Donor atom electrochemical contribution to redox potentials of square pyramidal vanadyl complexes
Date
2015Source
Journal of inorganic biochemistryVolume
147Pages
39-43Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
A simple donor atom additivity relationship has been used to calculate the donor atom electrochemical contribution (DEC) of the Oac (acetylacetonate-enolic oxygen), OPh (phenolic oxygen), SPh (mercaptophenol sulfur), Nam (deprotonate amide nitrogen), Nim (imine nitrogen) and Npy (pyridine nitrogen) to the redox processes of the square pyramidal vanadyl complexes. The study focuses on the amidate vanadyl complexes because of (a) their biological interest and (b) the existence of data from plethora complexes studied in great details. The electrochemical contributions for the vanadyl oxidation and reduction processes increase following the same order, OPh ~ Oac(enolic) Ph ~ Nam im py. These values predict the electrochemical potentials of square pyramidal vanadyl complexes with high accuracy. Octahedral complexes with the same equatorial environment show significant shift of the oxidation potentials to lower values. The DEC influence to the square pyramidal vanadyls' electrochemical potentials has been evaluated. © 2015 Elsevier Inc. All rights reserved.