Show simple item record

dc.contributor.authorWijeratne, P. A.en
dc.contributor.authorHipwell, J. H.en
dc.contributor.authorHawkes, D. J.en
dc.contributor.authorStylianopoulos, T.en
dc.contributor.authorVavourakis, V.en
dc.creatorWijeratne, P. A.en
dc.creatorHipwell, J. H.en
dc.creatorHawkes, D. J.en
dc.creatorStylianopoulos, T.en
dc.creatorVavourakis, V.en
dc.date.accessioned2019-05-06T12:24:49Z
dc.date.available2019-05-06T12:24:49Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48933
dc.description.abstractWe present an in-silico model of avascular poroelastic tumour growth coupled with a multiscale biphasic description of the tumour–host environment. The model is specified to in-vitro data, facilitating biophysically realistic simulations of tumour spheroid growth into a dense collagen hydrogel. We use the model to first confirm that passive mechanical remodelling of collagen fibres at the tumour boundary is driven by solid stress, and not fluid pressure. The model is then used to demonstrate the influence of collagen microstructure on peritumoural permeability and interstitial fluid flow. Our model suggests that at the tumour periphery, remodelling causes the peritumoural stroma to become more permeable in the circumferential than radial direction, and the interstitial fluid velocity is found to be dependent on initial collagen alignment. Finally we show that solid stresses are negatively correlated with peritumoural permeability, and positively correlated with interstitial fluid velocity. These results point to a heterogeneous, microstructure-dependent force environment at the tumour–peri-tumoural stroma interface. © 2017 Wijeratne et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.language.isoengen
dc.sourcePLoS ONEen
dc.subjectModelsen
dc.subjectmathematical modelen
dc.subjecthumanen
dc.subjectNeoplasmsen
dc.subjectHumansen
dc.subjectDisease Progressionen
dc.subjecttumor microenvironmenten
dc.subjectneoplasmen
dc.subjectdisease courseen
dc.subjectbiological modelen
dc.subjectcell proliferationen
dc.subjectpathologyen
dc.subjecttumor growthen
dc.subjectArticleen
dc.subjectBiologicalen
dc.subjectin vitro studyen
dc.subjectstromaen
dc.subjectcollagenen
dc.subjectsimulationen
dc.subjectcomputer simulationen
dc.subjectfluid flowen
dc.subjecttumor spheroiden
dc.subjectcollagen fiberen
dc.subjectpermeabilityen
dc.subjecthosten
dc.subjectinterstitial fluiden
dc.subjectmultiscale biphasic modelen
dc.titleMultiscale biphasic modelling of peritumoural collagen microstructure: The effect of tumour growth on permeability and fluid flowen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1371/journal.pone.0184511
dc.description.volume12
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record