Show simple item record

dc.contributor.authorVoutouri, Chrysovalantisen
dc.contributor.authorKirkpatrick, Nathaniel D.en
dc.contributor.authorChung, Euiheonen
dc.contributor.authorMpekris, Fotiosen
dc.contributor.authorBaish, James W.en
dc.contributor.authorMunn, Lance L.en
dc.contributor.authorFukumura, Daien
dc.contributor.authorStylianopoulos, Triantafyllosen
dc.contributor.authorJain, Rakesh K.en
dc.creatorVoutouri, Chrysovalantisen
dc.creatorKirkpatrick, Nathaniel D.en
dc.creatorChung, Euiheonen
dc.creatorMpekris, Fotiosen
dc.creatorBaish, James W.en
dc.creatorMunn, Lance L.en
dc.creatorFukumura, Daien
dc.creatorStylianopoulos, Triantafyllosen
dc.creatorJain, Rakesh K.en
dc.date.accessioned2021-01-27T10:17:52Z
dc.date.available2021-01-27T10:17:52Z
dc.date.issued2019
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/63825
dc.description.abstractCooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without—or before—angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.en
dc.language.isoenen
dc.sourceProceedings of the National Academy of Sciencesen
dc.source.urihttps://www.pnas.org/content/116/7/2662
dc.source.urihttp://www.ncbi.nlm.nih.gov/pubmed/30700544
dc.titleExperimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategiesen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1073/pnas.1818322116
dc.description.volume116
dc.description.issue7
dc.description.startingpage2662
dc.description.endingpage2671
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.source.abbreviationPNASen
dc.contributor.orcidStylianopoulos, Triantafyllos [0000-0002-3093-1696]
dc.contributor.orcidMpekris, Fotios [0000-0002-7125-4062]
dc.contributor.orcidVoutouri, Chrysovalantis [0000-0003-3172-9489]
dc.gnosis.orcid0000-0002-3093-1696
dc.gnosis.orcid0000-0002-7125-4062
dc.gnosis.orcid0000-0003-3172-9489


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record