Show simple item record

dc.contributor.authorAureli, M.en
dc.contributor.authorDoumanidis, C. C.en
dc.contributor.authorGunduz, I. E.en
dc.contributor.authorHussien, A. G. S.en
dc.contributor.authorLiao, Y.en
dc.contributor.authorRebholz, Clausen
dc.contributor.authorDoumanidis, C. C.en
dc.creatorAureli, M.en
dc.creatorDoumanidis, C. C.en
dc.creatorGunduz, I. E.en
dc.creatorHussien, A. G. S.en
dc.creatorLiao, Y.en
dc.creatorRebholz, Clausen
dc.creatorDoumanidis, C. C.en
dc.date.accessioned2019-05-06T12:23:22Z
dc.date.available2019-05-06T12:23:22Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48232
dc.description.abstractThe reported research establishes a semi-analytical computational predictive model of fractal microstructure in ball-milled metal foils and powder particulates, with emphasis on its transformation mechanics via an energy-based approach. The evolving structure is composed of reconfigurable warped ellipsoid material domains, subjected to collisions with the ball milling impactors following Brownian motion energetics. In the first step of the model, impacts are assumed to generate ideal Hertzian elastic stress fields, with associated bulk deformations quantified as per Castigliano's strain energy methods. In the second stage of the model, elastic energies are recast to produce frictional slip and plastic yield, thus resulting in surface micro-joints. Only two parameters of the model necessitate experimental calibration, performed by comparison of joint energy with laboratory tensile measurements on ball-milled multilayer Al-Ni foils. Model predictions of evolving internal microstructure are validated against SEM micrographs of Al-Ni powder particulate samples for different ball milling durations. Results demonstrate the capability of the model to accurately capture relevant fractal measures of the microstructure of ball-milled powders. © 2016 Acta Materialia Inc.en
dc.language.isoengen
dc.sourceActa Materialiaen
dc.subjectBrownian movementen
dc.subjectAluminumen
dc.subjectMicrostructureen
dc.subjectBall millingen
dc.subjectFractal structuresen
dc.subjectFractalsen
dc.subjectMilling (machining)en
dc.subjectElastic stress fielden
dc.subjectEnergy based approachen
dc.subjectExperimental calibrationen
dc.subjectFractal structureen
dc.subjectInternal microstructureen
dc.subjectMechanical alloyingen
dc.subjectMetal foilen
dc.subjectMultilayer foilen
dc.subjectMultilayer foilsen
dc.subjectMultilayersen
dc.subjectNickelen
dc.subjectParticulateen
dc.subjectPowder metalsen
dc.subjectStrain energyen
dc.subjectTensile measurementsen
dc.titleMechanics and energetics modeling of ball-milled metal foil and particle structuresen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.actamat.2016.10.041
dc.description.volume123
dc.description.startingpage305
dc.description.endingpage316
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.description.totalnumpages305-316


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record