Show simple item record

dc.contributor.authorLoizou, Elenaen
dc.contributor.authorWeisser, J. T.en
dc.contributor.authorDundigalla, A.en
dc.contributor.authorPorcar, L.en
dc.contributor.authorSchmidt, G.en
dc.contributor.authorWilker, J. J.en
dc.creatorLoizou, Elenaen
dc.creatorWeisser, J. T.en
dc.creatorDundigalla, A.en
dc.creatorPorcar, L.en
dc.creatorSchmidt, G.en
dc.creatorWilker, J. J.en
dc.date.accessioned2019-11-21T06:21:15Z
dc.date.available2019-11-21T06:21:15Z
dc.date.issued2006
dc.identifier.issn1616-5187
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/55807
dc.description.abstractIn an effort to explore new biocompatible substrates for biomedical technologies, we present a structural study on a crosslinked gelatinous protein extracted from marine mussels. Prior studies have shown the importance of iron in protein crosslinking and mussel adhesive formation. Here, the structure and properties of an extracted material were examined both before and after crosslinking with iron. The structures of these protein hydrogels were studied by SEM, SANS, and SAXS. Viscoelasticity was tested by rheological means. The starting gel was found to have a heterogeneous porous structure on a micrometer scale and, surprisingly, a regular structure on the micron to nanometer scale. However disorder, or "no periodic structure", was deduced from scattering on nanometer length scales at very high q. Crosslinking with iron condensed the structure on a micrometer level. On nanometer length scales at high q, small angle neutron scattering showed no significant differences between the samples, possibly due to strong heterogeneity. X-ray scattering also confirmed the absence of any defined periodic structure. Partial crosslinking transformed the viscoelastic starting gel into one with more rigid and elastic properties. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.en
dc.sourceMacromolecular Bioscienceen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-33749606682&doi=10.1002%2fmabi.200600097&partnerID=40&md5=abd381fa573d8bdcb13993330b4e5c36
dc.subjectarticleen
dc.subjectAnimalsen
dc.subjectMicroscopyen
dc.subjectModels, Biologicalen
dc.subjectViscosityen
dc.subjectPeriodic structureen
dc.subjectCrosslinkingen
dc.subjectRheologyen
dc.subjectScanning electron microscopyen
dc.subjectHydrogelsen
dc.subjectViscoelasticityen
dc.subjectcross linkingen
dc.subjectBiotechnologyen
dc.subjectProteinsen
dc.subjectmedical technologyen
dc.subjectprotein structureen
dc.subjectironen
dc.subjectMicroscopy, Electron, Scanningen
dc.subjectScatteringen
dc.subjectX ray scatteringen
dc.subjectradiation scatteringen
dc.subjectCross-Linking Reagentsen
dc.subjecthydrogelen
dc.subjectbiopolymeren
dc.subjectAdhesivesen
dc.subjectBiomedical technologiesen
dc.subjectBiopolymersen
dc.subjectdichromate potassiumen
dc.subjectflow kineticsen
dc.subjectmussel adhesive proteinen
dc.subjectMytilidaeen
dc.subjectMytilus edulisen
dc.subjectNeutron Diffractionen
dc.subjectneutron scatteringen
dc.subjectProtein crosslinkingen
dc.subjectX-Ray Diffractionen
dc.titleStructural effects of crosslinking a biopolymer hydrogel derived from marine mussel adhesive proteinen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1002/mabi.200600097
dc.description.volume6
dc.description.issue9
dc.description.startingpage711
dc.description.endingpage718
dc.author.faculty002 Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Χημείας / Department of Chemistry
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :31</p>en
dc.source.abbreviationMacromol.Biosci.en


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record