Show simple item record

dc.contributor.authorTarani, E.en
dc.contributor.authorTerzopoulou, Z.en
dc.contributor.authorBikiaris, D. N.en
dc.contributor.authorKyratsi, Theodoraen
dc.contributor.authorChrissafis, K.en
dc.contributor.authorVourlias, G.en
dc.creatorTarani, E.en
dc.creatorTerzopoulou, Z.en
dc.creatorBikiaris, D. N.en
dc.creatorKyratsi, Theodoraen
dc.creatorChrissafis, K.en
dc.creatorVourlias, G.en
dc.date.accessioned2019-05-06T12:24:44Z
dc.date.available2019-05-06T12:24:44Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48895
dc.description.abstractGraphene-filled high-density polyethylene nanocomposites varying filler’s size (5, 10 and 25 × 10−6 m in diameter) were prepared by the melt-mixing method, and their thermal properties are then investigated by TG, Py–GC/MS and thermal conductivity measurements. Thermal and thermo-oxidative degradation temperatures of HDPE/graphene nanocomposites were substantially improved with increment of filler content and graphene size. According to kinetic analysis of thermal decomposition, the thermal degradation mechanism of HDPE/graphene nanocomposites may efficiently be described by an nth-order model with autocatalysis (Cn). Meanwhile, the activation energy values versus the partial mass loss revealed that graphene nanoparticles take up the heat and obstruct transport of HDPE degradation products efficiently. It was also found that the decomposition in nanocomposites is taking place mainly via chain scission reaction, followed by β-scission propagation reactions, radical reactions and the termination process. Graphene nanocomposites achieved significant improvements in thermal conductivity at low filler concentrations, while the experimental data are in good agreement with the Hatta–Taya theoretical model. Summing up the influence of filler size on thermal properties of polymer matrix, graphene nanoparticles with the higher diameter (25 × 10−6 m) affect more than graphene of 5 × 10−6 and 15 × 10−6 m. © 2017, Akadémiai Kiadó, Budapest, Hungary.en
dc.language.isoengen
dc.sourceJournal of Thermal Analysis and Calorimetryen
dc.subjectDecompositionen
dc.subjectKineticsen
dc.subjectNanocompositesen
dc.subjectReaction kineticsen
dc.subjectThermal conductivityen
dc.subjectThermal conductivity measurementsen
dc.subjectActivation energyen
dc.subjectNanoparticlesen
dc.subjectChemical activationen
dc.subjectGrapheneen
dc.subjectEnzyme kineticsen
dc.subjectThermodynamic propertiesen
dc.subjectDecomposition mechanismen
dc.subjectPolyethylenesen
dc.subjectPyrolysisen
dc.subjectDegradationen
dc.subjectDegradation productsen
dc.subjectFilled polymersen
dc.subjectFiller concentrationen
dc.subjectFillersen
dc.subjectFree radical reactionsen
dc.subjectGraphene nanocompositesen
dc.subjectHigh density polyethylenesen
dc.subjectHigh-density polyethyleneen
dc.subjectKinetics and mechanismen
dc.subjectThermal and thermo-oxidative degradationen
dc.subjectThermal degradation mechanismen
dc.titleThermal conductivity and degradation behavior of HDPE/graphene nanocomposites: Pyrolysis, kinetics and mechanismen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/s10973-017-6342-0
dc.description.volume129
dc.description.startingpage1715
dc.description.endingpage1726
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidKyratsi, Theodora [0000-0003-2916-1708]
dc.description.totalnumpages1715-1726
dc.gnosis.orcid0000-0003-2916-1708


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record