Show simple item record

dc.contributor.authorKyratsi, Theodoraen
dc.contributor.authorHatzikraniotis, E.en
dc.contributor.authorParaskevopoulos, K. M.en
dc.contributor.authorMalliakas, C. D.en
dc.contributor.authorDyck, J. S.en
dc.contributor.authorUher, C.en
dc.contributor.authorKanatzidis, M. G.en
dc.creatorKyratsi, Theodoraen
dc.creatorHatzikraniotis, E.en
dc.creatorParaskevopoulos, K. M.en
dc.creatorMalliakas, C. D.en
dc.creatorDyck, J. S.en
dc.creatorUher, C.en
dc.creatorKanatzidis, M. G.en
dc.date.accessioned2019-05-06T12:24:01Z
dc.date.available2019-05-06T12:24:01Z
dc.date.issued2006
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48562
dc.description.abstractThe charge transport properties of the low-dimensional thermoelectric materials K2 Bi8-x Sbx Se13 (0<x≤8) were studied as a function of temperature and composition. The Seebeck coefficient shows an evolution from n - to p -type character with increasing incorporation of Sb, and at the same time the temperature dependence of the electrical conductivity changes from that of a degenerate semiconductor to that of an intrinsic or compensated semiconductor. These changes, however, are not monotonic with composition due to the nonuniform substitution of Sb atoms at the Bi sites of the structure. Three separate composition regions can be assigned depending on x each with different charge transport characters. Electronic transport in K2 Bi8-x Sbx Se13 was analyzed on the basis of the classical semiconductor theory and discussed in the context of recent band calculations. The results suggest that the K2 Bi8-x Sbx Se13 materials possess coexisting domains with semimetallic and semiconducting characters whose ratio is influenced by the value of x and by local defects. The extent and relative distribution of these domains control the charge transport properties. Electron diffraction experiments performed on samples of K2 Bi8-x Sbx Se13 with x=1.6 show evidence for such domains by indicating regions with long range ordering of K+ Bi3+ atoms and regions with increased disorder. The semiconducting behavior is enhanced with increasing x (i.e., SbBi ratio) in the composition through a decrease of the semimetallic fraction. © 2006 American Institute of Physics.en
dc.language.isoengen
dc.sourceJournal of Applied Physicsen
dc.subjectTemperature dependenceen
dc.subjectTransport propertiesen
dc.subjectPotassium compoundsen
dc.subjectSemiconductor materialsen
dc.subjectCharge transferen
dc.subjectCrystal defectsen
dc.subjectElectron diffractionen
dc.subjectSeebeck coefficienten
dc.subjectSemimetallic fractionen
dc.subjectThermoelasticityen
dc.titleStructure inhomogeneities, shallow defects, and charge transport in the series of thermoelectric materials K2Bi8-xSb xSe13en
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1063/1.2365718
dc.description.volume100
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidKyratsi, Theodora [0000-0003-2916-1708]
dc.gnosis.orcid0000-0003-2916-1708


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record