Show simple item record

dc.contributor.authorFarzanah, K. H. H.en
dc.contributor.authorHassan, M. O. M.en
dc.contributor.authorMuhairi, R. A. S. Alen
dc.contributor.authorRebholz, Clausen
dc.contributor.authorGunduz, I. E.en
dc.contributor.authorDoumanidis, C. C.en
dc.creatorFarzanah, K. H. H.en
dc.creatorHassan, M. O. M.en
dc.creatorMuhairi, R. A. S. Alen
dc.creatorRebholz, Clausen
dc.creatorGunduz, I. E.en
dc.creatorDoumanidis, C. C.en
dc.date.accessioned2019-05-06T12:23:34Z
dc.date.available2019-05-06T12:23:34Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48333
dc.description.abstractThis article reports investigation of the effects of high-rate stochastic micro-mechanics on the produced particulate size distribution during ball milling of reactive bimetallic foils (nanoheaters), by experimental and computational modeling. In particular, Ni-Al foils are ball-milled at various load charges, revolution rates and process durations, and the resulting particulate geometries are characterized by micrograph statistical analysis. Numerical simulation of the evolving particulate structure is based on coalescence and fragmentation of flexible monometallic ellipsoidal primitives, impacted by milling balls and vial walls with kinetic theory-based kinematics. Particulates are constrained by discrete compliant and continuum media and undergo conceptual ideal elastic transformations modeled by strain energy methods, and recast into inelastic frictional and plasticity-driven welding and fracture events. Finally the theoretical model predictions of particulate size distribution are validated against laboratory microscopy observations. © 2017 Materials Research Society.en
dc.language.isoengen
dc.publisherMaterials Research Societyen
dc.sourceMRS Advancesen
dc.subjectStochastic systemsen
dc.subjectComputation theoryen
dc.subjectAluminum alloysen
dc.subjectBall millingen
dc.subjectMilling (machining)en
dc.subjectStrain energyen
dc.subjectBinary alloysen
dc.subjectCombustion syntheses (SHS)en
dc.subjectCombustion synthesisen
dc.subjectCombustion synthesis (SHS)en
dc.subjectComputational modelen
dc.subjectContinuum mediaen
dc.subjectlayereden
dc.subjectmechanical alloyingen
dc.subjectMilling ballsen
dc.subjectParticulate size distributionen
dc.subjectParticulate structureen
dc.subjectSize distributionen
dc.subjectTheoretical modelingen
dc.titleMechanics Science-Enabled Nanoheater Multi-Layer Materials Manufactured by Ball Millingen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.identifier.doi10.1557/adv.2017.71
dc.description.volume2
dc.description.startingpage897
dc.description.endingpage904
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeConference Objecten
dc.description.totalnumpages897-904


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record