Show simple item record

dc.contributor.authorKoutsou, Achilleasen
dc.contributor.authorBugmann, G.en
dc.contributor.authorChristodoulou, Chris C.en
dc.creatorKoutsou, Achilleasen
dc.creatorBugmann, G.en
dc.creatorChristodoulou, Chris C.en
dc.date.accessioned2019-11-13T10:40:47Z
dc.date.available2019-11-13T10:40:47Z
dc.date.issued2015
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/54296
dc.description.abstractBiological systems are able to recognise temporal sequences of stimuli or compute in the temporal domain. In this paper we are exploring whether a biophysical model of a pyramidal neuron can detect and learn systematic time delays between the spikes from different input neurons. In particular, we investigate whether it is possible to reinforce pairs of synapses separated by a dendritic propagation time delay corresponding to the arrival time difference of two spikes from two different input neurons. We examine two subthreshold learning approaches where the first relies on the backpropagation of EPSPs (excitatory postsynaptic potentials) and the second on the backpropagation of a somatic action potential, whose production is supported by a learning-enabling background current. The first approach does not provide a learning signal that sufficiently differentiates between synapses at different locations, while in the second approach, somatic spikes do not provide a reliable signal distinguishing arrival time differences of the order of the dendritic propagation time. It appears that the firing of pyramidal neurons shows little sensitivity to heterosynaptic spike arrival time differences of several milliseconds. This neuron is therefore unlikely to be able to learn to detect such differences. © 2015 Elsevier Ireland Ltd.en
dc.sourceBioSystemsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84948385408&doi=10.1016%2fj.biosystems.2015.08.005&partnerID=40&md5=268730f3c928b89efffde683203ecdba
dc.subjectlearningen
dc.subjectmodelen
dc.subjecthumanen
dc.subjectHumansen
dc.subjectTime Factorsen
dc.subjectbiological modelen
dc.subjectArticleen
dc.subjectAnimalsen
dc.subjectanimalen
dc.subjectphysiologyen
dc.subjecttime factoren
dc.subjectsimulationen
dc.subjectbrainen
dc.subjectcomputer simulationen
dc.subjectadaptationen
dc.subjectsynapseen
dc.subjecttime perceptionen
dc.subjectAdaptation, Physiologicalen
dc.subjectnerve cell networken
dc.subjectNerve Neten
dc.subjectbiophysicsen
dc.subjectspike waveen
dc.subjectsynaptic transmissionen
dc.subjectModels, Neurologicalen
dc.subjectnerve cell plasticityen
dc.subjectNeuronal Plasticityen
dc.subjectCoincidence detectionen
dc.subjectbiophysical modelen
dc.subjectDendritic propagation delaysen
dc.subjectexcitatory postsynaptic potentialen
dc.subjectmembraneen
dc.subjectMembrane noiseen
dc.subjectn methyl dextro aspartic aciden
dc.subjectnerve cell membrane conductanceen
dc.subjectnerve cell membrane steady potentialen
dc.subjectneurologyen
dc.subjectPyramidal Cellsen
dc.subjectpyramidal nerve cellen
dc.subjectSynaptic scalingen
dc.titleOn learning time delays between the spikes from different input neurons in a biophysical model of a pyramidal neuronen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.biosystems.2015.08.005
dc.description.volume136
dc.description.startingpage80
dc.description.endingpage89
dc.author.faculty002 Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Πληροφορικής / Department of Computer Science
dc.type.uhtypeArticleen
dc.source.abbreviationBioSystemsen
dc.contributor.orcidChristodoulou, Chris C. [0000-0001-9398-5256]
dc.gnosis.orcid0000-0001-9398-5256


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record