Show simple item record

dc.contributor.authorBaricz, A.en
dc.contributor.authorKoumandos, S.en
dc.creatorBaricz, A.en
dc.creatorKoumandos, S.en
dc.date.accessioned2019-12-02T10:33:46Z
dc.date.available2019-12-02T10:33:46Z
dc.date.issued2016
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/56464
dc.description.abstractIn this paper certain Turán-type inequalities for some Lommel functions of the first kind are deduced. The key tools in our proofs are the infinite product representation for these Lommel functions of the first kind, a classical result of Pólya on the zeros of some particular entire functions, and the connection of these Lommel functions with the so-called Laguerre-Pólya class of entire functions. Moreover, it is shown that in some cases Steinig's results on the sign of Lommel functions of the first kind combined with the so-called monotone form of l'Hospital's rule can be used in the proof of the corresponding Turán-type inequalities. © 2016 Edinburgh Mathematical Society.en
dc.sourceProceedings of the Edinburgh Mathematical Societyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84945533360&doi=10.1017%2fS0013091515000413&partnerID=40&md5=6b44119510f1c5d7d2caad75ca1f5367
dc.subject2010 Mathematics subject classification: Primary 33C10en
dc.subject33B10en
dc.subject42A05en
dc.titleTurán-Type Inequalities for Some Lommel Functions of the First Kinden
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1017/S0013091515000413
dc.description.volume59
dc.description.issue3
dc.description.startingpage569
dc.description.endingpage579
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Μαθηματικών και Στατιστικής / Department of Mathematics and Statistics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :3</p>en
dc.source.abbreviationProc.Edinburgh Math.Soc.en
dc.contributor.orcidKoumandos, S. [0000-0002-3399-7471]


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record