Show simple item record

dc.contributor.authorBelk, Mariosen
dc.contributor.authorGermanakos, Panagiotisen
dc.contributor.authorSamaras, George S.en
dc.creatorBelk, Mariosen
dc.creatorGermanakos, Panagiotisen
dc.creatorSamaras, George S.en
dc.date.accessioned2019-11-13T10:38:27Z
dc.date.available2019-11-13T10:38:27Z
dc.date.issued2012
dc.identifier.isbn978-989-8565-33-4
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/53629
dc.description.abstractUser modelling in interactive Web systems is an essential quality to optimally filter, personalise and adapt their content and functionality to serve the intrinsic needs of individual users. The mechanism for obtaining the user model needs to be intelligent, adaptive and transparent to the user, in the sense that user experience should not be disrupted or compromised. Human factors are extensively employed lately for enriching user models by capturing more intrinsic perceptual characteristics of the users.accordingly, this paper proposes the use of Artificial Neural Networks (ANNs) for attaining cognitive styles of users in adaptive interactive systems. One of the main benefits is the automatic prediction of cognitive typologies of users by avoiding psychometric tests, which are among the typical ways of constructing user profiles and are particularly timeconsuming. Furthermore, ANNs can efficiently model the relationship between cognitive styles and user interaction. The experimental setup and the results obtained show that ANNs are suitable for predicting the cognitive styles ratio of users in respect to their actual cognitive style ratio value.en
dc.sourceIJCCI 2012 - Proceedings of the 4th International Joint Conference on Computational Intelligenceen
dc.source4th International Joint Conference on Computational Intelligence, IJCCI 2012en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84886906673&partnerID=40&md5=34be47fed39209425ddea62e1bc05f9e
dc.subjectMathematical modelsen
dc.subjectNeural networksen
dc.subjectUser interfacesen
dc.subjectCAPTCHAen
dc.subjectCAPTCHAsen
dc.subjectCognitive Stylesen
dc.subjectUser experienceen
dc.subjectAdaptive interactive systemsen
dc.subjectCognitive systemsen
dc.subjectArtificial Neural Networksen
dc.subjectAutomatic predictionen
dc.subjectPsychometric testen
dc.subjectUser interactionen
dc.subjectUser Modellingen
dc.titleOn modelling cognitive styles of users in adaptive interactive systems using artificial neural networks efi papatheocharous1 efi.papatheocharousen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.description.startingpage563
dc.description.endingpage569
dc.author.faculty002 Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Πληροφορικής / Department of Computer Science
dc.type.uhtypeConference Objecten
dc.description.notes<p>Sponsors: Institute for Systems and Technologies of Information,en
dc.description.notesControl and Communication (INSTICC)en
dc.description.notesConference code: 100167</p>en
dc.contributor.orcidBelk, Marios [0000-0001-6200-0178]
dc.gnosis.orcid0000-0001-6200-0178


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record