Show simple item record

dc.contributor.authorAleksandrov, A.en
dc.contributor.authorPolydorides, Savvasen
dc.contributor.authorArchontis, Georgios Z.en
dc.contributor.authorSimonson, T.en
dc.creatorAleksandrov, A.en
dc.creatorPolydorides, Savvasen
dc.creatorArchontis, Georgios Z.en
dc.creatorSimonson, T.en
dc.date.accessioned2019-12-02T15:28:02Z
dc.date.available2019-12-02T15:28:02Z
dc.date.issued2010
dc.identifier.issn1520-6106
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/58335
dc.description.abstractThe acid/base properties of proteins are essential in biochemistry, and proton binding is a valuable reporter on electrostatic interactions. We propose a constant-pH Monte Carlo strategy to compute protonation free energies and pKas. The solvent is described implicitly, through a generalized Born model. The electronic polarizability and backbone motions of the protein are included through the protein dielectric constant. Side chain motions are described explicitly, by the Monte Carlo scheme. An efficient computational algorithm is described, which allows us to treat the fluctuating shape of the protein/solvent boundary in a way that is numerically exact (within the GB framework)en
dc.description.abstractthis contrasts with several previous constant-pH approaches. For a test set of six proteins and 78 titratable groups, the model performs well, with an rms error of 1.2 pH units. While this is slightly greater than a simple Null model (rms error of 1.1) and a fully empirical model (rms error of 0.9), it is obtained using physically meaningful model parameters, including a low protein dielectric of four. Importantly, similar performance is obtained for side chains with large and small pKa shifts (relative to a standard model compound). The titration curve slopes and the conformations sampled are reasonable. Several directions to improve the method further are discussed. © 2010 American Chemical Society.en
dc.sourceJournal of Physical Chemistry Ben
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77955582352&doi=10.1021%2fjp104406x&partnerID=40&md5=fc5d18bdd9a403072f73ee9491a46574
dc.subjectMonte Carlo methodsen
dc.subjectComputational efficiencyen
dc.subjectComputation theoryen
dc.subjectModel parametersen
dc.subjectSide chainsen
dc.subjectBiochemistryen
dc.subjectProteinsen
dc.subjectStandard modelen
dc.subjectAcid/base propertiesen
dc.subjectComputational algorithmen
dc.subjectDielectric constantsen
dc.subjectElectronic-polarizabilityen
dc.subjectElectrostatic interactionsen
dc.subjectEmpirical modelen
dc.subjectGeneralized Bornen
dc.subjectGeneralized born modelsen
dc.subjectMONTE CARLOen
dc.subjectMonte Carlo approachen
dc.subjectMonte carlo schemesen
dc.subjectNull modelen
dc.subjectProton bindingen
dc.subjectProtonation free energyen
dc.subjectRMS errorsen
dc.subjectTest setsen
dc.subjectTitration curvesen
dc.titlePredicting the acid/base behavior of proteins: A constant-pH monte carlo approach with generalized born solventen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1021/jp104406x
dc.description.volume114
dc.description.issue32
dc.description.startingpage10634
dc.description.endingpage10648
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :20</p>en
dc.source.abbreviationJ Phys Chem Ben
dc.contributor.orcidArchontis, Georgios Z. [0000-0002-7750-8641]
dc.gnosis.orcid0000-0002-7750-8641


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record