Show simple item record

dc.contributor.authorHeck, A.en
dc.contributor.authorWoiczikowski, P. B.en
dc.contributor.authorKubař, T.en
dc.contributor.authorWelke, K.en
dc.contributor.authorNiehaus, T.en
dc.contributor.authorGiese, B.en
dc.contributor.authorSkourtis, Spiros S.en
dc.contributor.authorElstner, M.en
dc.contributor.authorSteinbrecher, T. B.en
dc.creatorHeck, A.en
dc.creatorWoiczikowski, P. B.en
dc.creatorKubař, T.en
dc.creatorWelke, K.en
dc.creatorNiehaus, T.en
dc.creatorGiese, B.en
dc.creatorSkourtis, Spiros S.en
dc.creatorElstner, M.en
dc.creatorSteinbrecher, T. B.en
dc.date.accessioned2019-12-02T15:30:30Z
dc.date.available2019-12-02T15:30:30Z
dc.date.issued2014
dc.identifier.issn1520-6106
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/58719
dc.description.abstractCharge transfer in peptides and proteins can occur on different pathways, depending on the energetic landscape as well as the coupling between the involved orbitals. Since details of the mechanism and pathways are difficult to access experimentally, different modeling strategies have been successfully applied to study these processes in the past. These can be based on a simple empirical pathway model, efficient tight binding type atomic orbital Hamiltonians or ab initio and density functional calculations. An interesting strategy, which allows an efficient calculations of charge transfer parameters, is based on a fragmentation of the system into functional units. While this works well for systems like DNA, where the charge transfer pathway is naturally divided into distinct molecular fragments, this is less obvious for charge transfer along peptide and protein backbones. In this work, we develop and access a strategy for an effective fragmentation approach, which allows one to compute electronic couplings for large systems along nanosecond time scale molecular dynamics trajectories. The new methodology is applied to a solvated peptide, for which charge transfer properties have been studied recently using an empirical pathway model. As could be expected, dynamical effects turn out to be important, which emphasizes the importance of using effective quantum approaches which allow for sufficient sampling. However, the computed rates are orders of magnitude smaller than experimentally determined, which indicates the shortcomings of present modeling approaches. © 2014 American Chemical Society.en
dc.sourceJournal of Physical Chemistry Ben
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84899488088&doi=10.1021%2fjp408907g&partnerID=40&md5=0cdb149665577e9d4730bce9c9593ccc
dc.subjectchemistryen
dc.subjectAcetamidesen
dc.subjectPeptidesen
dc.subjectanalogs and derivativesen
dc.subjectHamiltoniansen
dc.subjectQuantum chemistryen
dc.subjectMolecular dynamicsen
dc.subjectelectronen
dc.subjectElectronsen
dc.subjectCharge transferen
dc.subjectpeptideen
dc.subjectsolventen
dc.subjectSolventsen
dc.subjectOrders of magnitudeen
dc.subjectquantum theoryen
dc.subjectMolecular Dynamics Simulationen
dc.subjecttolueneen
dc.subjectAb initio and density functional calculationsen
dc.subjectacetamideen
dc.subjectacetamide derivativeen
dc.subjectCharge transfer propertiesen
dc.subjectdimethoxytolueneen
dc.subjectDimethylformamideen
dc.subjectElectronic couplingen
dc.subjectformamideen
dc.subjectformamide derivativeen
dc.subjectFormamidesen
dc.subjectImportance samplingen
dc.subjectMolecular dynamics trajectoriesen
dc.subjectMolecular fragmentsen
dc.subjectN-methylacetamideen
dc.subjectn,n dimethylacetamideen
dc.subjectn,n dimethylformamideen
dc.subjectNanosecond time scaleen
dc.subjectTransfer parametersen
dc.titleFragment orbital based description of charge transfer in peptides including backbone orbitalsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1021/jp408907g
dc.description.volume118
dc.description.issue16
dc.description.startingpage4261
dc.description.endingpage4272
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :10</p>en
dc.source.abbreviationJ Phys Chem Ben
dc.contributor.orcidSkourtis, Spiros S. [0000-0002-5834-248X]
dc.gnosis.orcid0000-0002-5834-248X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record