Show simple item record

dc.contributor.authorIliopoulos, E.en
dc.contributor.authorZervos, Matthewen
dc.contributor.authorAdikimenakis, A.en
dc.contributor.authorTsagaraki, K.en
dc.contributor.authorGeorgakilas, A.en
dc.creatorIliopoulos, E.en
dc.creatorZervos, Matthewen
dc.creatorAdikimenakis, A.en
dc.creatorTsagaraki, K.en
dc.creatorGeorgakilas, A.en
dc.date.accessioned2019-05-06T12:23:43Z
dc.date.available2019-05-06T12:23:43Z
dc.date.issued2006
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48421
dc.description.abstractSilicon-doped GaN epilayers and AlGaN/GaN heterostructures were developed by nitrogen plasma-assisted molecular beam epitaxy on high resistivity iron-doped GaN (0001) templates and their properties were investigated by atomic force microscopy, x-ray diffraction and Hall effect measurements. In the case of high electron mobility transistors heterostructures, the AlN mole fraction and the thickness of the AlGaN barrier employed were in the range of from 0.17 to 0.36 and from 7.5 to 30 nm, respectively. All structures were capped with a 2 nm GaN layer. Despite the absence of Ga droplets formation on the surface, growth of both GaN and AlGaN by RF-MBE on the GaN (0001) surfaces followed a step-flow growth mode resulting in low surface roughness and very abrupt heterointerfaces, as revealed by XRD. Reciprocal space maps around the (10 over(1, ̄) 5) reciprocal space point reveal that the AlGaN barriers are fully coherent with the GaN layer. GaN layers, n-doped with silicon in the range from 1015 to 1019 cm-3 exhibited state of the art electrical properties, consistent with a low unintentional background doping level and low compensation ratio. The carrier concentration versus silicon cell temperatures followed an Arhenius behaviour in the whole investigated doping range. The degenerate 2DEG, at the AlGaN/GaN heteroiterfaces, exhibited high Hall mobilities reaching 1860 cm2/V s at 300 K and 10 220 cm2/V s at 77 K for a sheet carrier density of 9.6E12 cm-2. The two dimensional degenerate electron gas concentration in the GaN capped AlGaN/GaN structures was also calculated by self-consistent solving the Schrödinger-Poisson equations. Comparison with the experimental measured values reveals a Fermi level pinning of the GaN (0001) surface at about 0.8 eV below the GaN conduction band. © 2006 Elsevier Ltd. All rights reserved.en
dc.language.isoengen
dc.sourceSuperlattices and Microstructuresen
dc.subjectElectron mobilityen
dc.subjectAtomic force microscopyen
dc.subjectCarrier concentrationen
dc.subjectHeterojunctionsen
dc.subjectHall effecten
dc.subjectSemiconductor dopingen
dc.subjectAlGaN/GaN heterostructuresen
dc.subjectCompensation ratioen
dc.subjectConduction banden
dc.subjectElectron gasen
dc.subjectGallium nitrideen
dc.subjectHeteroiterfacesen
dc.subjectHigh electron mobility transistorsen
dc.subjectIII-Nitridesen
dc.subjectMolecular beam epitaxyen
dc.subjectPlasma assisted molecular beam epitaxyen
dc.subjectSilicon dopingen
dc.titleProperties of Si-doped GaN and AlGaN/GaN heterostructures grown by RF-MBE on high resistivity Fe-doped GaNen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.spmi.2006.09.024
dc.description.volume40
dc.description.startingpage313
dc.description.endingpage319
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidZervos, Matthew [0000-0002-6321-233X]
dc.description.totalnumpages313-319
dc.gnosis.orcid0000-0002-6321-233X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record