Show simple item record

dc.contributor.authorArchontis, Georgios Z.en
dc.contributor.authorSimonson, T.en
dc.creatorArchontis, Georgios Z.en
dc.creatorSimonson, T.en
dc.date.accessioned2019-12-02T15:28:35Z
dc.date.available2019-12-02T15:28:35Z
dc.date.issued2005
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/58492
dc.description.abstractProton binding plays a critical role in protein structure and function. We report pKa calculations for three aspartates in two proteins, using a linear response approach, as well as a "standard" Poisson-Boltzmann approach. Averaging over conformations from the two endpoints of the proton-binding reaction, the protein's atomic degrees of freedom are explicitly modeled. Treating macroscopically the protein's electronic polarizability and the solvent, a meaningful model is obtained, without adjustable parameters. It reproduces qualitatively the electrostatic potentials, proton-binding free energies, Marcus reorganization free energies, and pKa shifts from explicit solvent molecular dynamics simulations, and the pKa shifts from experiment. For thioredoxin Asp-26, which has a large pKa upshift, we correctly capture the balance between unfavorable carboxylate desolvation and favorable interactions with a nearby lysineen
dc.description.abstractsimilarly for RNase A Asp-14, which has a large pKa downshift. For the unshifted thioredoxin Asp-20, desolvation by the protein cavity is overestimated by 2.9 pKa unitsen
dc.description.abstractseveral effects could explain this. "Standard" Poisson-Boltzmann methods sidestep this problem by using a large, ad hoc protein dielectricen
dc.description.abstractbut protein charge-charge interactions are then incorrectly downscaled, giving an unbalanced description of the reaction and a large error for the shifted pKa values of Asp-26 and Asp-14. © 2005 by the Biophysical Society.en
dc.sourceBiophysical journalen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-22244488061&doi=10.1529%2fbiophysj.104.055996&partnerID=40&md5=bfa9c28ca59d2f8b707765a29979c3a8
dc.subjectmodelen
dc.subjectarticleen
dc.subjectproteinen
dc.subjecterroren
dc.subjectprotein functionen
dc.subjectprotein bindingen
dc.subjectsimulationen
dc.subjectThermodynamicsen
dc.subjectElectrostaticsen
dc.subjectenergyen
dc.subjectmolecular interactionen
dc.subjectmathematical analysisen
dc.subjectanalytic methoden
dc.subjectcarboxylic aciden
dc.subjectelectricityen
dc.subjectprecipitationen
dc.subjectHydrogen-Ion Concentrationen
dc.subjectBiophysicsen
dc.subjectmolecular dynamicsen
dc.subjectProteinsen
dc.subjectaspartic aciden
dc.subjectprotein structureen
dc.subjectlysineen
dc.subjectprotonen
dc.subjectRibonucleasesen
dc.subjectModels, Chemicalen
dc.subjectsolventen
dc.subjectProtonsen
dc.subjectpolarizationen
dc.subjectprincipal component analysisen
dc.subjectelectric potentialen
dc.subjectpKaen
dc.subjectaveragingen
dc.subjectdesolvationen
dc.subjectdielectric continuum modelen
dc.subjectelectrostatic potentialen
dc.subjectfree energy component analysisen
dc.subjectlinear response methoden
dc.subjectMarcus reorganizationen
dc.subjectphysical phenomenaen
dc.subjectPoisson Boltzmann methoden
dc.subjectribonuclease Aen
dc.subjectthioredoxinen
dc.titleProton binding to proteins: A free-energy component analysis using a dielectric continuum modelen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1529/biophysj.104.055996
dc.description.volume88
dc.description.issue6
dc.description.startingpage3888
dc.description.endingpage3904
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :56</p>en
dc.source.abbreviationBiophys.J.en
dc.contributor.orcidArchontis, Georgios Z. [0000-0002-7750-8641]
dc.gnosis.orcid0000-0002-7750-8641


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record