Show simple item record

dc.contributor.authorLopez-Lorente, Javieren
dc.contributor.authorPolo, Jesúsen
dc.contributor.authorMartín-Chivelet, Nuriaen
dc.contributor.authorNorton, Matthewen
dc.contributor.authorLivera, Andreasen
dc.contributor.authorMakrides, Georgeen
dc.contributor.authorGeorghiou, George E.en
dc.contributor.editorPitchumani, Rangaen
dc.creatorLopez-Lorente, Javieren
dc.creatorPolo, Jesúsen
dc.creatorMartín-Chivelet, Nuriaen
dc.creatorNorton, Matthewen
dc.creatorLivera, Andreasen
dc.creatorMakrides, Georgeen
dc.creatorGeorghiou, George E.en
dc.date.accessioned2024-01-09T10:11:45Z
dc.date.available2024-01-09T10:11:45Z
dc.date.issued2023
dc.identifier.issn0038-092X
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/65906en
dc.description.abstractEnsuring optimal performance of solar photovoltaic (PV) systems requires the extensive assessment and understanding of losses of different origin that affect these installations. Soiling is a key loss factor influencing the performance of PV systems, particularly in arid and dry climatic regions, and its thorough knowledge and modelling aspects including the seasonal evolution is challenging for the early stages of energy prospecting for PV power plants. The purpose of this study is to address this fundamental challenge by evaluating the loss of soiling and the performance of six soiling models based on both physical and machine learning (ML) approaches. Specifically, the case study is a soiling test-bench experimental apparatus installed at the outdoor test facility of the University of Cyprus in Nicosia, Cyprus. The climatic conditions of the site represent a dry climate with high PV potential due to high irradiation levels. The obtained results reported soiling rates ranging from 0.039%/day to 0.535%/day depending on the season and the presence of dust episodes. The average yield daily and monthly soiling losses were 1.9% and 2.4% over a 2-year period, respectively. Furthermore, the comparative analysis of the different soiling models illustrated that the physical models achieved slightly better performance than the ML models with root mean square error (RMSE) of 1.16% and 0.83% for daily and monthly losses, respectively. Finally, the findings provide evidence and useful information on the performance and limitations of the different soiling models for fielded PV systems located in arid and dry climatic zones.en
dc.language.isoengen
dc.publisherElsevieren
dc.sourceSolar Energyen
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0038092X23001883en
dc.subjectDry climateen
dc.subjectMachine learningen
dc.subjectPerformanceen
dc.subjectPhotovoltaicen
dc.subjectSoilingen
dc.titleCharacterizing soiling losses for photovoltaic systems in dry climates: a case study in Cyprusen
dc.typeinfo:eu-repo/semantics/articleen
dc.identifier.doi10.1016/j.solener.2023.03.034
dc.description.volume255
dc.description.startingpage243
dc.description.endingpage256
dc.author.faculty007 Πολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών / Department of Electrical and Computer Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidLivera, Andreas [0000-0002-3732-9171]
dc.contributor.orcidMakrides, George [0000-0002-0327-0386]
dc.contributor.orcidGeorghiou, George E. [0000-0002-5872-5851]
dc.contributor.orcidLopez-Lorente, Javier [0000-0003-0032-1149]
dc.contributor.orcidPolo, Jesús [0000-0003-2431-2773]
dc.contributor.orcidMartín-Chivelet, Nuria [0000-0003-4224-6618]
dc.type.subtypeSCIENTIFIC_JOURNALen
dc.gnosis.orcid0000-0002-3732-9171
dc.gnosis.orcid0000-0002-0327-0386
dc.gnosis.orcid0000-0002-5872-5851
dc.gnosis.orcid0000-0003-0032-1149
dc.gnosis.orcid0000-0003-2431-2773
dc.gnosis.orcid0000-0003-4224-6618


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record