Applying the dynamics of evolution to achieve reliability in master-worker computing
Date
2013Author
Christoforou, Evgenia

Mosteiro, Miguel A.
Sánchez, A.
ISSN
1532-0626Source
Concurrency Computation Practice and ExperienceVolume
25Issue
17Pages
2363-2380Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
We consider Internet-based master-worker task computations, such as SETI@home, where a master process sends tasks, across the Internet, to worker processes workers execute and report back some result. However, these workers are not trustworthy, and it might be at their best interest to report incorrect results. In such master-worker computations, the behavior and the best interest of the workers might change over time. We model such computations using evolutionary dynamics, and we study the conditions under which the master can reliably obtain task results. In particular, we develop and analyze an algorithmic mechanism based on reinforcement learning to provide workers with the necessary incentives to eventually become truthful. Our analysis identifies the conditions under which truthful behavior can be ensured and bounds the expected convergence time to that behavior. The analysis is complemented with illustrative simulations. Copyright © 2013 John Wiley & Sons, Ltd.