Nonparametric regression estimation based on spatially inhomogeneous data: Minimax global convergence rates and adaptivity
Date
2014ISSN
1292-8100Source
ESAIM - Probability and StatisticsVolume
18Pages
1-41Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
We consider the nonparametric regression estimation problem of recovering an unknown response function f on the basis of spatially inhomogeneous data when the design points follow a known density g with a finite number of well-separated zeros. In particular, we consider two different cases: when g has zeros of a polynomial order and when g has zeros of an exponential order. These two cases correspond to moderate and severe data losses, respectively. We obtain asymptotic (as the sample size increases) minimax lower bounds for the L2-risk when f is assumed to belong to a Besov ball, and construct adaptive wavelet thresholding estimators of f that are asymptotically optimal (in the minimax sense) or near-optimal within a logarithmic factor (in the case of a zero of a polynomial order), over a wide range of Besov balls. The spatially inhomogeneous ill-posed problem that we investigate is inherently more difficult than spatially homogeneous ill-posed problems like, e.g., deconvolution. In particular, due to spatial irregularity, assessment of asymptotic minimax global convergence rates is a much harder task than the derivation of asymptotic minimax local convergence rates studied recently in the literature. Furthermore, the resulting estimators exhibit very different behavior and asymptotic minimax global convergence rates in comparison with the solution of spatially homogeneous ill-posed problems. For example, unlike in the deconvolution problem, the asymptotic minimax global convergence rates are greatly influenced not only by the extent of data loss but also by the degree of spatial homogeneity of f. Specifically, even if 1/g is non-integrable, one can recover f as well as in the case of an equispaced design (in terms of asymptotic minimax global convergence rates) when it is homogeneous enough since the estimator is "borrowing strength" in the areas where f is adequately sampled. © EDP Sciences, SMAI 2013.
Collections
Cite as
Related items
Showing items related by title, author, creator and subject.
-
Article
Adaptive mixing control with multiple estimators
Baldi, S.; Ioannou, Petros A.; Kosmatopoulos, E. B. (2012)A recently proposed adaptive control scheme with mixing involves the use of precalculated candidate controllers whose output is weighted on the basis of the parameter estimates generated by an online parameter estimator. ...
-
Article
Higher-order accurate polyspectral estimation with flat-top lag-windows
Berg, A.; Politis, Dimitris Nicolas (2009)Improved performance in higher-order spectral density estimation is achieved using a general class of infinite-order kernels. These estimates are asymptotically less biased but with the same order of variance as compared ...
-
Conference Object
Action functional stochastic H∞ estimation for nonlinear discrete time systems
Charalambous, Charalambos D.; Farhadi, A.; Djouadi, S. M. (2002)This paper presents an action functional, sample path optimization technique, for formulating and solving nonlinear discrete-time stochastic H∞ estimation problems. These H∞ problems are formulated as minimax dynamic games ...