Show simple item record

dc.contributor.authorAureli, Matteoen
dc.contributor.authorDoumanidis, C. C.en
dc.contributor.authorGunduz, I. E.en
dc.contributor.authorHussien, Aseel Gamal Sulimanen
dc.contributor.authorLiao, Yiliangen
dc.contributor.authorRebholz, Clausen
dc.contributor.authorDoumanidis, C. C.en
dc.creatorAureli, Matteoen
dc.creatorDoumanidis, C. C.en
dc.creatorGunduz, I. E.en
dc.creatorHussien, Aseel Gamal Sulimanen
dc.creatorLiao, Yiliangen
dc.creatorRebholz, Clausen
dc.creatorDoumanidis, C. C.en
dc.date.accessioned2019-05-06T12:23:22Z
dc.date.available2019-05-06T12:23:22Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48233
dc.description.abstractThe reported research establishes a semi-analytical computational predictive model of fractal microstructure in ball-milled metal foils and powder particulates, with emphasis on its transformation mechanics via an energy-based approach. The evolving structure is composed of reconfigurable warped ellipsoid material domains, subjected to collisions with the ball milling impactors following Brownian motion energetics. In the first step of the model, impacts are assumed to generate ideal Hertzian elastic stress fields, with associated bulk deformations quantified as per Castigliano's strain energy methods. In the second stage of the model, elastic energies are recast to produce frictional slip and plastic yield, thus resulting in surface micro-joints. Only two parameters of the model necessitate experimental calibration, performed by comparison of joint energy with laboratory tensile measurements on ball-milled multilayer Al-Ni foils. Model predictions of evolving internal microstructure are validated against SEM micrographs of Al-Ni powder particulate samples for different ball milling durations. Results demonstrate the capability of the model to accurately capture relevant fractal measures of the microstructure of ball-milled powders.en
dc.sourceActa Materialiaen
dc.titleFull length article: Mechanics and energetics modeling of ball-milled metal foil and particle structuresen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.actamat.2016.10.041
dc.description.volume123
dc.description.startingpage305
dc.description.endingpage316
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.description.totalnumpages305-316


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record