Show simple item record

dc.contributor.authorCurry, W. B.en
dc.contributor.authorGrabe, M. D.en
dc.contributor.authorKurnikov, I. V.en
dc.contributor.authorSkourtis, Spiros S.en
dc.contributor.authorBeratan, David N.en
dc.contributor.authorRegan, J. J.en
dc.contributor.authorAquino, A. J. A.en
dc.contributor.authorBeroza, P.en
dc.contributor.authorOnuchic, J. N.en
dc.creatorCurry, W. B.en
dc.creatorGrabe, M. D.en
dc.creatorKurnikov, I. V.en
dc.creatorSkourtis, Spiros S.en
dc.creatorBeratan, David N.en
dc.creatorRegan, J. J.en
dc.creatorAquino, A. J. A.en
dc.creatorBeroza, P.en
dc.creatorOnuchic, J. N.en
dc.date.accessioned2019-12-02T15:30:06Z
dc.date.available2019-12-02T15:30:06Z
dc.date.issued1995
dc.identifier.issn0145-479X
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/58648
dc.description.abstractThe simplest views of long-range electron transfer utilize flat one-dimensional barrier tunneling models, neglecting structural details of the protein medium. The pathway model of protein electron transfer reintroduces structure by distinguishing between covalent bonds, hydrogen bonds, and van der Waals contacts. These three kinds of interactions in a tunneling pathway each have distinctive decay factors associated with them. The distribution and arrangement of these bonded and nonbonded contacts in a folded protein varies tremendously between structures, adding a richness to the tunneling problem that is absent in simpler views. We review the pathway model and the predictions that it makes for protein electron transfer rates in small proteins, docked proteins, and the photosynthetic reactions center. We also review the formulation of the protein electron transfer problem as an effective two-level system. New multi-pathway approaches and improved electronic Hamiltonians are described briefly as well. © 1995 Plenum Publishing Corporation.en
dc.sourceJournal of Bioenergetics and Biomembranesen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0028862892&doi=10.1007%2fBF02110098&partnerID=40&md5=9862b38961c6ea24072380cfa77bf662
dc.subjectreviewen
dc.subjectproteinen
dc.subjectcovalent bonden
dc.subjectModels, Theoreticalen
dc.subjectoxidation reduction reactionen
dc.subjectcomplex formationen
dc.subjecthydrogen bonden
dc.subjectelectron transporten
dc.subjectProteinsen
dc.subjectProtein Conformationen
dc.subjectSupport, U.S. Gov't, P.H.S.en
dc.subjectSupport, U.S. Gov't, Non-P.H.S.en
dc.subjectprotein structureen
dc.subjectProtein Structure, Secondaryen
dc.subjectModels, Molecularen
dc.subjectdonor-acceptor interactionsen
dc.subjectphotosynthesisen
dc.subjectPhotosynthetic Reaction Center, Bacterialen
dc.subjectprotein electron transferen
dc.subjectTunneling pathwaysen
dc.titlePathways, pathway tubes, pathway docking, and propagators in electron transfer proteinsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/BF02110098
dc.description.volume27
dc.description.issue3
dc.description.startingpage285
dc.description.endingpage293
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :69</p>en
dc.source.abbreviationJ.Bioenerg.Biomembr.en
dc.contributor.orcidSkourtis, Spiros S. [0000-0002-5834-248X]
dc.gnosis.orcid0000-0002-5834-248X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record