Show simple item record

dc.contributor.authorSkourtis, Spiros S.en
dc.contributor.authorWaldeck, D. H.en
dc.contributor.authorBeratan, David N.en
dc.creatorSkourtis, Spiros S.en
dc.creatorWaldeck, D. H.en
dc.creatorBeratan, David N.en
dc.date.accessioned2019-12-02T15:33:26Z
dc.date.available2019-12-02T15:33:26Z
dc.date.issued2010
dc.identifier.issn0066-426X
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/59092
dc.description.abstractCentral to theories of electron transfer (ET) is the idea that nuclear motion generates a transition state that enables electron flow to proceed, but nuclear motion also induces fluctuations in the donor-acceptor (DA) electronic coupling that is the rate-limiting parameter for nonadiabatic ET. The interplay between the DA energy gap and DA coupling fluctuations is particularly noteworthy in biological ET, where flexible protein and mobile water bridges take center stage. Here, we discuss the critical timescales at play for ET reactions in fluctuating media, highlighting issues of the Condon approximation, average medium versus fluctuation-controlled electron tunneling, gated and solvent relaxation controlled electron transfer, and the influence of inelastic tunneling on electronic coupling pathway interferences. Taken together, one may use this framework to establish principles to describe how macromolecular structure and structural fluctuations influence ET reactions. This framework deepens our understanding of ET chemistry in fluctuating media. Moreover, it provides a unifying perspective for biophysical charge-transfer processes and helps to frame new questions associated with energy harvesting and transduction in fluctuating media. Copyright © 2010 by Annual Reviews. All rights reserved.en
dc.sourceAnnual Review of Physical Chemistryen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77951672927&doi=10.1146%2fannurev.physchem.012809.103436&partnerID=40&md5=19ac7f90460ffd0752314b451222d0ce
dc.subjecttheoretical modelen
dc.subjectreviewen
dc.subjectproteinen
dc.subjectchemistryen
dc.subjectcomputer simulationen
dc.subjectBio-inspireden
dc.subjectModels, Theoreticalen
dc.subjectTime-scalesen
dc.subjectEnergy harvestingen
dc.subjectelectron transporten
dc.subjectTunneling (excavation)en
dc.subjectProteinsen
dc.subjectSolventsen
dc.subjectElectron transferen
dc.subjectElectron transitionsen
dc.subjectTransition stateen
dc.subjectStructural fluctuationsen
dc.subjectInelastic tunnelingen
dc.subjectTunneling pathwaysen
dc.subjectElectronic couplingen
dc.subjectDonor-acceptorsen
dc.subjectElectron flowen
dc.subjectElectron-transfer reactionsen
dc.subjectMobile wateren
dc.subjectNon-adiabaticen
dc.subjectNuclear motionsen
dc.subjectCondon approximationen
dc.subjectCoupling fluctuationsen
dc.subjectDynamical effectsen
dc.subjectMacromolecular structuresen
dc.subjectPathway coherenceen
dc.subjectRate limitingen
dc.subjectSolvent dynamical effectsen
dc.subjectSolvent relaxationen
dc.subjectWater-mediated tunnelingen
dc.titleFluctuations in biological and bioinspired electron-transfer reactionsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1146/annurev.physchem.012809.103436
dc.description.volume61
dc.description.startingpage461
dc.description.endingpage485
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :109</p>en
dc.source.abbreviationAnnu Rev Phys Chemen
dc.contributor.orcidSkourtis, Spiros S. [0000-0002-5834-248X]
dc.gnosis.orcid0000-0002-5834-248X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record