Show simple item record

dc.contributor.authorChen, Y.en
dc.contributor.authorLiu, X.en
dc.contributor.authorPisha, E.en
dc.contributor.authorConstantinou, Andreas I.en
dc.contributor.authorHua, Y.en
dc.contributor.authorShen, L.en
dc.contributor.authorVan Breemen, R. B.en
dc.contributor.authorElguindi, E. C.en
dc.contributor.authorBlond, S. Y.en
dc.contributor.authorZhang, Fengwangdongen
dc.contributor.authorBolton, J. L.en
dc.creatorChen, Y.en
dc.creatorLiu, X.en
dc.creatorPisha, E.en
dc.creatorConstantinou, Andreas I.en
dc.creatorHua, Y.en
dc.creatorShen, L.en
dc.creatorVan Breemen, R. B.en
dc.creatorElguindi, E. C.en
dc.creatorBlond, S. Y.en
dc.creatorZhang, Fengwangdongen
dc.creatorBolton, J. L.en
dc.date.accessioned2019-11-04T12:50:19Z
dc.date.available2019-11-04T12:50:19Z
dc.date.issued2000
dc.identifier.issn0893-228X
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/52976
dc.description.abstractEstrogen replacement therapy has been correlated with an increased risk of developing breast or endometrial cancer. 4-Hydroxyequilenin (4-OHEN) is a catechol metabolite of equilenin which is a minor component of the estrogen replacement formulation marketed under the name of Premarin (Wyeth-Ayerst). Previously, we showed that 4-OHEN autoxidizes to quinoids which can consume reducing equivalents and molecular oxygen, are potent cytotoxins, and cause a variety of damage to DNA, including formation of bulky stable adducts, apurinic sites, and oxidation of the phosphate-sugar backbone and purine/pyrimidine bases [Bolton, J. L., Pisha, E., Zhang, F., and Qiu, S. (1998) Chem. Res. Toxicol. 11, 1113-1127]. All of these deleterious effects could contribute to the cytotoxic and genotoxic effects of equilenin in vivo. In the study presented here, we examined the relative toxicity of 4-OHEN in estrogen receptor (ER) positive cells (MCF-7 and S30) compared to that in breast cancer cells without the estrogen receptor (MDA-MB-231). The data showed that 4-OHEN was 4-fold more toxic to MCF-7 cells (LC50 = 6.0 ± 0.2 μM) and 6-fold more toxic to S30 cells (LC50 = 4.0 ± 0.1 μM) than to MDA-MB-231 cells (LC50 = 24 ± 0.3 μM). Using the single-cell gel electrophoresis assay (comet assay) to assess DNA damage, we found that 4- OHEN causes concentration-dependent DNA single-strand cleavage in all three cell lines, and this effect could be enhanced by agents which catalyze redox cycling (NADH) or deplete cellular GSH (diethyl maleate). In addition, the ER+ cell lines (MCF-7 and S30) were considerably more sensitive to induction of DNA damage by 4-OHEN than the ER- cells (MDA-MB-231). 4-OHEN also caused a concentration-dependent increase in the amount of mutagenic lesion 8-oxo-dG in the S30 cells as determined by LC/MS-MS. Cell morphology assays showed that 4-OHEN induces apoptosis in these cell lines. As observed with the toxicity assay and the comet assay, the ER+ cells were more sensitive to induction of apoptosis by 4-OHEN than MDA-MB-231 cells. Finally, the endogenous catechol estrogen metabolite 4-hydroxyestrone (4-OHE) was considerably less effective at inducing DNA damage and apoptosis in breast cancer cell lines than 4-OHEN. Our data suggest that the cytotoxic effects of 4-OHEN may be related to its ability to induce DNA damage and apoptosis in hormone sensitive cells in vivo, and these effects may be potentiated by the estrogen receptor.en
dc.sourceChemical research in toxicologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0034035343&doi=10.1021%2ftx990186j&partnerID=40&md5=968211ff8b2c8da0aec2ff8a38a153ff
dc.subjectarticleen
dc.subjectFemaleen
dc.subjectHumansen
dc.subjectbreast canceren
dc.subjectBreast Neoplasmsen
dc.subjectcancer risken
dc.subjectcarcinogenesisen
dc.subjectcancer cellen
dc.subjectapoptosisen
dc.subjectDNAen
dc.subjectconjugated estrogenen
dc.subjectendometrium canceren
dc.subjectestrogenen
dc.subjectEpithelial Cellsen
dc.subjectcell strain MCF 7en
dc.subjectconcentration responseen
dc.subjectCell Survivalen
dc.subjectDNA damageen
dc.subjectcomet assayen
dc.subjectTumor Cells, Cultureden
dc.subjectDose-Response Relationship, Drugen
dc.subjectautooxidationen
dc.subjectcytotoxicityen
dc.subjectDNA Fragmentationen
dc.subjectDNA, Neoplasmen
dc.subjectEquileninen
dc.subjectEstradiol Congenersen
dc.subjectEstrogens, Catecholen
dc.subjectgenotoxicityen
dc.subjectHydroxyestronesen
dc.subjectmetaboliteen
dc.titleA metabolite of equine estrogens, 4-hydroxyequilenin, induces DNA damage and apoptosis in breast cancer cell linesen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1021/tx990186j
dc.description.volume13
dc.description.startingpage342
dc.description.endingpage350
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Βιολογικών Επιστημών / Department of Biological Sciences
dc.type.uhtypeArticleen
dc.description.notes<p>Tradenames: premarin, Wyeth Ayersten
dc.description.notesManufacturers: Sigma, United Statesen
dc.description.notesWyeth Ayersten
dc.description.notesCited By :77</p>en
dc.source.abbreviationChem.Res.Toxicol.en
dc.contributor.orcidConstantinou, Andreas I. [0000-0003-0365-1821]
dc.gnosis.orcid0000-0003-0365-1821


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record