Show simple item record

dc.contributor.authorLin, J.en
dc.contributor.authorHu, X.en
dc.contributor.authorZhang, P.en
dc.contributor.authorVan Rynbach, A.en
dc.contributor.authorBeratan, David N.en
dc.contributor.authorKent, C. A.en
dc.contributor.authorMehl, B. P.en
dc.contributor.authorPapanikolas, J. M.en
dc.contributor.authorMeyer, T. J.en
dc.contributor.authorLin, W.en
dc.contributor.authorSkourtis, Spiros S.en
dc.contributor.authorConstantinou, Martha G.en
dc.creatorLin, J.en
dc.creatorHu, X.en
dc.creatorZhang, P.en
dc.creatorVan Rynbach, A.en
dc.creatorBeratan, David N.en
dc.creatorKent, C. A.en
dc.creatorMehl, B. P.en
dc.creatorPapanikolas, J. M.en
dc.creatorMeyer, T. J.en
dc.creatorLin, W.en
dc.creatorSkourtis, Spiros S.en
dc.creatorConstantinou, Marthaen
dc.date.accessioned2019-12-02T15:31:42Z
dc.date.available2019-12-02T15:31:42Z
dc.date.issued2013
dc.identifier.issn1932-7447
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/58824
dc.description.abstractMetal-organic frameworks (MOFs) are appealing candidates for use in energy harvesting and concentrating because of their high chromophore density and structural tunability. The ability to engineer electronic excitation energy transport pathways is of particular interest for designing energy harvesting materials. In this study, theoretical analysis was performed on energy transfer in MOFs that contain light absorbing ruthenium complexes that serve as hopping intermediates for energy transfer kinetics and energy trapping osmium complexes. We find that the excitation transport kinetics is well described by a Dexter (exchange) triplet-to-triplet energy transfer mechanism with multistep incoherent exciton hopping. The modeling combines ab initio electronic structure theory with kinetic network analysis. The sensitivity of Dexter mechanism energy transfer to framework structure establishes different kinds of energy transport paths in the different structures. For example, the mixed Ru/Os MOF structures described here establish one or three-dimensional hopping networks. As such, Dexter mechanism energy harvesting materials may be amenable to designing structures that can spatially direct exciton energy along specific pathways for energy delivery to reaction centers. © 2013 American Chemical Society.en
dc.sourceJournal of Physical Chemistry Cen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84887165254&doi=10.1021%2fjp401515r&partnerID=40&md5=93a867a027bec8785e8b075388db2df1
dc.subjectKineticsen
dc.subjectComplex networksen
dc.subjectElectronic structureen
dc.subjectCrystalline materialsen
dc.subjectEnergy harvestingen
dc.subjectEnergy transferen
dc.subjectMetal organic frameworken
dc.subjectExcitonsen
dc.subjectChromophoresen
dc.subjectMetalorganic frameworks (MOFs)en
dc.subjectDesigning structuresen
dc.subjectElectronic excitation energyen
dc.subjectElectronic structure theoryen
dc.subjectEnergy transfer mechanismsen
dc.subjectExcitation energyen
dc.subjectFramework structuresen
dc.subjectRuthenium complexesen
dc.subjectRuthenium compoundsen
dc.titleTriplet excitation energy dynamics in metal-organic frameworksen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1021/jp401515r
dc.description.volume117
dc.description.issue43
dc.description.startingpage22250
dc.description.endingpage22259
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :15</p>en
dc.source.abbreviationJ.Phys.Chem.Cen
dc.contributor.orcidSkourtis, Spiros S. [0000-0002-5834-248X]
dc.gnosis.orcid0000-0002-5834-248X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record