Show simple item record

dc.contributor.authorAlzer, H.en
dc.contributor.authorBerg, C.en
dc.contributor.authorKoumandos, S.en
dc.creatorAlzer, H.en
dc.creatorBerg, C.en
dc.creatorKoumandos, S.en
dc.date.accessioned2019-12-02T10:33:31Z
dc.date.available2019-12-02T10:33:31Z
dc.date.issued2005
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/56400
dc.description.abstractLet Φm (x) = -xmψ(m) (x), where ψ denotes the logarithmic derivative of Euler's gamma function. Clark and Ismail prove in a recently published article that if m ∈ {1,2,..., 16}, then Φm(m) is completely monotonic on (0, ∞), and they conjecture that this is true for all natural numbers m. We disprove this conjecture by showing that there exists an integer m0 such that for all m ≥ m0 the function Φm(m) is not completely monotonic on (0, ∞). © 2005 Elsevier Inc. All rights reserved.en
dc.sourceJournal of Approximation Theoryen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-17844382197&doi=10.1016%2fj.jat.2004.02.008&partnerID=40&md5=575bdd60fb015647f80426c66b709dde
dc.subjectCompletely and absolutely monotonic functionsen
dc.subjectInequalitiesen
dc.subjectInfinite seriesen
dc.subjectPolygamma functionsen
dc.titleOn a conjecture of Clark and Ismailen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.jat.2004.02.008
dc.description.volume134
dc.description.issue1
dc.description.startingpage102
dc.description.endingpage113
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Μαθηματικών και Στατιστικής / Department of Mathematics and Statistics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :5</p>en
dc.source.abbreviationJ.Approx.Theoryen
dc.contributor.orcidKoumandos, S. [0000-0002-3399-7471]


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record