KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer: A cohort study
Date
2014Author
Negru, S.Papadopoulou, E.
Apessos, A.
Stanculeanu, D. L.
Ciuleanu, E.
Volovat, C.
Croitoru, A.
Kakolyris, S.

Ziras, N.
Athanasiadis, E.
Touroutoglou, N.


Nasioulas, G.
Source
BMJ OpenVolume
4Issue
5Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
Objectives: Treatment decision-making in colorectal cancer is often guided by tumour tissue molecular analysis. The aim of this study was the development and validation of a high-resolution melting (HRM) method for the detection of KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer and determination of the frequency of these mutations in the respective populations. Setting: Diagnostic molecular laboratory located in Athens, Greece. Participants: 2425 patients with colorectal cancer participated in the study. Primary and secondary outcome measures: 2071 patients with colorectal cancer (1699 of Greek and 372 of Romanian origin) were analysed for KRAS exon 2 mutations. In addition, 354 tumours from consecutive patients (196 Greek and 161 Romanian) were subjected to full KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4) and BRAF (exon 15) analysis. KRAS, NRAS and BRAF mutation detection was performed by a newly designed HRM analysis protocol, followed by Sanger sequencing. Results: KRAS exon 2 mutations (codons 12/13) were detected in 702 of the 1699 Greek patients with colorectal carcinoma analysed (41.3%) and in 39.2% (146/372) of the Romanian patients. Among the 354 patients who were subjected to full KRAS, NRAS and BRAF analysis, 40.96% had KRAS exon 2 mutations (codons 12/13). Among the KRAS exon 2 wild-type patients 15.31% harboured additional RAS mutations and 12.44% BRAF mutations. The newly designed HRM method used showed a higher sensitivity compared with the sequencing method. Conclusions: The HRM method developed was shown to be a reliable method for KRAS, NRAS and BRAF mutation detection. Furthermore, no difference in the mutation frequency of KRAS, NRAS and BRAF was observed between Greek and Romanian patients with colorectal cancer.
Collections
Cite as
Related items
Showing items related by title, author, creator and subject.
-
Article
Addressing the Functional Determinants of FAK during Ciliogenesis in Multiciliated Cells
Antoniades, Ioanna; Stylianou, Panayiota; Christodoulou, Neophytos; Skourides, Paris A. (2017)We previously identified focal adhesion kinase (FAK) as an important regulator of ciliogenesis in multiciliated cells. FAK and other focal adhesion (FA) proteins associate with the basal bodies and their striated rootlets ...
-
Article
Split-Inteins for Simultaneous, site-specific conjugation of Quantum Dots to multiple protein targets In vivo
Charalambous, Anna; Antoniades, Ioanna; Christodoulou, Neophytos; Skourides, Paris A. (2011)Background: Proteins labelled with Quantum Dots (QDs) can be imaged over long periods of time with ultrahigh spatial and temporal resolution, yielding important information on the spatiotemporal dynamics of proteins within ...
-
Article
The nucleotide-binding proteins Nubp1 and Nubp2 are negative regulators of ciliogenesis
Kypri, Elena; Christodoulou, A.; Maimaris, G.; Lethan, M.; Markaki, M.; Lysandrou, C.; Lederer, C. W.; Tavernarakis, N.; Geimer, S.; Pedersen, L. B.; Santama, Niovi (2014)Nucleotide-binding proteins Nubp1 and Nubp2 are MRP/MinD-type P-loop NTPases with sequence similarity to bacterial division site-determining proteins and are conserved, essential proteins throughout the Eukaryotes. They ...