Machine learning-based statistical testing hypothesis for fault detection in photovoltaic systems
Date
2019ISSN
0038-092XSource
Solar EnergyVolume
190Pages
405-413Google Scholar check
Metadata
Show full item recordAbstract
In this paper, we consider a machine learning approach merged with statistical testing hypothesis for enhanced fault detection performance in photovoltaic (PV) systems. The developed method makes use of a machine learning based Gaussian process regression (GPR) technique as a modeling framework, while a generalized likelihood ratio test (GLRT) chart is applied to detect PV system faults. The developed GPR-based GLRT approach is assessed using simulated and real PV data through monitoring the key PV system variables (current, voltage, and power). The computation time, missed detection rate (MDR), and false alarm rate (FAR) are computed to evaluate the fault detection performance of the proposed approach.