Show simple item record

dc.contributor.authorLoizou, Elenaen
dc.contributor.authorButler, P.en
dc.contributor.authorPorcar, L.en
dc.contributor.authorSchmidt, G.en
dc.creatorLoizou, Elenaen
dc.creatorButler, P.en
dc.creatorPorcar, L.en
dc.creatorSchmidt, G.en
dc.date.accessioned2019-11-21T06:21:14Z
dc.date.available2019-11-21T06:21:14Z
dc.date.issued2006
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/55803
dc.description.abstractThe shear response of a series of polymer-clay gels has been investigated by means of rheology and small-angle neutron scattering (SANS). The gels have the same composition by mass but different polymer molecular weights (M w). While long polymer chains can interconnect several platelets, which act as multifunctional cross-links, very short polymer chains should not be able to do so, allowing us to explore the effects of bridging on structure and dynamical responses. Increasing the polymer M w in the gels leads to increasingly strong anisotropy in the SANS data, indicating a larger and larger degree of shear orientation. This relative increase in orientation, however, is accompanied by a relatively lower amount of shear thinning. Simple solutions of anisotropic particles usually shear thin by alignment of the particles with the flow, allowing them for example to slide past each other more easily. In a connected gel, breaking of the connectivity should also lead to shear thinning. Thus, the inverse relationship between shear orientation and shear thinning, combined with the fact that the lowest M w, which exhibits the highest shear thinning, does not orient at all, supports our earlier hypothesis that the alignment mechanism in these systems stems from the coupling between the clay and the polymer mediated by the shear flow and nicely demonstrates the effect of bridging on the strength and dynamics of these gels. © 2006 American Chemical Society.en
dc.sourceMacromoleculesen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-33644616951&doi=10.1021%2fma0517547&partnerID=40&md5=66dc883d54cb8672d3cbc6330af10d78
dc.subjectCrosslinkingen
dc.subjectShear flowen
dc.subjectAnisotropyen
dc.subjectShear thinningen
dc.subjectNanostructured materialsen
dc.subjectDynamic responseen
dc.subjectCompositionen
dc.subjectSolutionsen
dc.subjectHydrogelsen
dc.subjectMolecular weighten
dc.subjectPolymer chainsen
dc.subjectNanocomposite hydrogelsen
dc.titleDynamic responses in nanocomposite hydrogelsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1021/ma0517547
dc.description.volume39
dc.description.issue4
dc.description.startingpage1614
dc.description.endingpage1619
dc.author.faculty002 Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Χημείας / Department of Chemistry
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :49</p>en
dc.source.abbreviationMacromoleculesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record