Show simple item record

dc.contributor.authorZhang, Y.en
dc.contributor.authorLiu, C.en
dc.contributor.authorBalaeff, A.en
dc.contributor.authorSkourtis, Spiros S.en
dc.contributor.authorBeratan, David N.en
dc.creatorZhang, Y.en
dc.creatorLiu, C.en
dc.creatorBalaeff, A.en
dc.creatorSkourtis, Spiros S.en
dc.creatorBeratan, David N.en
dc.date.accessioned2019-12-02T15:34:53Z
dc.date.available2019-12-02T15:34:53Z
dc.date.issued2014
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/59242
dc.description.abstractBiological electron-transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multistep hopping. However, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecular structures and of the medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative. The distance dependence of FR transport thus mimics the exponential decay that is usually associated with electron tunneling, although FR transport involves real carrier population on the bridge and is not a tunneling phenomenon. Likely candidates for FR transport are macromolecules with ET groups in van der Waals contact: DNA, bacterial nanowires, multiheme proteins, strongly coupled porphyrin arrays, and proteins with closely packed redox-active residues. The theory developed here is used to analyze DNA charge-transfer kinetics, and we find that charge-transfer distances up to three to four bases may be accounted for with this mechanism. Thus, the observed rapid (exponential) distance dependence of DNA ET rates over distances of ≲15 Å does not necessarily prove a tunneling mechanism.en
dc.sourceProceedings of the National Academy of Sciences of the United States of Americaen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84904325184&doi=10.1073%2fpnas.1316519111&partnerID=40&md5=acc3b15f034d7d76c67a7ada6413bb84
dc.subjectarticleen
dc.subjectpriority journalen
dc.subjectBacteriaen
dc.subjectDNAen
dc.subjectKineticsen
dc.subjectchemical structureen
dc.subjectOxidation-Reductionen
dc.subjectNanowiresen
dc.subjectnanowireen
dc.subjectelectric activityen
dc.subjectelectricityen
dc.subjectelectron transporten
dc.subjectModels, Chemicalen
dc.subjectchemical reaction kineticsen
dc.subjectionizationen
dc.subjectporphyrinen
dc.subjectmacromoleculeen
dc.subjecttransport kineticsen
dc.subjectCoherenceen
dc.subjectSuperexchangeen
dc.subjectVibronic couplingen
dc.subjectadiabaticityen
dc.subjectcharge transferen
dc.subjectDNA hairpinen
dc.subjectDNA, Bacterialen
dc.subjectflickering electronic resonanceen
dc.subjectGated transporten
dc.subjectResonant tunneling pathwaysen
dc.titleBiological charge transfer via flickering resonanceen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1073/pnas.1316519111
dc.description.volume111
dc.description.issue28
dc.description.startingpage10049
dc.description.endingpage10054
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :41</p>en
dc.source.abbreviationProc.Natl.Acad.Sci.U.S.A.en
dc.contributor.orcidSkourtis, Spiros S. [0000-0002-5834-248X]
dc.gnosis.orcid0000-0002-5834-248X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record