destroyed at the early stages of the compression but at a later time it re-builds steadily till the cessation of the flow experiment. Under constant velocity, however, the structure is destroyed steadily. Depending then on the case, the final internal structure of the squeezed material can vary significantly. This is an important issue that needs to be taken into consideration in the evaluation of the material parameters. © 2012 Elsevier B.V.en
dc.sourceJournal of Non-Newtonian Fluid Mechanicsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84872956161&doi=10.1016%2fj.jnnfm.2012.09.007&partnerID=40&md5=d02e20514deaf48b376711e85aa0b913
dc.subjectColloidsen
dc.subjectSlurriesen
dc.subjectStructural parameteren
dc.subjectThixotropyen
dc.subjectComputational rheologyen
dc.subjectFinite elementsen
dc.subjectSqueeze flowen
dc.subjectBingham modelen
dc.subjectExperimentsen
dc.subjectFinite Elementen
dc.titleSqueeze flow of semi-solid slurriesen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.jnnfm.2012.09.007
dc.description.volume193
dc.description.startingpage103
dc.description.endingpage115
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Μαθηματικών και Στατιστικής / Department of Mathematics and Statistics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :13</p>en
dc.source.abbreviationJ.Non-Newton.Fluid Mech.en
dc.contributor.orcidGeorgiou, Georgios C. [0000-0002-7451-224X]
dc.gnosis.orcid0000-0002-7451-224X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record