Multidimensional electoral competition between differentiated candidates
Date
2017Source
Games and Economic BehaviorVolume
105Pages
112-121Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
It is known that multidimensional Downsian competition fails to admit an equilibrium in pure strategies unless very stringent conditions on the distribution of voters' bliss points are imposed (Plott, 1967). This paper revisits this problem considering that the two vote share maximizing candidates are differentiated. That is, candidates strategically decide positions only in some of the n dimensions while in the rest of them their positions are assumed to be fixed. These fixed dimensions may be viewed as candidates' immutable characteristics (race, religion, culture, etc.). We find that for any distribution of voters' bliss points, a unique Nash equilibrium in pure strategies is guaranteed to exist if candidates are sufficiently differentiated –if in the fixed dimensions their positions are sufficiently different. This is true even if there exists a unique fixed dimension and candidates are flexible in all other n−1 dimensions. © 2017 Elsevier Inc.