dc.contributor.author Karageorghis, Andreas en dc.contributor.author Lesnic, D. en dc.contributor.author Marin, L. en dc.creator Karageorghis, Andreas en dc.creator Lesnic, D. en dc.creator Marin, L. en dc.date.accessioned 2019-12-02T10:36:06Z dc.date.available 2019-12-02T10:36:06Z dc.date.issued 2015 dc.identifier.uri http://gnosis.library.ucy.ac.cy/handle/7/57062 dc.description.abstract Signorini problems model phenomena in which a known or unknown portion of the boundary is subjected to alternating Dirichlet and Neumann boundary conditions. In this paper, we apply the method of fundamental solutions (MFS) for the solution of two-dimensional both direct and inverse Signorini problems for the Laplace equation. In this meshless and integration-free method, the harmonic solution representing the steady-state temperature or the electric potential is approximated by a linear combination of non-singular fundamental solutions with sources located outside the closure of the solution domain. The unknown coefficients in this expansion, the points of separation of the Signorini boundary conditions and possibly the unknown Signorini boundary (in the inverse problem) are determined by imposing/collocating the boundary conditions which can be of Dirichlet, Neumann, Cauchy or Signorini type. This results in a constrained minimization problem which is solved using the MATLAB © toolbox routine fmincon. Several numerical examples involving both direct and inverse problems are presented and discussed in order to illustrate the accuracy and stability of the numerical method employed. © 2015 Elsevier Ltd. All rights reserved. en dc.source Computers and Structures en dc.source.uri https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921942600&doi=10.1016%2fj.compstruc.2015.01.002&partnerID=40&md5=1e2c10d4ac334ed7d541cea5eca51cec dc.subject Nonlinear programming en dc.subject Inverse problems en dc.subject Electric potential en dc.subject Boundary conditions en dc.subject Inverse problem en dc.subject Method of fundamental solutions en dc.subject Constrained optimization en dc.subject Fundamental solutions en dc.subject Constrained minimization problem en dc.subject Dirichlet and Neumann boundary conditions en dc.subject Non-linear optimization en dc.subject Nonlinear optimization en dc.subject Signorini problem en dc.subject Steady-state temperature en dc.subject Unknown coefficients en dc.title The method of fundamental solutions for solving direct and inverse Signorini problems en dc.type info:eu-repo/semantics/article dc.identifier.doi 10.1016/j.compstruc.2015.01.002 dc.description.volume 151 dc.description.startingpage 11 dc.description.endingpage 19 dc.author.faculty Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences dc.author.department Τμήμα Μαθηματικών και Στατιστικής / Department of Mathematics and Statistics dc.type.uhtype Article en dc.description.notes

Cited By :7

en dc.source.abbreviation Comput.Struct. en dc.contributor.orcid Karageorghis, Andreas [0000-0002-8399-6880] dc.gnosis.orcid 0000-0002-8399-6880
﻿

## Files in this item

FilesSizeFormatView

There are no files associated with this item.