Direct Short-Term Net Load Forecasting Based on Machine Learning Principles for Solar-Integrated Microgrids
Date
2023Author
Tziolis, GeorgiosLivera, Andreas
Montes-Romero, Jesus
Theocharides, Spyros
Makrides, George
Georghiou, George E.
ISSN
2169-3536Publisher
IEEESource
IEEE AccessVolume
11Pages
102038-102049Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
Accurate net load forecasting is a cost-effective technique, crucial for the planning, stability, reliability, and integration of variable solar photovoltaic (PV) systems in modern power systems. This work presents a direct short-term net load forecasting (STNLF) methodology for solar-integrated microgrids by leveraging machine learning (ML) principles. The proposed data-driven method comprises of an initial input feature engineering and filtering step, construction of forecasting model using Bayesian neural networks, and an optimization stage. The performance of the proposed model was validated on historical net load data obtained from a university campus solar-powered microgrid. The results demonstrated the effectiveness of the model for providing accurate and robust STNLF. Specifically, the optimally constructed model yielded a normalized root mean square error of 3.98% when benchmarked using a 1-year historical microgrid data. The $k$ -fold cross-validation method was then used and proved the stability of the forecasting model. Finally, the obtained ML-based forecasts demonstrated improvements of 17.77% when compared against forecasts of a baseline naΓ―ve persistence model. To this end, this work provides insights on how to construct high-performance STNLF models for solar-integrated microgrids. Such insights on the development of accurate STNLF architectures can have positive implications in actual microgrid decision-making by utilities/operators.
Collections
- Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών / Department of Electrical and Computer Engineering [2897]
- Κέντρο Aριστείας για Έρευνα και Καινοτομία σε Ευφυείς, Αποδοτικές και Βιώσιμες Ενεργειακές Λύσεις «ΦΑΕΘΩΝ» / PHAETHON Research and Innovation Centre of Excellence for Intelligent, Efficient and Sustainable Energy Solutions [32]