Show simple item record

dc.contributor.authorMai, V. H.en
dc.contributor.authorMoradpour, A.en
dc.contributor.authorSenzier, P. A.en
dc.contributor.authorPasquier, C.en
dc.contributor.authorWang, K.en
dc.contributor.authorRozenberg, M. J.en
dc.contributor.authorGiapintzakis, Johnen
dc.contributor.authorMihailescu, C. N.en
dc.contributor.authorOrfanidou, C. M.en
dc.contributor.authorSvoukis, E.en
dc.contributor.authorBreza, A.en
dc.contributor.authorLioutas, C. B.en
dc.contributor.authorFranger, S.en
dc.contributor.authorRevcolevschi, A.en
dc.contributor.authorMaroutian, T.en
dc.contributor.authorLecoeur, P.en
dc.contributor.authorAubert, P.en
dc.contributor.authorAgnus, G.en
dc.contributor.authorSalot, R.en
dc.contributor.authorAlbouy, P. A.en
dc.contributor.authorWeil, R.en
dc.contributor.authorAlamarguy, D.en
dc.contributor.authorMarch, K.en
dc.contributor.authorJomard, F.en
dc.contributor.authorChrétien, P.en
dc.contributor.authorSchneegans, O.en
dc.creatorMai, V. H.en
dc.creatorMoradpour, A.en
dc.creatorSenzier, P. A.en
dc.creatorPasquier, C.en
dc.creatorWang, K.en
dc.creatorRozenberg, M. J.en
dc.creatorGiapintzakis, Johnen
dc.creatorMihailescu, C. N.en
dc.creatorOrfanidou, C. M.en
dc.creatorSvoukis, E.en
dc.creatorBreza, A.en
dc.creatorLioutas, C. B.en
dc.creatorFranger, S.en
dc.creatorRevcolevschi, A.en
dc.creatorMaroutian, T.en
dc.creatorLecoeur, P.en
dc.creatorAubert, P.en
dc.creatorAgnus, G.en
dc.creatorSalot, R.en
dc.creatorAlbouy, P. A.en
dc.creatorWeil, R.en
dc.creatorAlamarguy, D.en
dc.creatorMarch, K.en
dc.creatorJomard, F.en
dc.creatorChrétien, P.en
dc.creatorSchneegans, O.en
dc.description.abstractThe phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of LixCoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.en
dc.sourceScientific Reportsen
dc.titleMemristive and neuromorphic behavior in a Li x CoO 2 nanobatteryen
dc.description.volume5Πολυτεχνική Σχολή / Faculty of EngineeringΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.contributor.orcidGiapintzakis, John [0000-0002-7277-2662]

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record