Prediction of rainfall rate based on weather radar measurements
Date
2004ISBN
0-7803-8359-1Source
IEEE International Conference on Neural Networks - Conference Proceedings2004 IEEE International Joint Conference on Neural Networks - Proceedings
Volume
2Pages
1393-1396Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
Weather radars are used to measure the electromagnetic radiation backscattered by cloud raindrops. Clouds that backscatter more electromagnetic radiation consist of larger droplets of rain and therefore they produce more rain. The idea is to predict rainfall rate by using weather radar instead of rain-gauges measuring rainfall on the ground. In an experiment during two days in June and August 1997 over the Italian-Swiss Alps, data from a weather radar and surrounding rain-gauges were collected at the same time. The neural SOM and the statistical KNN classifier were implemented for the classification task using the radar data as input and the rain-gauge measurements as output. The rainfall rate on the ground was predicted based on the radar reflections with an average error rate of 23%. The results in this work show that the prediction of rainfall rate based on weather radar measurements is possible.