Show simple item record

dc.contributor.advisorΧρίστου, Κωνσταντίνοςel
dc.contributor.authorΗρακλέους, Παναγιώτα Α.el
dc.coverage.spatialΚύπροςel
dc.coverage.spatialCyprusen
dc.creatorΗρακλέους, Παναγιώτα Α.el
dc.date.accessioned2021-08-23T06:25:04Z
dc.date.available2021-08-23T06:25:04Z
dc.date.issued2020-05
dc.date.submitted2020-05-09
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/64824
dc.descriptionΠεριέχει βιβλιογραφικές παραπομπές.el
dc.descriptionΑριθμός δεδηλωμένων πηγών στη βιβλιογραφία: 357el
dc.descriptionΔιατριβή (Διδακτορική) -- Πανεπιστήμιο Κύπρου, Σχολή Κοινωνικών Επιστημών και Επιστημών Αγωγής, Τμήμα Επιστημών της Αγωγής, 2020.el
dc.descriptionΗ βιβλιοθήκη διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή.el
dc.description.abstractΟ σκοπός της παρούσας έρευνας είναι να εξετάσει εμπειρικά, με μαθητές ηλικίας 11-12 ετών, τη δομή καθώς και τις σχέσεις ανάμεσα στη φαντασία στα μαθηματικά, τις μαθηματικές γνώσεις και τη μαθηματική νοοτροπία. Αυτοί οι τρεις παράγοντες αποτελούν τους εσωτερικούς παράγοντες που συνεισφέρουν στη μαθηματική δημιουργικότητα, σύμφωνα με το μοντέλο της Seelig (2012). Στην έρευνα έλαβαν μέρος 217 μαθητές Στ’ δημοτικού από τρία αστικά και οκτώ αγροτικά δημοτικά σχολεία της Κύπρου. Για τη συλλογή των δεδομένων, χορηγήθηκαν τα ακόλουθα εργαλεία: (α) το δοκίμιο μέτρησης της φαντασίας στα μαθηματικά, (β) το δοκίμιο μαθηματικών γνώσεων και (γ) το ερωτηματολόγιο της μαθηματικής νοοτροπίας. Συγχρόνως, λήφθηκαν ημι-δομημένες ατομικές συνεντεύξεις από 18 μαθητές, οι οποίες αποσκοπούσαν στη μελέτη των γνωστικών διαδικασιών της φαντασίας στα μαθηματικά που εμφανίζονται καθώς οι μαθητές επιλύουν ένα μαθηματικό πρόβλημα ενόρασης. Τα ποσοτικά δεδομένα αναλύθηκαν με τη μέθοδο ανάλυσης Μερικών Ελάχιστων Τετραγώνων (PLS-SEM), ενώ τα ποιοτικά δεδομένα με τη μέθοδο της αναλυτικής επαγωγής. Τα αποτελέσματα της διατριβής έδειξαν ότι: (α) Η φαντασία στα μαθηματικά είναι μια πολυδιάστατη εννοιολογική οντότητα, αποτελώντας έναν παράγοντα δευτέρας τάξης που ορίζεται από τρεις ικανότητες: την οπτικοποίηση, τις μετασχηματιστικές ικανότητες και την πρωτοτυπία. (β) Συγκεκριμένες γνωστικές διαδικασίες εμφανίζονται καθώς οι μαθητές επιλύουν ένα μαθηματικό πρόβλημα ενόρασης, οι οποίες ακολουθούν τέσσερα στάδια: προετοιμασία, επώαση, φωτισμός και επαλήθευση. Κάθε στάδιο πραγματώθηκε με διαφορετικό τρόπο στους μαθητές με διαφορετική ικανότητα επίλυσης μαθηματικών προβλημάτων ενόρασης. (γ) Ανάμεσα στους τρεις εσωτερικούς παράγοντες που, σύμφωνα με το μοντέλο της Seelig (2012), συνεισφέρουν στη μαθηματική δημιουργικότητα, δηλαδή τη φαντασία στα μαθηματικά, τις μαθηματικές γνώσεις και τη μαθηματική νοοτροπία, επικρατούν συγκεκριμένες σχέσεις. Οι μαθηματικές γνώσεις μπορούν να ερμηνευθούν άμεσα και σε μέτριο βαθμό από τη μαθηματική νοοτροπία. Η φαντασία στα μαθηματικά μπορεί να επεξηγηθεί άμεσα και σε μεγάλο βαθμό από τις μαθηματικές γνώσεις, ενώ μπορεί να ερμηνευθεί έμμεσα από τις πεποιθήσεις των μαθητών για τη μαθηματική νοοτροπία.el
dc.description.abstractThe present study purports to empirically examine the structure and relationships among mathematical imagination, mathematical knowledge and mathematical mindset. These three factors are constituent parts of Seelig’s (2012) Innovation Engine model and according to her they can influence creativity. Two hundred and seventeen sixth grade students from three urban and eight rural primary schools in Cyprus participated in the study. The following instruments were administered to students: (a) a test measuring mathematical imagination, (b) a mathematical knowledge test, (c) a questionnaire on mathematical mindset. Individual semi-structured interviews with eighteen students were conducted as well, in order to explore students’ cognitive processes of mathematical imagination which emerge while solving an insight mathematical problem. The quantitative data of the study were analyzed through partial least squares structural equation modeling, while the qualitative data through analytic induction. The study has yielded the following findings: (a) Mathematical imagination is a multi-dimensional construct. It consists a second-order factor which is defined by three first-order factors: visualization, transformational skills and originality. (b) Students’ cognitive processes arise while solving an insight mathematical problem and can be sub-divided into four stages: Preparation, incubation, illumination and verification. Students of different ability in solving mathematical insight problems experienced each stage in a different manner. (c) Particular relationships exist among the three factors on the inside of the Innovation Engine that influence mathematical creativity (Seelig, 2012): mathematical imagination, mathematical knowledge and mathematical mindset. Mathematical knowledge can be explained directly and moderately by mathematical mindset. Mathematical imagination can be explained directly and to a large extent by mathematical knowledge and indirectly by mathematical mindset.en
dc.format.extentxx, 261 σ. : πίν. ; 30 εκ.el
dc.language.isogreen
dc.publisherΠανεπιστήμιο Κύπρου, Σχολή Κοινωνικών Επιστημών και Επιστημών Αγωγής / University of Cyprus, Faculty of Social Sciences and Education
dc.subject.lcshMathematics -- Study and teaching (Elementary)en
dc.subject.lcshCreative thinking in childrenen
dc.titleΗ ανάπτυξη ενός θεωρητικού μοντέλου για τη φαντασία στα μαθηματικά, τις μαθηματικές γνώσεις και τη μαθηματική νοοτροπίαel
dc.title.alternativeDeveloping a theoretical model about imagination, knowledge and mindset in mathematicsen
dc.typeinfo:eu-repo/semantics/doctoralThesisen
dc.contributor.committeememberΚυριακίδης, Λεωνίδαςel
dc.contributor.committeememberΠίττα-Πανταζή , Δήμητραel
dc.contributor.committeememberΤριανταφυλλίδης, Τριαντάφυλλοςel
dc.contributor.committeememberΔεσλή, Δέσποιναel
dc.contributor.committeememberKyriakides, Leonidasen
dc.contributor.committeememberPitta-Pantazi, Demetraen
dc.contributor.committeememberTriandafillidis, Triandafillosen
dc.contributor.committeememberDesli, Despoinaen
dc.contributor.departmentΠανεπιστήμιο Κύπρου, Σχολή Κοινωνικών Επιστημών και Επιστημών Αγωγής, Τμήμα Επιστημών της Αγωγήςel
dc.contributor.departmentUniversity of Cyprus, Faculty of Social Sciences and Education, Department of Educationen
dc.subject.uncontrolledtermΜΑΘΗΜΑΤΙΚΗ ΔΗΜΙΟΥΡΓΙΚΟΤΗΤΑel
dc.subject.uncontrolledtermΦΑΝΤΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑel
dc.subject.uncontrolledtermΜΑΘΗΜΑΤΙΚΕΣ ΓΝΩΣΕΙΣel
dc.subject.uncontrolledtermΜΑΘΗΜΑΤΙΚΗ ΝΟΟΤΡΟΠΙΑel
dc.subject.uncontrolledtermMATHEMATICAL CREATIVITYen
dc.subject.uncontrolledtermIMAGINATION IN MATHEMATICSen
dc.subject.uncontrolledtermMATHEMATICAL KNOWLEDGEen
dc.subject.uncontrolledtermMATHEMATICAL MINDSETen
dc.identifier.lcQA135.6.E73 2020en
dc.author.facultyΣχολή Κοινωνικών Επιστημών και Επιστημών Αγωγής / Faculty of Social Sciences and Education
dc.author.departmentΤμήμα Επιστημών της Αγωγής / Department of Education
dc.type.uhtypeDoctoral Thesisen
dc.rights.embargodate2023-05-09
dc.contributor.orcidΧρίστου, Κωνσταντίνος [0000-0002-5901-5931]


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record